We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Generative Artificial Intelligence (Generative AI) is a collection of AI technologies that can generate new information such as texts and images. With its strong capabilities, Generative AI has been actively studied in creative design processes. However, limited studies have explored the roles of humans and Generative AI in conceptual design processes, which leaves a gap for human–AI collaboration investigation. To address this gap, this study attempts to uncover the contributions of different Generative AI technologies in assisting humans in the conceptual design process. Novice designers were recruited to complete two design tasks in the condition of with or without the assistance of Generative AI. The results revealed that Generative AI primarily assists humans in the problem definition and idea generation stages, while the idea selection and evaluation stage remains predominantly human-led. Additionally, with the assistance of Generative AI, the idea selection and evaluation stages were further enhanced. Based on the findings, we discussed the role of Generative AI in human–AI collaboration and the implications for enhancing future conceptual design support with Generative AI’s assistance.
This study aims to investigate the relationship between serum folate levels and the risk of psoriasis by integrating observational study with Mendelian Randomization (MR) analysis.We firstly conducted an observational study using data from the National Health and Nutrition Examination Survey (NHANES). Subsequently, genetic instruments were selected for two-sample MR analyses to investigate the causal relationship between serum folate levels and the risk of psoriasis. The observational study showed no significant association between serum folate levels and psoriasis. In the fully adjusted model: serum folate as a continuous variable (OR = 0.99, 95% CI: 0.98 to 1.00, P = 0.071); serum folate quartiles Q4 vs Q1 (OR = 0.83, 95% CI: 0.58 to 1.19, P = 0.309). The MR analysis revealed that higher genetically predicted serum folate levels from Icelandic and Danish populations was significantly associated with a reduced risk of psoriasis (OR = 0.63, 95% CI, 0.45 to 0.88, P = 0.005). Similarly, higher genetically predicted serum folate levels from South Asian populations were also significantly associated with a lower risk of psoriasis (OR = 0.84, 95% CI, 0.72 to 0.98, P = 0.025). Integrating observational study with MR analysis suggests that serum folate levels are protective factors against psoriasis, indicating that higher serum folate levels may help prevent the onset of the disease.
The reflection of multiple incident shock waves that converge to a single point on the reflecting surface is studied in this paper. The number of the incident shocks, denoted $K$, is arbitrary. The interaction between the reflected shock of one incident shock and the other incident shocks may produce various possible configurations, such as type-I, type-II and type-IV shock interferences. The number of possible reflection configurations is shown to be an exponential function of ($K-1$) with base 2. The possibility of pre-, middle- and post-Mach reflections, which means Mach reflection occurs for the first, middle and last incident shock, is revealed through numerical simulation for $K=3$. For the particular case where the incident shocks are produced by equal variation of wedge surface deflection, the conventional von Neumann condition and detachment condition for the $k\mathrm{th}$ incident shock to have Mach reflection are derived. It is shown that the von Neumann condition for regular reflection is lowered and the detachment condition for Mach reflection is elevated as $k$ increases. The shock reflection patterns for $ K=1,2,\ldots ,10$ are obtained by numerical simulations. We observe a shock interaction train structure, where we have pre-Mach reflection followed by ($K-1$) type-I or type-II shock interferences. We also observe that the Mach stem height decreases with $K$ well above the von Neumann condition and becomes non-monotonic near the von Neumann condition.
