We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Contrafreeloading (CFL) refers to animals’ tendency to prefer obtaining food through effort rather than accessing food that is freely available. Researchers have proposed various hypotheses to explain this intriguing phenomenon, but few studies have provided a comprehensive analysis of the factors influencing this behaviour. In this study, we observed the choice of alternative food containers in budgerigars (Melopsittacus undulatus) to investigate their CFL tendencies and the effects of pre-training, food deprivation, and effort required on the CFL tasks. The results showed that budgerigars did not exhibit significant difference in their first choices or the time interacting with less challenging versus more challenging food containers. Moreover, when evaluating each budgerigar’s CFL level, only half of them were identified as strong contrafreeloaders. Thus, we suggest that budgerigars exhibit an intermediate CFL level that lies somewhere between a strong tendency and the absence of such behaviour. Furthermore, we also found that food-deprived budgerigars tended to select less challenging food containers, and pre-trained budgerigars were more likely to choose highly challenging food containers than moderately challenging food containers, which means that the requirement of only a reasonable effort (access to food from moderately challenging food containers in this study) and the experience of pre-training act to enhance their CFL levels, whereas the requirement of greater effort and the experience of food deprivation act to decrease their CFL levels. Studying animal CFL can help understand why animals choose to expend effort to obtain food rather than accessing it for free, and it also has implications for setting feeding environments to enhance the animal welfare of captive and domesticated animals.
Climate change is significantly altering our planet, with greenhouse gas emissions and environmental changes bringing us closer to critical tipping points. These changes are impacting species and ecosystems worldwide, leading to the urgent need for understanding and mitigating climate change risks. In this study, we examined global research on assessing climate change risks to species and ecosystems. We found that interest in this field has grown rapidly, with researchers identifying key factors such as species' vulnerability, adaptability, and exposure to environmental changes. Our work highlights the importance of developing better tools to predict risks and create effective protect strategies.
Technical summary
The rising concentration of greenhouse gases, coupled with environmental changes such as albedo shifts, is accelerating the approach to critical climate tipping points. These changes have triggered significant biological responses on a global scale, underscoring the urgent need for robust climate change risk assessments for species and ecosystems. We conducted a systematic literature review using the Web of Science database. Our bibliometric analysis shows an exponential growth in publications since 2000, with over 200 papers published annually since 2019. Our bibliometric analysis reveals that the number of studies has exponentially increased since 2000, with over 200 papers published annually since 2019. High-frequency keywords such as ‘impact’, ‘risk’, ‘vulnerability’, ‘response’, ‘adaptation’, and ‘prediction’ were prevalent, highlighting the growing importance of assessing climate change risks. We then identified five universally accepted concepts for assessing the climate change risk on species and ecosystems: exposure, sensitivity, adaptivity, vulnerability, and response. We provided an overview of the principles, applications, advantages, and limitations of climate change risk modeling approaches such as correlative approaches, mechanistic approaches, and hybrid approaches. Finally, we emphasize that the emerging trends of risk assessment of climate change, encompass leveraging the concept of telecoupling, harnessing the potential of geography, and developing early warning mechanisms.
Social media summary
Climate change risks to biodiversity and ecosystem: key insights, modeling approaches, and emerging strategies.
Post-traumatic stress disorder (PTSD) is a mental health condition caused by the dysregulation or overgeneralization of memories related to traumatic events. Investigating the interplay between explicit narrative and implicit emotional memory contributes to a better understanding of the mechanisms underlying PTSD.
Methods
This case–control study focused on two groups: unmedicated patients with PTSD and a trauma-exposed control (TEC) group who did not develop PTSD. Experiments included real-time measurements of blood oxygenation changes using functional near-infrared spectroscopy during trauma narration and processing of emotional and linguistic data through natural language processing (NLP).
Results
Real-time fNIRS monitoring showed that PTSD patients (mean [SD] Oxy-Hb activation, 0.153 [0.084], 95% CI 0.124 to 0.182) had significantly higher brain activity in the left anterior medial prefrontal cortex (L-amPFC) within 10 s after expressing negative emotional words compared with the control group (0.047 [0.026], 95% CI 0.038 to 0.056; p < 0.001). In the control group, there was a significant time-series correlation between the use of negative emotional memory words and activation of the L-amPFC (latency 3.82 s, slope = 0.0067, peak value = 0.184, difference = 0.273; Spearman’s r = 0.727, p < 0.001). In contrast, the left anterior cingulate prefrontal cortex of PTSD patients remained in a state of high activation (peak value = 0.153, difference = 0.084) with no apparent latency period.
