We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aimed to validate In-Body BIA measures with DXA as reference and to describe the BC profiling of Tibetan adults.
Design:
This cross-sectional study included 855 participants (391 men and 464 women).Correlation and Bland-Altman analyses were performed for method agreement of In-Body BIA and DXA. BC were described by obesity and metabolic status.
Setting:
Bioelectrical Impedance Analysis (In-Body BIA) and Dual-energy X-ray absorptiometry (DXA) have not been employed to characterize the body composition (BC) of the Tibetan population living in the Qinghai-Tibet Plateau.
Participants:
A total of 855 Tibetan adults, including 391 men and 464 women, were enrolled in the study.
Results:
Concordance correlation coefficient for total fat mass (FM) and total lean mass (LM) between In-Body BIA and DXA were 0.91 and 0.89. The bias of In-Body BIA for percentages of total FM and total LM was 0.91% (2.46%) and -1.74% (-2.80%) compared with DXA, respectively. Absolute limits of agreement were wider for total FM in obese men and women and for total LM in overweight men than their counterparts. Gradience in the distribution of total and regional FM content was observed across different BMI categories and its combinations with waist circumference and metabolic status.
Conclusions:
In-Body BIA and DXA provided overall good agreement at group level in Tibetan adults, but the agreement was inferior in participants being overweight or obese.
Substantial changes resulting from the interaction of environmental and dietary factors contribute to an increased risk of obesity, while their specific associations with obesity remain unclear. We identified inflammation-related dietary patterns (DP) and explored their associations with obesity among urbanised Tibetan adults under significant environmental and dietary changes. Totally, 1826 subjects from the suburbs of Golmud City were enrolled in an open cohort study, of which 514 were followed up. Height, weight and waist circumference were used to define overweight and obesity. DP were derived using reduced rank regression with forty-one food groups as predictors and high-sensitivity C-reactive protein and prognostic nutritional index as inflammatory response variables. Altitude was classified as high or ultra-high. Two DP were extracted. DP-1 was characterised by having high consumptions of sugar-sweetened beverages, savoury snacks, and poultry and a low intake of tsamba. DP-2 had high intakes of poultry, pork, animal offal, and fruits and a low intake of butter tea. Participants in the highest tertiles (T3) of DP had increased risks of overweight and obesity (DP-1: OR = 1·37, 95 % CI 1·07, 1·77; DP-2: OR = 1·48, 95 % CI 1·18, 1·85) than those in the lowest tertiles (T1). Participants in T3 of DP-2 had an increased risk of central obesity (OR = 2·25, 95 % CI 1·49, 3·39) than those in T1. The positive association of DP-1 with overweight and obesity was only significant at high altitudes, while no similar effect was observed for DP-2. Inflammation-related DP were associated with increased risks of overweight and/or obesity.
Understanding and predicting human cooperative behaviour and belief dynamics remains a major challenge both from the scientific and practical perspectives. Because of the complexity and multiplicity of material, social and cognitive factors involved, both empirical and theoretical work tends to focus only on some snippets of the puzzle. Recently, a mathematical theory has been proposed that integrates material, social and cognitive aspects of behaviour and beliefs dynamics to explain how people make decisions in social dilemmas within heterogeneous groups. Here we apply this theory in two countries, China and Spain, through four long-term behavioural experiments utilising the Common Pool Resources game and the Collective Risk game. Our results show that material considerations carry the smallest weight in decision-making, while personal norms tend to be the most important factor. Empirical and normative expectations have intermediate weight in decision-making. Cognitive dissonance, social projection, logic constraints and cultural background play important roles in both decision-making and beliefs dynamics. At the individual level, we observe differences in the weights that people assign to factors involved in the decision-making and belief updating process. We identify different types of prosociality and rule-following associated with cultural differences, various channels for the effects of messaging, and culturally dependent interactions between sensitivity to messaging and conformity. Our results can put policy and information design on firmer ground, highlighting the need for interventions tailored to the situation at hand and to individual characteristics. Overall, this work demonstrates the theoretical and practical power of the theory in providing a more comprehensive understanding of human behaviour and beliefs.
