We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Although active flow control based on deep reinforcement learning (DRL) has been demonstrated extensively in numerical environments, practical implementation of real-time DRL control in experiments remains challenging, largely because of the critical time requirement imposed on data acquisition and neural-network computation. In this study, a high-speed field-programmable gate array (FPGA) -based experimental DRL (FeDRL) control framework is developed, capable of achieving a control frequency of 1–10 kHz, two orders higher than that of the existing CPU-based framework (10 Hz). The feasibility of the FeDRL framework is tested in a rather challenging case of supersonic backward-facing step flow at Mach 2, with an array of plasma synthetic jets and a hot-wire acting as the actuator and sensor, respectively. The closed-loop control law is represented by a radial basis function network and optimised by a classical value-based algorithm (i.e. deep Q-network). Results show that, with only ten seconds of training, the agent is able to find a satisfying control law that increases the mixing in the shear layer by 21.2 %. Such a high training efficiency has never been reported in previous experiments (typical time cost: hours).
Little is known about the association between iodine nutrition status and bone health. The present study aimed to explore the connection between iodine nutrition status, bone metabolism parameters, and bone disease (osteopenia and osteoporosis). A cross-sectional survey was conducted involving 391, 395, and 421 adults from iodine fortification areas (IFA), iodine adequate areas (IAA), and iodine excess areas (IEA) of China. Iodine nutrition status, bone metabolism parameters and BMD were measured. Our results showed that, in IEA, the urine iodine concentrations (UIC) and serum iodine concentrations (SIC) were significantly higher than in IAA. BMD and Ca2+ levels were significantly different under different iodine nutrition levels and the BMD were negatively correlated with UIC and SIC. Univariate linear regression showed that gender, age, BMI, menopausal status, smoking status, alcohol consumption, UIC, SIC, free thyroxine, TSH, and alkaline phosphatase were associated with BMD. The prevalence of osteopenia was significantly increased in IEA, UIC ≥ 300µg/L and SIC > 90µg/L groups. UIC ≥ 300µg/L and SIC > 90µg/L were risk factors for BMD T value < -1.0 SD. In conclusion, excess iodine can not only lead to changes in bone metabolism parameters and BMD, but is also a risk factor for osteopenia and osteoporosis.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
A novel theoretical model for bubble dynamics is established that simultaneously accounts for the liquid compressibility, phase transition, oscillation, migration, ambient flow field, etc. The bubble dynamics equations are presented in a unified and concise mathematical form, with clear physical meanings and extensibility. The bubble oscillation equation can be simplified to the Keller–Miksis equation by neglecting the effects of phase transition and bubble migration. The present theoretical model effectively captures the experimental results for bubbles generated in free fields, near free surfaces, adjacent to rigid walls, and in the vicinity of other bubbles. Based on the present theory, we explore the effect of the bubble content by changing the vapour proportion inside the cavitation bubble for an initial high-pressure bubble. It is found that the energy loss of the bubble shows a consistent increase with increasing Mach number and initial vapour proportion. However, the radiated pressure peak by the bubble at the collapse stage increases with decreasing Mach number and increasing vapour proportion. The energy analyses of the bubble reveal that the presence of vapour inside the bubble not only directly contributes to the energy loss of the bubble through phase transition but also intensifies the bubble collapse, which leads to greater radiation of energy into the surrounding flow field due to the fluid compressibility.
Care of the dying is an essential part of holistic cancer nursing. Improving nurses’ attitudes and behaviors regarding care of the dying is one of the critical factors in increasing the quality of nursing service. This study aims to examine the impact of an educational program based on the CARES tool on nurses’ attitudes and behaviors toward care of the dying.