Conclusions
PTSD patients display overactivity in pathways associated with rapid emotional responses and diminished regulation in cognitive processing areas. Interventions targeting these pathways may alleviate symptoms of PTSD.
The exploration of molecular characteristics has emerged as a prominent trend to advance precision medicine. The utilization of genetic testing to guide therapy is integral to precision medicine. This study aims to investigate the potential patient populations for the reimbursement of next-generation sequencing (NGS) and assess the budget impact from the perspective of Taiwan’s single insurer, the National Health Insurance Administration.
Methods
To comprehend the scope for medicines with companion diagnostics (CDx) involved, we analyze the U.S. Food and Drug Administration-approved/cleared diagnostic tests, conduct a literature review to identify medicines approved by the European Medicines Agency that require a CDx, and identify the medicines with CDx involved covered by the National Health Insurance (NHI) in Taiwan. Subsequently, we explore the potential reimbursement indications for NGS testing and conduct a budget impact analysis to evaluate the expected financial impact for the NHI over a five-year period. Furthermore, sensitivity analyses are conducted to deal with uncertainty.
Results
We have compiled 13 cancer types for which NGS can serve as a companion diagnostic. These encompass non-small-cell lung cancer, colorectal cancer, breast cancer, ovarian cancer, biliary tract cancer, acute myeloid leukemia, acute lymphoblastic leukemia, melanoma, cholangiocarcinoma, prostate cancer, pancreatic cancer, gastrointestinal stromal tumor, and thyroid cancer/medullary thyroid cancer. The implementation of NGS reimbursement in NHI will benefit 25,000 to 30,000 patients undergoing targeted therapies. The projected incremental budget impact ranges from TWD570 million to TWD650 million (USD19 million to USD22 million) over five years.
Conclusions
This study focuses on evaluating the financial impact of incorporating NGS testing into NHI reimbursement for relevant cancer drug indications. The findings can serve as references for the planning of reimbursement policies. However, with the advancement of precision medicine, it is foreseeable that there will be a broader range of applications for NGS, and its cost will gradually decrease.
Large-aperture gratings have significant applications in inertial confinement fusion, immersion lithography manufacturing and astronomical observation. Currently, it is challenging and expensive to manufacture sizable monolithic gratings. Therefore, tiled multiple small-aperture gratings are preferred. In this study, the impact of seam phase discontinuity on the modulation of the laser beam field was explored based on the measurement results of the Shenguang-II laser large-aperture multi-exposure-tiled grating. An innovative method for accurately calculating the phase jump of multi-exposure-tiled grating seams was proposed. An intensive electromagnetic field analysis was performed by applying rigorous coupled-wave analysis to a reasonably constructed micrometer-level periodic grating seam structure, and the phase jump appearing in millimeter-scale seams of large-aperture tiled gratings was obtained accurately.
The innovation value of open government data (OGD) drives firms to the participation in OGD-driven innovation. However, to fully excavate the innovation value of OGD for firms, it is essential to explore the factors and mechanisms that affect OGD-driven innovation capacity. On the basis of the technology–organization–environment (TOE) framework, a theoretical model affecting OGD-driven innovation capacity is proposed for analysis by partial least squares structural equation modeling with 236 sample data from China. The results indicate that top leaders’ support positively impacts on OGD-driven innovation capacity in firms. And we also prove that technical competence, organizational arrangement, and innovation support partially mediate the relationship between top leaders’ support and OGD-driven innovation capacity on the basis of the TOE framework. Consequently, the findings provide new research perspectives and practical guidance for promoting OGD-driven innovation capacity in firms.
A new species of Moniliformis, M. tupaia n. sp. is described using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analysing the nuclear 18S, ITS, 28S regions and mitochondrial cox1 and cox2 genes), based on specimens collected from the intestine of the northern tree shrew Tupaia belangeri chinensis Anderson (Scandentia: Tupaiidae) in China. Phylogenetic analyses show that M. tupaia n. sp. is a sister to M. moniliformis in the genus Moniliformis, and also challenge the systematic status of Nephridiacanthus major. Moniliformis tupaia n. sp. represents the third Moniliformis species reported from China.