Studies on obesity and risk factors from a life-course perspective among residents in the Tibet Plateau with recent economic growth and increasing obesity are important and urgently needed. The birth cohort in this area provides a unique opportunity to examine the association between maternal dietary practice and neonatal obesity. The study aims to detect the prevalence of obesity among neonates, associated with maternal diet and other factors, supporting life-course strategies for obesity control. A cohort of pregnant women was enrolled in Tibet Plateau and followed till childbirth. Dietary practice during pregnancy was assessed using the Chinese FFQ – Tibet Plateau version, food items and other variables were associated with the risk for obesity of neonates followed by logistic regression, classification and regression trees (CART) and random forest. Of the total 1226 mother–neonate pairs, 40·5 % were Tibetan and 5·4 % of neonates with obesity. Consuming fruits as a protective factor for obesity of neonates with OR (95 % CI) = 0·61 (0·43, 0·87) from logistic regression; as well as OR = 0·20 (0·12, 0·35) for consuming fruits (≥ weekly) from CART. Removing fruit consumption to avoid overshadowing effects of other factors, the following were influential from CART: maternal education (more than middle school, OR = 0·22 (0·13, 0·37)) and consumption of Tibetan food (daily, OR = 3·44 (2·08, 5·69). Obesity among neonates is prevalent in the study population. Promoting healthy diets during pregnancy and strengthening maternal education should be part of the life-course strategies for obesity control.
Vegetables are known to be beneficial to human health, but the association between vegetable consumption and gastric cancer remains uncertain. To synthesise knowledge about the relationship between vegetable group consumption and gastric cancer risk, update present meta-analyses and estimate associations between vegetable consumption and gastric cancer risk based solely on prospective studies, we perform a PRISMA-compliant three-level meta-analysis. Systematic search identified thirteen prospective studies with fifty-two effect sizes that met all inclusion criteria and no exclusion criteria for our meta-analysis. Pooled risk ratios (RRs) showed a positive association between high vegetable consumption and low gastric cancer risk (pooled RR 0·93, 95% confidence interval 0·90–0·97, P = 0·06). In moderator analyses for indicators of gender, region and quantity of vegetable intake, there was no significant difference between subgroups. However, the effect became significant in populations with lower than the minimum risk exposure level (TMREL) of vegetable consumption (P < 0·05). Higher vegetable intake is associated with a decreased risk of gastric cancer. This effect may be limited to specific populations, such as ones with lower vegetable consumption. Evidence from our study has important public health implications for dietary recommendations.
In the design of the filter antenna, the filter unit with the same structure as the radiation patch not only improves the selectivity of the band edge, but also helps to improve the in-band impedance. In this design, a compact circular monopole filtering antenna with improved sideband selectivity and in-band impedance using a circular-stub-load resonator is proposed. To obtain better sideband selection characteristics and in-band impedance characteristics, and reduce the mismatch problem caused by the introduction of the filter, a branch-loaded filter with the same resonance mode as the antenna radiation patch is designed. In addition, different shape branch loading structures of the bandpass filter are also studied. The experimental results show that when the loading unit of the filter and the radiation structure of the antenna have the same structure, both good in-band impedance characteristics and sideband selectivity characteristics can be obtained from the filter antenna. The antenna reflection coefficient bandwidth is from 3 to 11 GHz (114%), and the maximum reflection coefficient is only −15 dB, showing good in-band impedance characteristics and sideband selection characteristics. The filter antenna realizes the integration of antenna filtering without increasing the size, and the final size of the antenna is 30 × 25 mm2.
In this study, a compact ultra-wideband (UWB) antenna with quintuple band-notched and wide-band rejection characteristics is studied. The proposed antenna mainly consists of a rectangular radiating patch, a microstrip feeding line, and a modified rectangular ground plane. The quintuple band-notched functions with narrow stop bands are achieved at WiMAX (3.3–3.7 GHz), WLAN (5.15–5.35 GHz and 5.725–5.825 GHz), C-band IEEE INSAT/super-extended (6.7–7.1 GHz) by using three modified inverted U-shaped slots and two symmetrical rectangular slots on the radiating path. Each stop band formed in the UWB antenna can be adjusted independently, and deep reflection zeros are formed between the adjacent stop bands. The formation of reflection zeros improves the band-edge selectivity of the stop band, and the notch characteristics are more prominent. To further study the wide stop band (C-band and X-band) with good selectivity characteristics, a pair of L-shaped open slot is added to the edges of two rectangular slots. Additionally, a pair of modified Rho-shaped resonators is located near the feeding line to realize band-notched characteristic at ITU service bands (8.025–8.4 GHz), thus a quintuple band-notched UWB antenna is achieved. The shape factor (ratio of the −3 dB bandwidth to the −10 dB bandwidth) of the wide stop band is 0.56, which indicates that the antenna has excellent band-edge selectivity. To verify the performance of the proposed design, both the time-domain and the frequency-domain characteristics of the antenna have been studied and analyzed. The simulated and measured results verify the design as a good candidate for various portable UWB applications.
