To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cellular structures provide lightweight, high-strength and excellent structural stability due to their repetitive modular unit design. By integrating cutting and folding Kirigami techniques with composite and plastic substrates, cellular configurations can significantly enhance the aero-mechanical performance of wing designs. This innovative structural technology shows great promise for unmanned aerial vehicles (UAVs), enabling flexible control and dynamic flight capabilities to meet varying operational conditions. This study presents an analysis and optimisation of the aeroelastic behaviour of cellular Kirigami wingbox (CKW) structures for multifunctional operations of micro-UAV wings to ensure stability and resilience in various dynamic flight conditions. The effect of thickness and internal cell angle of the cellular structure on static and dynamic aeroelastic behaviour is assessed through finite element analysis. By incorporating Bayesian optimisation, the multi-disciplinary design space of the cellular UAV wings has been efficiently explored to achieve optimal structural performance for adaptive UAV wings. The results show that Bayesian optimisation effectively identifies optimal design parameters for different multi-objective design weights, which improves the aeroelastic performance of the CKW structure.
To explore the longitudinal associations between a Chinese healthy diet and the progression of cardiometabolic multimorbidity (CMM) development among Chinese adults. A prospective analysis was conducted utilising data from 18 720 participants in the China Health and Nutrition Survey, spanning from 1997 to 2018. Dietary data were collected by three consecutive 24-h dietary recalls combined with the weighing method. A Chinese healthy diet score was developed by assigning scores to various food components. CMM was defined as the coexistence of two or more cardiometabolic diseases (CMD), including myocardial infarction, stroke and type 2 diabetes, diagnosed through blood indicators and clinical diagnosis. We employed a multistate model to examine the associations between the Chinese healthy diet and the longitudinal progression from being free of CMD to first CMD and then to CMM. Quantile G-computation was utilised to evaluate the relative contribution of each food component. Over a median follow-up period of 7·3 years, 2214 (11·8 %) participants developed first CMD, and 156 (0·83 %) progressed to CMM. Comparing participants in the highest quintile of dietary scores with those in the lowest, we observed a 55 % lower risk of transitioning from baseline to CMM (HR = 0·45, 95 % CI: 0·23, 0·87) and a 60 % lower risk of transition from first CMD to CMM (HR = 0·40, 95 % CI: 0·20, 0·81). Fresh fruits contributed to 42·8 and 43·0 % for delaying CMM and transition from first CMD to CMM, respectively. Our study revealed that greater adherence to the Chinese healthy diet is negatively associated with the risk of CMM.
In compressible turbulent boundary layers (CTBLs), the strong Reynolds analogy (SRA) refers to a set of quantitative relationships between temperature and velocity fluctuations. The essence of the SRA is the linear relationship between these fluctuations in large-scale motions. We investigate the transport processes of the second-order statistical moments associated with temperature and velocity fluctuations to reveal the physical mechanisms underlying this linear correlation. An important finding is that there exists a strong linear mechanism between the turbulent production of velocity and temperature fluctuations. Nonlinear mechanisms, such as the viscous-thermal dissipation, the work contribution, and particularly the pressure term, lead to the failure of the existing SRAs in the outer layer. Based on the above findings, a refined SRA (RSRA) is proposed, which better describes the quantitative relation between the temperature and velocity fluctuation intensities. An approximate expression for the turbulent Prandtl number under different Mach numbers and wall-cooling conditions is derived with the newly proposed RSRA. The relations proposed in this paper are validated through the direct numerical simulation data of flat-plate zero-pressure-gradient CTBLs at different Mach numbers and wall temperatures.
Background: Enhancing environmental hygiene resulted in a reduction of multidrug-resistant microorganisms colonization and healthcare-associated infections. There has been less studies to compare the effects of practice observation with other methods. This study aimed to compare correlations between visual inspection, practice observation and aerobic colony count (ACC) and verify the effectiveness. Methods: A prospective study was conducted in a medical intensive care unit from May 2021 to November 2022. High-touch surfaces were assessed by visual inspection (clean or not clean) and practice observation (compliant or not compliant) to compare the correlations by using ACC with the cut-off point of 2.5 CFU/cm2 as a golden standard. Results: Among 569 samples, the pass rate by ACC was 90.5%, the clean rate by visual inspection was 73.3%, and the compliant rate by practice observation was 47.1%. The concordance was 245 surfaces (43.1%) of the three methods. There was no correlation between visual inspection and ACC (p<0.001, φ=0.184). The correlations were weak positive between visual inspection and practice observation and between practice observation and ACC (p<0.001, φ=0.212, 0.233). The median aerobic colony count of “compliant” group (0.00 CFU/cm2) was significantly lower than “not compliant” (0.40 CFU/cm2) (p<0.001). The median aerobic colony count of “clean” groups (0.08 CFU/cm2) was also significantly lower than “not clean” groups (0.20 CFU/cm2) (p<0.001). Conclusion: Practice observation is more reliable than visual inspection. Therefore, visual inspection can be used for low risk area to maintain visibly clean. In high risk area, an integrated program is critical to combine practice observation with other methods to monitor cleanliness.