Sensory neuron membrane protein (SNMP) gene play a crucial role in insect chemosensory systems. However, the role of SNMP in the host searching behaviour of Rhopalosiphum padi (Hemiptera: Aphididae), a highly destructive pest of cereal crops, has not been clearly understood. Our previous research has shown that three wheat volatile organic compounds (VOCs) – (E)-2-hexenol, linalool, and octanal can attract R. padi, but the involvement of SNMP in the aphid’s olfactory response to these wheat VOCs has not to be elucidated. In this study, only one SNMP gene was cloned and characterised from R. padi. The results revealed that the SNMP belongs to the SNMP1 subfamily and was named RpadSNMP1. RpadSNMP11 was predominantly expressed in the antennae of the aphid, with significantly higher expression levels observed in winged forms, indicating that it is involved in olfactory responses of R. padi. RpadSNMP1 expression was significantly up-regulated following starvation, and the expression of this gene showed a decreasing trend after 24 h of aphid feeding. Functional analysis through RpadSNMP1 knockdown demonstrated a significant decrease in R. padi’s ability to search for host plants. The residence time of R. padi injected with dsRpadSNMP1 significantly shortened in response to (E)-2-hexenol, linalool and octanal according to the four-arm olfactometer, indicating the crucial role of RpadSNMP1 in mediating the aphid’s response to these wheat VOCs. Molecular docking suggested potential binding interactions between RpadSNMP1 and three wheat VOCs. Overall, these findings provided evidence for the involvement of RpadSNMP1 in host plant searching and lay a foundation for developing new methods to control this destructive pest.
The cosmic 21 cm signal serves as a crucial probe for studying the evolutionary history of the Universe. However, detecting the 21 cm signal poses significant challenges due to its extremely faint nature. To mitigate the interference from the Earth’s radio frequency interference (RFI), the ground and the ionospheric effects, the Discovering the Sky at the Longest Wavelength (DSL) project will deploy a constellation of satellites in Lunar orbit, with its high-frequency daughter satellite tasked with detecting the global 21 cm signal from cosmic dawn and reionization era (CD/EoR).We intend to employ the Vari-Zeroth-Order Polynomial (VZOP) for foreground fitting and subtracting. We have studied the effect of thermal noise, thermal radiation from the Moon, the Lunar reflection, anisotropic frequency-dependent beam, inaccurate antenna beam pattern, and RFI contamination. We discovered that the RFI contamination can significantly affect the fitting process and thus prevent us from detecting the signal. Therefore, experimenting on the far side of the moon is crucial. We also discovered that using VZOP together with DSL, after 1080 orbits around the Moon, which takes about 103 days, we can successfully detect the CD/EoR 21 cm signal.
The rural-oriented tuition-waived medical education program in China, started in 2010, provides free medical education to students committed to serving in rural areas to address medical staff shortages. Despite its success in training and deploying graduates, retaining them post-obligation remains challenging. This study explores the mechanisms behind the turnover intentions of rural-oriented medical students in Western China, offering insights for their retention.
Methods:
Semi-structured interviews were conducted with 47 rural-oriented medical students and 30 health clinic directors in Nanning City. Interview data were analysed using grounded theory, and open, axial and selective coding was applied.
Results:
Through three levels of coding analysis, 34 tree nodes, 13 sub-categories and 3 main categories were identified from the interviews with rural-oriented medical students and health clinic directors. 3 main categories were Subjective Norms, Behavioural Attitudes, and Perceived Behavioural Control.
Conclusion:
A model of turnover intention among rural-oriented medical students was developed. This model can serve as a valuable reference for future policy optimization concerning China’s rural order-directed medical students.
Religious celibate monks at the household level possibly reduce all-cause mortality risk among non-monk older Tibetans. This study aims to investigate the association between having a celibate monk in a family and the all-cause mortality of non-monk household members in a Tibetan population. Baseline interviews were conducted for 713 agropastoral Amdo Tibetans aged ≥50 years residing in the eastern Tibetan Plateau from 2016 to 2017. The Cox mixed-effects regression model was used to estimate the association between having a celibate monk in a household and the mortality risk of other non-monk household members. Potential confounders included age, sex, household size, educational attainment, household wealth (measured as the number of yaks), marital status, and annual expenditure. During a median follow-up of 7 years, 54 deaths were identified. The results showed that people living in households with celibate monks had a lower risk of all-cause mortality (hazard ratio: 0.31, 95% confidence interval: 0.14, 0.67) as compared with those living in households without celibate monks. The results remained robust after controlling for confounders, suggesting that religious celibate monks at the household level were associated with lower all-cause mortality among non-monk older household members.