Methods
A quasi-experimental study with pre- and post-intervention measures was conducted. A total of 222 oncology nurses from 14 hospitals in Beijing, China, were enrolled using a convenient sampling method. This online educational course developed based on the CARES framework comprised 7 modules and 10 sessions. Each session was carried out twice a week over 30–60 min. Data were collected using a sociodemographic characteristics questionnaire, the Frommelt Attitude Towards Care of the Dying Scale (FATCOD) and the Nurses’ Practice Behavior Toward Care of the Dying Questionnaire (NPBTCOD). Reassessment of attitudes and behaviors was conducted when completed the learning and 6 months after the learning, respectively. The sociodemographic characteristics of the nurses were analyzed using descriptive statistics, and differences in attitudes and behaviors were reported and compared by the paired t-test.
Results
All the 222 oncology nurses completed educational courses, and 218 nurses (98.20%) completed the pre- and post-attitudes evaluation and 213 (95.9%) nurses completed the pre- and post-behaviors evaluation. The mean (SD) FATCOD score before and after the educational program was 108.83 (12.07) versus 115.09 (14.91), respectively (t = −8.546, p ≥ 0.001). The mean (SD) NPBTCOD score before and after the educational program was 69.14 (17.56) versus 73.40 (18.96), respectively (t = −3.231, p = 0.001).
Significance of results
This educational intervention was found to be an effective method for improving oncology nurses’ attitudes and behaviors toward caring for dying patients.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
Background: Feedback reports summarizing clinician performance are effective tools to improve antibiotic stewardship in the ambulatory setting, but few studies have evaluated their effectiveness for pediatric inpatients. We developed and implemented feedback reports reflecting electronically-derived measures of appropriate antibiotic choice and duration for community acquired pneumonia (CAP) and measured their impact on appropriate antibiotic use in children hospitalized for CAP. Methods: We performed a single center quasi-experimental study including children 6 months to 17 years hospitalized for CAP between 12/1/2021-11/30/2023. Children with chronic medical conditions, ICU stays >48 hours, and outside transfers were excluded. The intervention occurred in 11/2022 and included clinician education, a monthly group-level feedback report disseminated by email (Figure 1), and a monthly review of clinician performance during a virtual quality improvement meeting. Patient characteristics were compared using chi-square or Wilcoxon rank sum tests. Interrupted time series analysis (ITSA) was used to measure the immediate change in the proportion of CAP encounters receiving both the appropriate antibiotic choice and duration, as well as the change in slope from the preintervention to the postintervention periods. Choice and duration were analyzed separately using ITSA as a secondary analysis. Results: There were 817 CAP encounters, including 420 preintervention and 397 postintervention. Patients admitted in the postintervention period were older (median age 2 years vs 3 years, P=0.03), but otherwise there were no differences in race, ethnicity, sex, ICU admission, or complicated pneumonia. Preintervention, 52% of encounters received both the appropriate antibiotic choice and duration; 96% of encounters received the appropriate antibiotic choice and 54% received the appropriate duration. The ITSA demonstrated an immediate 16% increase in the proportion of patients receiving both appropriate antibiotic choice and duration (95% confidence interval, 1-31%; P = 0.047) and no significant further increase over time following the intervention (P = 0.84) (Figure 2). When antibiotic choice was analyzed separately by ITSA, there was no immediate change or change over time in the proportion of patients receiving the appropriate antibiotic choice. In the ITSA of duration alone, there was an immediate 17% increase in the proportion receiving the appropriate duration (95% confidence interval, 2-33%; P = 0.03) and no change over time. Conclusion: Feedback reports generated from electronically-derived metrics of antibiotic choice and duration, combined with ongoing clinician education, increased the proportion of children with CAP treated with the appropriate antibiotic duration. Electronic feedback reports are a scalable and impactful intervention to improve antibiotic use in children hospitalized with CAP.
To assess the impact of a diagnostic test stewardship intervention focused on tracheal aspirate cultures.
Design:
Quality improvement intervention.
Setting:
Tertiary care pediatric intensive care unit (PICU).
Patients:
Mechanically ventilated children admitted between 9/2018 and 8/2022.