Background: Enhancing environmental hygiene resulted in a reduction of multidrug-resistant microorganisms colonization and healthcare-associated infections. There has been less studies to compare the effects of practice observation with other methods. This study aimed to compare correlations between visual inspection, practice observation and aerobic colony count (ACC) and verify the effectiveness. Methods: A prospective study was conducted in a medical intensive care unit from May 2021 to November 2022. High-touch surfaces were assessed by visual inspection (clean or not clean) and practice observation (compliant or not compliant) to compare the correlations by using ACC with the cut-off point of 2.5 CFU/cm2 as a golden standard. Results: Among 569 samples, the pass rate by ACC was 90.5%, the clean rate by visual inspection was 73.3%, and the compliant rate by practice observation was 47.1%. The concordance was 245 surfaces (43.1%) of the three methods. There was no correlation between visual inspection and ACC (p<0.001, φ=0.184). The correlations were weak positive between visual inspection and practice observation and between practice observation and ACC (p<0.001, φ=0.212, 0.233). The median aerobic colony count of “compliant” group (0.00 CFU/cm2) was significantly lower than “not compliant” (0.40 CFU/cm2) (p<0.001). The median aerobic colony count of “clean” groups (0.08 CFU/cm2) was also significantly lower than “not clean” groups (0.20 CFU/cm2) (p<0.001). Conclusion: Practice observation is more reliable than visual inspection. Therefore, visual inspection can be used for low risk area to maintain visibly clean. In high risk area, an integrated program is critical to combine practice observation with other methods to monitor cleanliness.
Depression is commonly comorbid with post-traumatic stress disorder (PTSD) symptoms. There is a lack of studies evaluating trauma-informed interventions for people with depression and PTSD symptoms.
Objectives
We examined whether an online, easily accessible, trauma psychoeducation program would be helpful for people with both depressive and PTSD symptoms.
Methods
Participants with depression (PHQ-9 ≥ 10) and co-occurring PTSD symptoms were recruited online and randomly assigned to the intervention group (i.e., a 10-session online program based on Be a Teammate With Yourself) or the control group. Outcome measures included the Brief-COPE, a subscale of the Endorsed and Anticipated Stigma Inventory, and the Post-traumatic Maladaptive Beliefs Scale. These outcomes were assessed at baseline, posttest, and 2-month follow-up. Qualitative feedback was also obtained from the participants.
Results
35 participants were randomly assigned to the intervention group, and 34 to the control group. With only email reminders, 9 participants in the intervention group and 14 in the control group completed posttest and follow-up surveys. Completers-only analyses were conducted. One-way repeated measures ANOVA showed that the intervention group had significant reductions in post-traumatic maladaptive beliefs, with a large effect size (F = 4.152, p = .035, Partial Eta Squared = 0.342). The control group did not have such changes. Both groups did not have significant changes in coping and self-stigma. Of 12 participants who provided feedback, 100% agreed that the program could help them remain hopeful for recovery, and 91.6% agreed that they were satisfied with the program. The qualitative feedback also supported the usefulness and acceptability of the programme.
Conclusions
Participation in this program was associated with significant decreases in post-traumatic maladaptive beliefs. Completers were satisfied with the program. Given a small sample with a high dropout rate (66.6%), the results should be interpreted with caution.
DNA methylation plays a crucial role in gene regulation and has been implicated in various neuropsychiatric disorders, including alcohol use disorder (AUD). The rs27072 polymorphism within the SLC6A3 gene has been studied in addictive disorders; however, its role in epigenetic modifications remains unclear. This study investigates the methylation levels of CpG sites near rs27072 and their potential associations with AUD, personality traits, and environmental stressors.
Materials and methods
One hundred twenty-four male participants (66 patients with AUD and 58 controls) were analyzed for DNA methylation at CpG islands proximal to the rs27072 locus. The personality traits and life stress events were assessed in all participants.
Results
AUD patients had a lower methylation level than healthy controls (p = 0.003 for total average). However, the results changed to borderline significance after adjusting for clinical covariates in the analysis (p = 0.042), and the genotype at rs27072 did not modulate the methylation levels. There is high novelty seeking (p < 0.001), and more bad life events in patients with AUD than healthy controls (p < 0.001). Additionally, no significant correlations were found between methylation levels and personality traits or life stress scores (p > 0.05).