The vitamin K (VK) levels vary greatly among different populations and in different regions. Currently, there is a lack of reference intervals for VK levels in healthy individuals, The aim of this study is to establish and validate the reference intervals of serum vitamin K1 (VK1) and vitamin K2 (VK2, specifically including menaquinone-4 (MK4) and menaquinone-7 (MK7)) levels in some healthy populations in Beijing. Serum VK1, MK4, and MK7 were firstly measured by high-performance liquid chromatography and mass spectrometry in 434 subjects. The reference intervals for three indicators were established by calculating the data of 2.5 and 97.5 percentiles. Finally, preliminary clinical validation was conducted on 60 apparent healthy individuals undergoing physical examination. In the young, middle-aged, and elderly groups, the reference intervals of VK1 were 0.180 ng/mL ∼ 1.494 ng/mL, 0.247 ng/mL ∼ 1.446 ng/mL, and 0.167 ng/mL ∼ 1.445 ng/mL, respectively. The reference intervals of MK4 were 0.009 ng/mL ∼ 0.115 ng/mL, 0.002 ng/mL ∼ 0.103 ng/mL, and 0.003 ng/mL ∼ 0.106 ng/mL, respectively. The reference intervals of MK7 were 0.169 ng/mL ∼ 0.881 ng/mL, 0.238 ng/mL ∼ 0.936 ng/mL, and 0.213 ng/mL ∼ 1.012 ng/mL, respectively. The reference intervals had been validated by the samples of healthy individuals for physical examination. In conclusion, the reference intervals of VK established in this study with different age groups have certain clinical applicability, providing data support for further multicentre studies.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Drawing upon research on the visual complexity effect and Dual Coding Theory, this research examined the influence of character properties and the role of individual learner differences in Chinese character acquisition. The participants included 248 Chinese-speaking children in grades 1 through 3 in Taiwan. The study extended the scope of previous research by concurrently examining two types of cognitive processing: activation of verbal codes with nonverbal codes (activation of word form) and activation of nonverbal codes with verbal codes (activation of meaning). Results revealed the asymmetry in the two types of cognitive processing. Regarding the influence of character properties, while characters with less visual complexity and with radical presence are generally more acquirable, the interaction between these two properties was only present in the activation of meaning but not the activation of word form. Individual differences contributing to character acquisition did not mirror each other in the two directions of cognitive processing either. The contribution of radical awareness and visual skills remained the same across grade levels in the activation of meaning but varied with grades and the properties of the characters in the activation of word form. The methodological and theoretical contributions of the study were discussed.
As a natural clay mineral, halloysite (Hal) possesses a distinctive nanotubular morphology and surface reactivity. Hal calcined at 750°C (Hal750°C; 0.0, 1.0, 2.0, 4.0, 6.0, 8.0 wt.%) was used to replace ground granulated blast furnace slag (GGBFS; 50.0, 49.5, 49.0, 48.0, 47.0, 46.0 wt.%) and fly ash (FA; 50.0, 49.5, 49.0, 48.0, 47.0, 46.0 wt.%) for the preparation of geopolymer in this study. The effects of the replacement ratio of Hal750°C on setting time, compressive strength, flexural strength, chemical composition and microstructure of the geopolymer were investigated. The results indicated that Hal750°C did not significantly alter the setting time. The active SiO2 and Al2O3 generated from Hal750°C participated in the geopolymerization, forming additional geopolymer gel phases (calcium (aluminate) silica hydrate and sodium aluminosilicate hydrate), improving the 28 day compressive strength of the geopolymers. When the amount of Hal750°C was 2.0 wt.%, the 28 day compressive strength of the ternary (GGBFS-FA-Hal750°C-based) geopolymer was 72.9 MPa, 34.8% higher than that of the geopolymer without the addition of Hal750°C. The special nanotubular morphology of residual Hal750°C mainly acted like reinforcing fibres, supplementing the flexural strength of the geopolymer. However, excessive Hal750°C addition (>4.0 wt.%) reduced compressive and flexural strength values due to the low degrees of geopolymerization and the porous microstructure in the ternary geopolymer. These findings demonstrate that the appropriate addition of Hal750°C improved the compressive strength of geopolymers prepared using GGBFS/FA, which provides essential data for future research and supports the utilization of low-value Hal-containing clays in geopolymer preparation.