Methods:
We developed and implemented a consensus guideline for obtaining tracheal aspirate cultures through a series of Plan-Do-Study-Act cycles. Change in culture rates and broad-spectrum antibiotic days of therapy (DOT) per 100 ventilator days were analyzed using statistical process control charts. A secondary analysis comparing the preintervention baseline (9/2018–8/2020) to the postintervention period (9/2020–8/2021) was performed using Poisson regression.
Results:
The monthly tracheal aspirate culture rate prior to the COVID-19 pandemic (9/2018–3/2020) was 4.6 per 100 ventilator days. A centerline shift to 3.1 cultures per 100 ventilator days occurred in 4/2020, followed by a second shift to 2.0 cultures per 100 ventilator days in 12/2020 after guideline implementation. In our secondary analysis, the monthly tracheal aspirate culture rate decreased from 4.3 cultures preintervention (9/2018–8/2020) to 2.3 cultures per 100 ventilator days postintervention (9/2020–8/2021) (IRR 0.52, 95% CI 0.47–0.59, P < 0.01). Decreases in tracheal aspirate culture use were driven by decreases in inappropriate cultures. Treatment of ventilator-associated infections decreased from 1.0 to 0.7 antibiotic courses per 100 ventilator days (P = 0.03). There was no increase in mortality, length of stay, readmissions, or ventilator-associated pneumonia postintervention.
Conclusion:
A diagnostic test stewardship intervention was both safe and effective in reducing the rate of tracheal aspirate cultures and treatment of ventilator-associated infections in a tertiary PICU.
This paper proposes an air-filled substrate integrated waveguide (AFSIW) bandpass filter with a miniaturized non-resonant node (NRN). The NRN structure is introduced between the three resonators, and its size is smaller than the resonator size, which can realize the NRN structure’s miniaturization and reduce the model’s size. The NRN size of this filter is 41% of the NRN size of the existing AFSIW filter. This filter also introduces a transmission zero (TZ) above the passband. The measured results show that the filter’s center frequency is 20.73 GHz, and the bandwidth is 0.86 GHz. The insertion loss in the passband is 0.95 dB, and the return loss is better than 23 dB. Due to the TZ in the upper stopband, the AFSIW filter obtained good selectivity.
The social-sexual environment is well known for its influence on the survival of organisms by modulating their reproductive output. However, whether it affects survival indirectly through a variety of cues without physical contact and its influence relative to direct interaction remain largely unknown. In this study, we investigated both the indirect and direct influences of the social-sexual environment on the survival and reproduction of the mite Tyrophagus curvipenis (Acari: Acaridae). The results demonstrated no apparent influence of conspecific cues on the survival of mites, but the survival and reproduction of mated female mites significantly changed, with the females mated with males having a significantly shortened lifespan and increased lifetime fecundity. For males, no significant difference was observed across treatments in their survival and lifespan. These findings indicate that direct interaction with the opposite sex has a much more profound influence on mites than indirect interaction and highlight the urgent need to expand research on how conspecific cues modulate the performance of organisms with more species to clarify their impacts across taxa.
The absorption and distribution of radiocarbon-labeled urea at the ultratrace level were investigated with a 14C-AMS biotracer method. The radiopharmaceutical concentrations in the plasma, heart, liver, spleen, lung, kidney, stomach, brain, bladder, muscle, testis, and fat of rats after oral administration of 14C urea at ultratrace doses were determined by AMS, and the concentration-time curves in plasma and tissues and pharmacokinetic distribution data were obtained. This study provides an analytical method for the pharmacokinetic parameters and tissue distribution of exogenous urea in rats at ultratrace doses and explores the feasibility of evaluation and long-term tracking of ultratrace doses of drugs with AMS.
Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear.
Objectives
To investigate status and associated factors of nurses’ burnout during COVID-19 regular prevention and control.
Methods
784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor–Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory.
Results
310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA.
Conclusion
Chinese nurses’ burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.