Hebei Province was affected by two coronavirus disease 2019 (COVID-19) outbreak waves during the period 22 January 2020 through 27 February 2020 (wave 1) and 2 January 2021 through 14 February 2021 (wave 2). To evaluate and compare the epidemiological characteristics, containment delay, cluster events and social activity, as well as non-pharmaceutical interventions of the two COVID-19 outbreak waves, we examined real-time update information on all COVID-19-confirmed cases from a publicly available database. Wave 1 was closely linked with the COVID-19 pandemic in Wuhan, whereas wave 2 was triggered, to a certain extent, by the increasing social activities such as weddings, multi-household gatherings and church events during the slack agricultural period. In wave 2, the epidemic spread undetected in the rural areas, and people living in the rural areas had a higher incidence rate than those living in the urban areas (5.3 vs. 22.0 per 1 000 000). Furthermore, Rt was greater than 1 in the early stage of the two outbreak waves, and decreased substantially after massive non-pharmaceutical interventions were implemented. In China's ‘new-normal’ situation, development of targeted and effective intervention remains key for COVID-19 control in consideration of the potential threat of new coronavirus strains.
A 1178 J near diffraction limited 527 nm laser is realized in a complete closed-loop adaptive optics (AO) controlled off-axis multi-pass amplification laser system. Generated from a fiber laser and amplified by the pre-amplifier and the main amplifier, a 1053 nm laser beam with the energy of 1900 J is obtained and converted into a 527 nm laser beam by a KDP crystal with 62% conversion efficiency, 1178 J and beam quality of 7.93 times the diffraction limit (DL). By using a complete closed-loop AO configuration, the static and dynamic wavefront distortions of the laser system are measured and compensated. After correction, the diameter of the circle enclosing 80% energy is improved remarkably from 7.93DL to 1.29DL. The focal spot is highly concentrated and the 1178 J, 527 nm near diffraction limited laser is achieved.
A closed Quaternary saline paleolake, currently still a lake and named Dalangtan after one of its largest sub-basins, has widely distributed sediments in the western Qaidam Basin, NE Tibetan Plateau. Lacustrine salt minerals and fine sediments from this paleolake provide an environmental record for investigating paleoclimatic evolution in the Asian interior. However, detailed continuous Pliocene–Quaternary paleoclimatic records are broadly lacking from the NE Tibetan Plateau owing to poor exposure of the outcrops in section. For this study, we performed a detailed magnetostratigraphic dating and rock magnetic analysis on a 590-m-long core from the SG-5 borehole in the western Qaidam Basin. The results demonstrate that the lacustrine sediments in the SG-5 borehole were deposited more than ~3.0 Ma. Saline minerals began to increase at 1.2 Ma, and the magnetic susceptibility (χ) also changed at that time; the percentage frequency-dependent magnetic susceptibility was relatively low and uniform throughout the whole core. These observations, combined with the χ, pollen, salt ion, and grain-size records from other boreholes, indicate that the western Qaidam Basin and the greater Asian interior had a significant climate transition at 1.2 Ma during an extreme drought.
Volcanic tuffs are important in determining the stratigraphic age of sedimentary sequences, which is closely related to the tectonic, sedimentological, geomorphological, palaeoclimatic, and palaeo-ecological evolution of the sequences. However, it may be difficult practically to identify tuffs in stratigraphic sections, especially when they are altered after deposition. In this study, a series of petrographic, mineralogical, and geochemical analyses was deployed in the tuff layers cropping out in the Lunpola Basin of the central Tibetan Plateau, which is a crucial site for studying the dynamics and processes of the Cenozoic uplift of the Tibetan Plateau and its environmental impacts. In these pyroclastic layers, authigenic analcime is the main volcanic glass alteration product. The analcime-bearing samples are Na-enriched, in contrast to the K-abundant magmatic rocks in the central Tibetan Plateau. The distribution patterns of the rare earth elements (REEs) of the bulk analcime-bearing samples are similar to those of the magmatic rocks but different from those of the analcime-poor sediments and analogues of well-mixed upper continental material (e.g. the upper continental crust and post-Archaean Australian average shales). The distinct distributions of Na and REEs among analcime-bearing samples, analcime-poor sediments, and volcanic rocks reveal that analcime formed both from alteration of volcanic material and from mixing processes with non-volcanic sediments. It is proposed, therefore, that the discrimination plot of Na2O/Al2O3-(La/Yb)N may be used to distinguish the analcime-related pyroclastic rocks from the basin sedimentary sequence, and thus it may provide a means of discriminating between various volcanic material and of supporting age dating by tephrochronology in the central Tibetan Plateau.