High prevalence of long COVID symptoms has emerged as a significant public health concern. This study investigated the associations between three doses of COVID-19 vaccines and the presence of any and ≥3 types of long COVID symptoms among people with a history of SARS-CoV-2 infection in Hong Kong, China. This is a secondary analysis of a cross-sectional online survey among Hong Kong adult residents conducted between June and August 2022. This analysis was based on a sub-sample of 1,542 participants with confirmed SARS-CoV-2 infection during the fifth wave of COVID-19 outbreak in Hong Kong (December 2021 to April 2022). Among the participants, 40.9% and 16.1% self-reported having any and ≥3 types of long COVID symptoms, respectively. After adjusting for significant variables related to sociodemographic characteristics, health conditions and lifestyles, and SARS-CoV-2 infection, receiving at least three doses of COVID-19 vaccines was associated with lower odds of reporting any long COVID symptoms comparing to receiving two doses (adjusted odds ratio [AOR]: 0.69, 95% CI: 0.54, 0.87, P = .002). Three doses of inactivated and mRNA vaccines had similar protective effects against long COVID symptoms. It is important to strengthen the coverage of COVID-19 vaccination booster doses, even in the post-pandemic era.
Cognitive impairment, a major determinant of poor functioning in schizophrenia, had limited responses to existing antipsychotic drugs. The limited efficacy could be due to regional differences in the dysregulation of the dopamine system. This study investigated striatal and peripheral dopaminergic makers in schizophrenia and their relationship with cognitive impairment.
Methods
Thirty-three patients with schizophrenia and 36 age- and sex-matched healthy controls (HC) participated. We evaluated their cognitive performance, examined the availability of striatal dopamine transporter (DAT) using single-photon emission computed tomography with 99mTc-TRODAT, and measured plasma levels of dopaminergic precursors (phenylalanine and tyrosine) and three branched-chain amino acids (BCAA) that compete with precursors for brain uptake via ultra-performance liquid chromatography.
Results
Schizophrenia patients exhibited lower cognitive performance, decreased striatal DAT availability, and reduced levels of phenylalanine, tyrosine, leucine, and isoleucine, and the ratio of phenylalanine plus tyrosine to BCAA. Within the patient group, lower DAT availability in the left caudate nucleus (CN) or putamen was positively associated with attention deficits. Meanwhile, lower tyrosine levels and the ratio of phenylalanine plus tyrosine to BCAA were positively related to executive dysfunction. Among all participants, DAT availability in the right CN or putamen was positively related to memory function, and plasma phenylalanine level was positively associated with executive function.
Conclusions
This study supports the role of dopamine system abnormalities in cognitive impairment in schizophrenia. The distinct associations between different dopaminergic alterations and specific cognitive domain impairments suggest the potential need for multifaceted treatment approaches to target these impairments.