Population-wide restrictions during the COVID-19 pandemic may create barriers to mental health diagnosis. This study aims to examine changes in the number of incident cases and the incidence rates of mental health diagnoses during the COVID-19 pandemic.
Methods
By using electronic health records from France, Germany, Italy, South Korea and the UK and claims data from the US, this study conducted interrupted time-series analyses to compare the monthly incident cases and the incidence of depressive disorders, anxiety disorders, alcohol misuse or dependence, substance misuse or dependence, bipolar disorders, personality disorders and psychoses diagnoses before (January 2017 to February 2020) and after (April 2020 to the latest available date of each database [up to November 2021]) the introduction of COVID-related restrictions.
Results
A total of 629,712,954 individuals were enrolled across nine databases. Following the introduction of restrictions, an immediate decline was observed in the number of incident cases of all mental health diagnoses in the US (rate ratios (RRs) ranged from 0.005 to 0.677) and in the incidence of all conditions in France, Germany, Italy and the US (RRs ranged from 0.002 to 0.422). In the UK, significant reductions were only observed in common mental illnesses. The number of incident cases and the incidence began to return to or exceed pre-pandemic levels in most countries from mid-2020 through 2021.
Conclusions
Healthcare providers should be prepared to deliver service adaptations to mitigate burdens directly or indirectly caused by delays in the diagnosis and treatment of mental health conditions.
Although some studies have examined the association between eating behaviour and elevated blood pressure (EBP) in adolescents, current data on the association between sugar-sweetened beverages (SSB) and EBP in adolescents in Yunnan Province, China, are lacking.
Setting:
Cluster sampling was used to survey freshmen at a college in Kunming, Yunnan Province, from November to December. Data on SSB consumption were collected using an FFQ measuring height, weight and blood pressure. A logistic regression model was used to analyse the association between SSB consumption and EBP, encompassing prehypertension and hypertension with sex-specific analyses.
Participants:
The analysis included 4781 college students.
Results:
Elevated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were detected in 35·10 % (1678/4781) and 39·34 % (1881/4781) of patients, respectively. After adjusting for confounding variables, tea beverage consumption was associated with elevated SBP (OR = 1·24, 95 % CI: 1·03, 1·49, P = 0·024), and carbonated beverage (OR = 1·23, 95 % CI: 1·04, 1·45, P = 0·019) and milk beverage (OR = 0·81, 95 % CI: 0·69, 0·95, P = 0·010) consumption was associated with elevated DBP in college students. Moreover, fruit beverage (OR = 1·32, 95 % CI: 1·00, 1·75, P = 0·048) and milk beverage consumption (OR = 0·69, 95 % CI: 0·52, 0·93, P = 0·014) was associated with elevated DBP in males.
Conclusion:
Our findings indicated that fruit and milk beverage consumption was associated with elevated DBP in males, and no association was observed with EBP in females.
The Righi–Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh–Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations. The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas. The Righi–Leduc effect plays an essential impact both in the linear and nonlinear stages, and it deflects the total heat flux towards the spike base. Compared to the case without the self-generated magnetic field included, less heat flux is concentrated at the spike tip, finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip. It is shown that the linear growth rate is increased by about 10% and the amplitude during the nonlinear stage is increased by even more than 10% due to the feedback of the magnetic field, respectively. Our results reveal the importance of Righi–Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field, especially during the acceleration stage in inertial confinement fusion.
This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes’ strength and their relative importance, and identify the determinants of stakeholders’ preferences.
Methods
A mixed-methods design was used to identify attributes and levels reflecting stakeholders’ preference toward the value of implantable medical devices. This design combined literature reviewing, expert’s consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model.
Results
The results of the mixed logit model showed that all the six attributes had a significant impact on respondents’ choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes).
Conclusions
The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.