Conclusions
The methylation of the SLC6A3 gene may be marginally associated with AUD; however, the rs27072 genotype, personality, and life stress may not be directly linked to epigenetic modifications. Cross-sectional epigenetic studies may not establish causality; future studies with larger, more diverse cohorts and longitudinal designs are warranted to elucidate the complex interplay in AUD pathophysiology.
Rare earth elements (REEs) preserved in speleothems have garnered increasing attention as ideal proxies for the paleoenvironmental reconstruction. However, due to their typically low contents in stalagmites, the availability of stalagmite-based REE records remains limited. Here we present high-resolution REEs alongside oxygen isotope (δ18O) records in stalagmite SX15a from Sanxing Cave, southwestern China (110.1–103.3 ka). This study demonstrates that REE records could provide useful information for the provenance and formation process of the stalagmite, due to consistent distribution pattern across different periods indicating stable provenance. More interestingly, the total REE (ΣREE) record could serve as an effective indicator to reflect local hydrological processes associated with monsoonal precipitation. During Marine Isotopic Stage (MIS) 5d, a relatively low ΣREE content is consistent with the positive SX15a δ18O and negative NGRIP δ18O, reflecting a dry-cold environment; while during MIS 5c, a generally high ΣREE content suggests a humid-warm circumstance. Furthermore, the ΣREE record captured four prominent sub-millennial fluctuations within the Greenland interstadial 24 event, implying a combined influence by the regional climate and local soil redox conditions. Our findings indicate that the stalagmite-based REE records would be a useful proxy for better understanding of past climate and environment changes.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
The interaction between planar incident shocks and cylindrical boundary layers is prevalent in missiles equipped with inverted inlets, which typically leads to substantial three-dimensional flow separation and the formation of vortical flow. This study utilizes wind-tunnel experiments and theoretical analysis to elucidate the shock structure, surface topology and pressure distributions induced by a planar shock with finite width impinging on a cylinder wall at Mach 2.0. In the central region, a refraction phenomenon occurs as the transmitted shock bends within the boundary layer, generating a series of compression waves that coalesce into a shock, forming a ‘shock triangle’ structure. As the incident shock propagates backward along both sides, it gradually evolves into a Mach stem, where the transmitted shock refracts the expansion wave. The incident shock interacts with the boundary layer, resulting in the formation of a highly swept separation region that yields a pair of counter-rotating horseshoe-like vortices above the separation lines. These vortices facilitate the accumulation of low-energy fluid on both sides. Although the interaction of the symmetry plane aligns with free-interaction-theory, the separation shock angle away from the centre significantly deviates from the predicted value owing to the accumulation of low-energy fluids. The primary separation line and pressure distribution jointly exhibit an elliptical similarity on the cylindrical surface. Furthermore, the potential unsteady behaviour is assessed, and the Strouhal number of the low-frequency oscillation is found to be 0.0094, which is insufficient to trigger significant alterations in the flow field structure.
The desert locust (Schistocerca gregaria) is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 108 km2) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090 (2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be 0.0606 × 108 and 0.0891 × 108 km2, respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Traditional mediation analysis assumes that a study population is homogeneous and the mediation effect is constant over time, which may not hold in some applications. Motivated by smoking cessation data, we propose a latent class dynamic mediation model that explicitly accounts for the fact that the study population may consist of different subgroups and the mediation effect may vary over time. We use a proportional odds model to accommodate the subject heterogeneities and identify latent subgroups. Conditional on the subgroups, we employ a Bayesian hierarchical nonparametric time-varying coefficient model to capture the time-varying mediation process, while allowing each subgroup to have its individual dynamic mediation process. A simulation study shows that the proposed method has good performance in estimating the mediation effect. We illustrate the proposed methodology by applying it to analyze smoking cessation data.