We report an experimental study of Rayleigh–Bénard convection of liquid metal GaInSn in a cuboid cell with an aspect ratio of 0.5 under the effect of a horizontal magnetic field. The Rayleigh number spans a range of $3.8\times 10^5 \leqslant Ra \leqslant 1.1\times 10^7$, while the magnetic field strength reaches up to 0.5 T, corresponding to a maximum Hartmann number to 2041. By combining temperature and velocity measurements, we identify several flow morphologies, including a novel cellular pattern characterized by four stacked vortices that periodically squeeze and induce velocity reversals. Based on the identified flow morphologies, we partition the entire ($Ra, Ha$) parameter space into five distinct flow regimes and systematically investigate the flow characteristics within each regime. The temperature gradient and oscillation frequency exhibit scaling relationships with the combined parameters $Ra$ and $Ha$. Notably, we observe a coupling between flow regime and global transport efficiencies, particularly in a regime dominated by the double-roll structure, which experiences a maximum 36 % decrease in heat transfer efficiency compared with the single-roll structure. The dependencies of heat and momentum transport on $Ra$ and $Ha$ follow scaling laws as $Nu \sim (Ha^{-2/3}RaPr^{-1})^{3/5}$ and $Re \sim (Ha^{-1}RaPr^{-1})^{4/3}$, respectively.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
The influence of the SNP rs174575 (C/G) within the fatty acid desaturase 2 gene on the levels of long-chain PUFA was determined through statistical meta-analysis. Six databases were searched to retrieve the relevant literature. Original data were analysed using Stata 17·0, encompassing summary statistics, tests for heterogeneity, assessment of publication bias, subgroup analysis and sensitivity analysis. A total of ten studies were identified and grouped into twelve trials. Our results showed that individuals who carried the minor G allele of rs174575 had significantly higher dihomo-γ-linolenic acid levels (P = 0·005) and lower arachidonic acid levels (P = 0·033) than individuals who were homozygous for the major allele. The subgroup analysis revealed that the G-allele carriers of rs174575 were significantly positively correlated with linoleic acid (P = 0·002) and dihomo-γ-linolenic acid (P < 0·001) and negatively correlated with arachidonic acid (P = 0·004) in the European populations group. This particular SNP showed a potential association with higher concentrations of dihomo-γ-linolenic acid (P = 0·050) and lower concentrations of arachidonic acid (P = 0·030) within the breast milk group. This meta-analysis has been registered in the PROSPERO database (ID: CRD42023470562).
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
The orientation dynamics of inertialess prolate and oblate spheroidal particles in a directly simulated spanwise-rotating turbulent channel flow has been investigated by means of an Eulerian–Lagrangian point-particle approach. The channel rotation and the particle shape were parameterized using a rotation number Ro and the aspect ratio λ, respectively. Eleven particle shapes 0.05 ≤ λ ≤ 20 and four rotation rates 0 ≤ Ro ≤ 10 have been examined. The spheroidal particles retained their almost isotropic orientation in the core region of the channel, despite the significant mean shear rate set up by the Coriolis force. Irrespective of channel rotation rate Ro, rod-like spheroids tend to align in the streamwise direction, while disk-like particles are oriented in the wall-normal direction. These trends were accentuated with increasing departure from sphericity λ = 1. The changeover from the isotropic orientation mode in the centre to the highly anisotropic near-wall orientation mode commenced further away from the suction-side wall with increasing Ro, whereas the particle orientations on the pressure side of the rotating channel remained essentially unaffected by Ro. We observed that the alignments of the fluid rotation vector with the Lagrangian stretching direction were similarly unaffected by the imposed system rotation, except that the de-alignment set in deeper into the core at high Ro. This contrasts with the well-known substantial impact of system rotation on the velocity and vorticity fields. Similarly, slender rods and flatter disks were aligned with the Lagrangian stretching and compression directions, respectively, for all Ro considered, except in the vicinity of the walls. The typical near-wall de-alignment extended considerably further away from the suction-side wall at high Ro. We conjecture that this phenomenon reflects a change in the relative importance of mean shear and small-scale turbulence caused by the Coriolis force. Preferential particle alignment with Lagrangian stretching and compression directions are known from isotropic and anisotropic turbulence in inertial reference systems. The present results demonstrate the validity of this principle also in a non-inertial system.