Mineral-microbe interactions are widespread in a number of environmental processes such as mineral weathering, decomposition, and transformation. Both clay minerals and silicate-weathering bacteria are widely distributed in nature, and the latter contribute to weathering, diagenesis, and mineralization of major rock-forming minerals. The purpose of this study was to observe changes in the chemical composition and structure, especially the phase transformation, of smectite after processing by a silicate-weathering bacterium. The interaction between Bacillus mucilaginosus and bentonite was studied using custom culture media. Results from Inductively Coupled Plasma-Atomic Emission Spectrometry revealed that the bacterium promoted release of Si and Al from solid bentonite to solution. Concomitantly, the Ka nd Fe contents of the mineral increased as shown by X-ray photoelectron spectroscopy results. After interaction with the bacterium, the montmorillonite underwent a possible structure transformation to smectite, as indicated by the emergence of a new weak peak (d = 9.08 Å) shown by X-ray diffraction patterns. The mineralogical changes were also demonstrated by the decrease in the specific surface area of the mineral from 33.0 to 24.0 m2/g (these lower values for SSA of bentonite are related to the particle size of the smectite examined (120-160 mesh) and the weakened absorption bands in Al-O-H and Si-O-Si vibrations by Micro Fourier-transform infrared spectroscopy. The morphology changes in the bacteria observed by environmental scanning electron microscopy and atomic force microscopy revealed an obvious growth of the flagella in the presence of bentonite.
Aggregation of phosphorylated tau (pTau) is a hallmark feature of Alzheimer’s disease (AD). Novel assays now allow pTau to be measured in plasma. Elevated plasma pTau predicts subsequent development of AD, cortical atrophy and AD-related pathologies in the brain. We aimed to determine whether elevated pTau is associated with cognitive functioning in older adults prior to the development of dementia.
Participants and Methods:
Independently living older adults (N = 48, mean age = 70.0 years; SD = 7.7; age range 55-88 years; 35.4% male) free of dementia or clinical stroke were recruited from the community and underwent blood draw and neuropsychological assessment. Plasma was assayed using the Quanterix Simoa® pTau-181 V2 Advantage Kit to quantify pTau-181 levels and APOE genotyping was conducted on the blood cell pellet fraction obtained from plasma separation. Global cognition was assessed using the Dementia Rating Scale-2 (DRS-2) and executive function was assessed using the Stroop, D-KEFS-2 Fluency, and Trails Making Test. Diagnosis of mild cognitive impairment (MCI) was determined based on overall neuropsychological performance. Participants were diagnosed as MCI if they scored >1 SD below norm-referenced values on 2 or more tests within a domain (language, executive, memory) or on 3 tests across domains.
Results:
Multiple linear regression analysis revealed a significant negative association between plasma pTau-181 levels and DRS-2 (B = -2.57, 95% CI (-3.68, -1.47), p <.001), Stroop Color-Word score (B = -2.64, 95% CI (-4.56, - 0.71), p = .009) and Fruits and Vegetables Fluency (B = -1.67, 95% CI (-2.84, -0.49), p = .007), adjusting for age, sex, education and APOE4 status. MCI diagnosis was determined for 43 participants, of which 8 (18.6%) met criteria. Logistic regression analysis revealed that pTau-181 levels are associated with increased odds of MCI diagnosis (OR = 2.18, 95% CI (1.01, 4.68), p = .046), after accounting for age, sex, education and APOE4 status.
Conclusions:
Elevated plasma pTau-181 is associated with worse cognition, particularly executive function, and predicts MCI diagnosis in older adults. Higher plasma pTau-181 was associated with increased odds of MCI diagnosis. Detection of pTau-181 in plasma allows a novel, non-invasive method to detect burden of one form of AD pathology. These findings lend support to the use of plasma pTau-181 as a valuable marker in detecting even early cognitive changes prior to the development of AD. Additional longitudinal studies are warranted to explore the prognostic value of plasma pTau-181 over time.
Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent.
Methods
Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis.
Results
A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients.
Conclusions
Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.