High prevalence of long COVID symptoms has emerged as a significant public health concern. This study investigated the associations between three doses of COVID-19 vaccines and the presence of any and ≥3 types of long COVID symptoms among people with a history of SARS-CoV-2 infection in Hong Kong, China. This is a secondary analysis of a cross-sectional online survey among Hong Kong adult residents conducted between June and August 2022. This analysis was based on a sub-sample of 1,542 participants with confirmed SARS-CoV-2 infection during the fifth wave of COVID-19 outbreak in Hong Kong (December 2021 to April 2022). Among the participants, 40.9% and 16.1% self-reported having any and ≥3 types of long COVID symptoms, respectively. After adjusting for significant variables related to sociodemographic characteristics, health conditions and lifestyles, and SARS-CoV-2 infection, receiving at least three doses of COVID-19 vaccines was associated with lower odds of reporting any long COVID symptoms comparing to receiving two doses (adjusted odds ratio [AOR]: 0.69, 95% CI: 0.54, 0.87, P = .002). Three doses of inactivated and mRNA vaccines had similar protective effects against long COVID symptoms. It is important to strengthen the coverage of COVID-19 vaccination booster doses, even in the post-pandemic era.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
The seminal Bolgiano–Obukhov (BO) theory established the fundamental framework for turbulent mixing and energy transfer in stably stratified fluids. However, the presence of BO scalings remains debatable despite their being observed in stably stratified atmospheric layers and convective turbulence. In this study, we performed precise temperature measurements with 51 high-resolution loggers above the seafloor for 46 h on the continental shelf of the northern South China Sea. The temperature observation exhibits three layers with increasing distance from the seafloor: the bottom mixed layer (BML), the mixing zone and the internal wave zone. A BO-like scaling $\alpha =-1.34\pm 0.10$ is observed in the temperature spectrum when the BML is in a weakly stable stratified ($N\sim 0.0018$ rad s$^{-1}$) and strongly sheared ($Ri\sim 0.0027$) condition, whereas in the unstably stratified convective turbulence of the BML, the scaling $\alpha =-1.76\pm 0.10$ clearly deviated from the BO theory but approached the classical $-$5/3 scaling in isotropic turbulence. This suggests that the convective turbulence is not the promise of BO scaling. In the mixing zone, where internal waves alternately interact with the BML, the scaling follows the Kolmogorov scaling. In the internal wave zone, the scaling $\alpha =-2.12 \pm 0.15$ is observed in the turbulence range and possible mechanisms are provided.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
We report a numerical investigation of a previously noticed but less explored flow state transition in two-dimensional turbulent Rayleigh–Bénard convection. The simulations are performed in a square domain over a Rayleigh number range of $10^7 \leq Ra \leq 2 \times 10^{11}$ and a Prandtl number range of $0.25 \leq Pr \leq 20$. The transition is characterized by the emergence of multiple satellite eddies with increasing $Ra$, which orbit around and interact with the main vortex roll in the system. Consequently, the main roll is squeezed to a smaller size compared with the domain and wanders around in the bulk region irregularly and extensively. This is in sharp contrast to the flow state before the transition, which is featured by a domain-sized circulatory roll with its vortex centre ‘condensed’ near the domain's centre. Detailed velocity field analysis reveals that there exists an abrupt increase in the energy fluctuations of the Fourier modes during the transition. Based on this phase-transition-like signal, the critical condition for the transition is found to follow a scaling relation as $Ra_t \sim Pr^{1.41}$ where $Ra_t$ is the critical Rayleigh number for the transition. This scaling relation is quantitatively explained by a phenomenological model grounded on the bistability behaviour (i.e. spontaneous and stochastic switching between the two flow states) observed at the edge of the transition. The model can also account for the effects of aspect ratio on the transition reported in the literature (van der Poel et al., Phys. Fluids, vol. 24, 2012).
Central line-associated bloodstream infection (CLABSI) is one of the most prevalent pediatric healthcare-associated infections and is used to benchmark hospital performance. Pediatric patients have increased in acuity and complexity over time. Existing approaches to risk adjustment do not control for individual patient characteristics, which are strong predictors of CLABSI risk and vary over time. Our objective was to develop a risk adjustment model for CLABSI in hospitalized children and compare observed to expected rates over time.
Design and Setting:
We conducted a prospective cohort study using electronic health record data at a quaternary Children’s Hospital.
Patients:
We included hospitalized children with central catheters.
Methods:
Risk factors identified from published literature were considered for inclusion in multivariable modeling based on association with CLABSI risk in bivariable analysis and expert input. We calculated observed and expected (risk model-adjusted) annual CLABSI rates.
Results:
Among 16,411 patients with 520,209 line days, 633 patients experienced 796 CLABSIs. The final model included age, behavioral health condition, non-English speaking, oncology service, port catheter type, catheter dwell time, lymphatic condition, total parenteral nutrition, and number of organ systems requiring ICU level care. For every organ system receiving ICU level care the odds ratio for CLABSI was 1.24 (95% CI 1.12–1.37). Although not statistically different, observed rates were lower than expected rates for later years.
Conclusions:
Failure to adjust for patient factors, particularly acuity and complexity of disease, may miss clinically significant differences in CLABSI rates, and may lead to inaccurate interpretation of the impact of quality improvement efforts.