Oil palm has been criticized for being an environmentally unfriendly oil crop. In recent decades, oil palm plantations have extended into conservation landscapes, causing severe environmental damage and harming biodiversity. Nevertheless, oil palm remains a highly productive oil crop from which most of the world's vegetable oil is produced. Therefore, measuring the environmental impact of oil palm plantations and identifying suitable land to support its sustainable development is crucial.
Technical summary
To meet the rising global palm oil demand sustainably, we tracked annual land cover changes in oil palm plantation and mapped areas worldwide suitable for sustainable oil palm cultivation. From 1982 to 2019, 3.6 Mha of forests were converted to oil palm plantations. Despite a recent decline in overall conversion, the shift from forest to oil palm plantations has become increasingly more common over the last decade, rising from 14.1 to 34.5% between 2009 and 2019. During 1982–2019, 2.23 Mha of peatland and 0.1 Mha of protected areas were converted for oil palm plantations. The potential sustainable land amounts to 103.5–317.9 Mha (Asia: 44.6–105.1 Mha, Africa: 34.7–96.4 Mha, and Latin America: 35.2–116.5 Mha). Future oil palm expansion is anticipated to take place in countries like Brazil, Nigeria, Colombia, Indonesia, Ivory Coast, the Democratic Republic of the Congo, and Ghana, where more sustainable land is available for cultivation. Malaysia, on the other hand, is about to exceed the area of sustainable cultivation, and further expansion is not recommended. These findings can advance our understanding of the environmentally damaging impacts of oil palm and enhance the feasibility of sustainable oil palm development.
Social media summary
How should suitable land be chosen for the establishment of oil palm plantations to support the sustainable development of the oil palm plantation industry?
Spermatogenesis is a developmental process driven by interactions between germ cells and Sertoli cells. This process depends on appropriate gene expression, which might be regulated by transcription factors. This study focused on Rreb1, a zinc finger transcription factor, and explored its function and molecular mechanisms in spermatogenesis in a mouse model. Our results showed that RREB1 was predominantly expressed in the Sertoli cells of the testis. The decreased expression of RREB1 following injection of siRNA caused impaired Sertoli cell development, which was characterized using a defective blood–testis barrier structure and decreased expression of Sertoli cell functional maturity markers; its essential trigger might be SMAD3 destabilization. The decreased expression of RREB1 in mature Sertoli cells influenced the cell structure and function, which resulted in abnormal spermatogenesis, manifested as oligoasthenoteratozoospermia, and we believe RREB1 plays this role by regulating the transcription of Fshr and Wt1. RREB1 has been reported to activate Fshr transcription, and we demonstrated that the knockdown of Rreb1 caused a reduction in follicle-stimulating hormone receptor (FSHR) in the testis, which could be the cause of the increased sperm malformation. Furthermore, we confirmed that RREB1 directly activates Wt1 promoter activity, and RREB1 downregulation induced the decreased expression of Wt1 and its downstream polarity-associated genes Par6b and E-cadherin, which caused increased germ-cell death and reduced sperm number and motility. In conclusion, RREB1 is a key transcription factor essential for Sertoli cell development and function and is required for normal spermatogenesis.
Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
A rhamnolipid-layered double hydroxide (RL-LDH) nanocomposite, derived from the rhamnolipid (RL) biosurfactant, was synthesized through a delamination/reassembling process. The adsorption characteristics of Cu(II) on RL-LDH were investigated in detail and the results indicated the potential of using RL-LDH as an environmentally friendly adsorbent to remove Cu(II). The fabricated RL-LDH nanocomposite was characterized using powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elemental chemical composition, and specific surface area analyses. Batch adsorption experiments were conducted to study the influence of various factors, such as contact time, initial Cu(II) concentration, temperature, initial solution pH, and electrolyte concentration on Cu(II) adsorption by the RL-LDH nanocomposite. The RL-LDH nanocomposite had a low surface area of 11.71 m2 g−1, which suggests that surface adsorption would not be important in Cu(II) adsorption. The Cu(II) adsorption data fitted the Freundlich model well at pH 5.5, whereas the adsorption kinetics were accurately described by a pseudo-second-order kinetics model. Chemical binding, that is, the formation of a RL-Cu(II) complex in the LDH interlayer, was assumed to be the rate-limiting step in the adsorption process. Thermodynamic parameters that included Gibbs free energy, enthalpy, and entropy changes were also calculated. The adsorption was found to be a spontaneous and exothermic chemisorption process. Furthermore, the adsorption properties of RL-LDH for Cu(II) were compared to Cu(II) adsorption using other adsorbents.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
For any positive integers $k_1,k_2$ and any set $A\subseteq \mathbb {N}$, let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\in A$. Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$, then there does not exist any set $A\subseteq \mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$ for all sufficiently large integers n, and if $1=k_1<k_2$, then there exists a set A such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=1$ for all positive integers n.
Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.
To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy.
Design:
In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage–response relationship between serum folate and the risk of GDM.
Setting:
A sigle, urban hospital in Shanghai, China.
Participants:
A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included.
Results:
Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs)
Conclusions:
The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
Fibronectin type III domain-containing protein 5 (FNDC5) is a transmembrane protein and the precursor of irisin, which serves as a systemic exerkine/myokine with multiple origins. Since its discovery in 2012, this hormone-like polypeptide has rapidly evolved to a component significantly involved in a gamut of metabolic dysregulations and various liver diseases. After a decade of extensive investigation on FNDC5/irisin, we are still surrounded by lots of open questions regarding its diagnostic and therapeutic values. In this review, we first concentrated on the structure–function relationship of FNDC5/irisin. Next, we comprehensively summarised the current knowledge and research findings regarding pathogenic roles/therapeutic applications of FNDC5/irisin in the context of non-alcoholic fatty liver disease, fibrosis, liver injury due to multiple detrimental insults, hepatic malignancy and intrahepatic cholestasis of pregnancy. Moreover, the prominent molecules involved in the underlying mechanisms and signalling pathways were highlighted. As a result, emerging evidence reveals FNDC5/irisin may act as a proxy for diagnosing liver disease pathology, a sensitive biomarker for assessing damage severity, a predisposing factor for surveilling illness progression and a treatment option with protective/preventive impact, all of which are highly dependent on disease grading and contextually pathological features.
Pregnancy is a complex biological process. The establishment and maintenance of foetal–maternal interface are pivotal events. Decidual immune cells and inflammatory cytokines play indispensable roles in the foetal–maternal interface. The disfunction of decidual immune cells leads to adverse pregnancy outcome. Tumour necrosis factor (TNF)-α, a common inflammatory cytokine, has critical roles in different stages of normal pregnancy process. However, the relationship between the disorder of TNF-α and adverse pregnancy outcomes, including preeclampsia (PE), intrauterine growth restriction (IUGR), spontaneous abortion (SA), preterm birth and so on, is still indefinite. In this review, we thoroughly reviewed the effect of TNF-α disorder on pathological conditions. Moreover, we summarized the reports about the adverse pregnancy outcomes (PE, IUGR, SA and preterm birth) of using anti-TNF-α drugs (infliximab, etanercept and adalimumab, certolizumab and golimumab) currently in the clinical studies. Overall, IUGR, SA and preterm birth are the most common adverse pregnancy outcomes of anti-TNF-α drugs. Our review may provide insight for the immunological treatment of pregnancy-related complication, and help practitioners make informed decisions based on the current evidences.
The extinct family Hylicellidae, as the ancestral group of modern cicadomorphans, had a wide distribution and a very high species-level biodiversity from the Triassic to Early Cretaceous. We herein report 11 new hylicellid specimens from the Jurassic Daohugou beds of Inner Mongolia, NE China, and execute geometric morphometric analysis (GMA) to elucidate their systematic position. Our GMA and subsequent morphometric statistics indicate that 10 of our new specimens can be compared to the holotype of Cycloscytina gobiensis, and one is new to science. Cycloscytina incompleta new species is erected based on this specimen, with the following discriminatory tegminal traits: C3 almost as long as and slightly narrower than C2, and the forking position of stem M distinctly migrates towards wing apex and much apicad of the stem CuA bifurcating. Additionally, Cycloscytina plachutai is herein transferred to the procercopid genus Procercopina, resulting in P. plachutai new combination. To date, just a few body structures of Hylicellidae have been revealed, and the new whole-bodied hylicellids reported herein provide some novel insights on the evolution of basal Clypeata. This study also emphasizes the use of morphometric analysis in the systematics of wing-bearing insects such as hylicellids.