Electromagnetic scattering from the sea surface is of great significance in radar detection, target recognition, ocean remote sensing, etc. By introducing the action spectrum, the modified spatio-temporal variation wave spectrum is used to establish a nonlinear sea surface with currents in this paper. Traditional capillary wave modification facet scattering model (CWMFSM) can only calculate the backscattering from the wind-driven sea surface. By using the new spatio-temporal variation wave spectrum to modify the scattering amplitude of every facet, the new CWMFSM can be used to calculate the nonlinear sea surface scattering with surface currents. Therefore, the model simultaneously considers the modulation of sea surface wind and currents to the radar back echo. The dependence of backscattering coefficient from nonlinear sea surface on the incident angle and the polarization are discussed. The results verify that the nonlinear model is more consistent with the measurement data. This paper also investigates the Doppler spectrum characteristics of the sea with currents. It is found that the effect of wave–current interaction on Doppler spectra is weaker than that of wave–wave interaction. The SAR images of nonlinear sea surfaces are also simulated and different bands, polarizations, and baseline length effects on sea current detection performance of along-track interference SAR are analyzed.
Bile acids (BA) have emerged as signalling molecules regulating intestinal physiology. The importance of intestinal microbiota in production of secondary BA, for example, lithocholic acid (LCA) which impairs enterocyte proliferation and permeability, triggered us to determine the effects of oral probiotics on intestinal BA metabolism. Piglets were weaned at 28 d of age and allocated into control (CON, n 14) or probiotic (PRO, n 14) group fed 50 mg of Lactobacillus plantarum daily, and gut microbiota and BA profile were determined. To test the potential interaction of LCA with bacteria endotoxins in inducing damage of enterocytes, IPEC-J2 cells were treated with LCA, lipopolysaccharide (LPS) and LCA + LPS and expressions of genes related to inflammation, antioxidant capacity and nutrient transport were determined. Compared with the CON group, the PRO group showed lower total LCA level in the ileum and higher relative abundance of the Lactobacillus genus in faeces. In contrast, the relative abundances of Bacteroides, Clostridium_sensu_stricto_1, Parabacteroides and Ruminococcus_1, important bacteria genera in BA biotransformation, were all lower in the PRO than in the CON group. Moreover, PRO piglets had lower postprandial glucagon-like peptide-1 level, while higher glucose level than CON piglets. Co-administration of LPS and LCA led to down-regulated expression of glucose and peptide transporter genes in IPEC-J2 cells. Altogether, oral L. plantarum altered BA profile probably by modulating relative abundances of gut microbial genera that play key roles in BA metabolism and might consequently impact glucose homoeostasis. The detrimental effect of LCA on nutrient transport in enterocytes might be aggravated under LPS challenge.
Deciphering the climatic evolution of the Tibetan Plateau region during the Plio-Pleistocene is hampered by the lack of continuous archives and proxy datasets indicative of moisture availability. Here we assess the suitability of magnetic susceptibility (χ) measured on lacustrine sediments as a paleohydrological proxy based on material from drill core SG-1 (2.69–0.08 Ma) from the western Qaidam Basin. Our assessment is based on directly comparing χ with the Artemisia/Chenopodiaceae (A/C) pollen ratio, which represents a sensitive, well-established proxy for moisture changes in arid environments. We find that higher and lower χ values represent drier and less dry conditions, respectively, for the Late Plio-Pleistocene. Less dry phases were likely caused by transiently increased influence of the westerlies and/or decreased influence of the Asian winter monsoon on glacial–interglacial time scales. An exception from this relationship is the interval between ~ 1.9 and 1.3 Ma, when the SG-1 χ record exhibits a 54 ka cyclicity, which may indicate summer monsoon influence on the Qaidam Basin during that time. After ~ 1.3 Ma, the summer monsoon influence may have ceased due to global cooling, with the consequence that the Asian winter monsoon and the westerlies exerted a stronger control on the hydrology of the Qaidam Basin.
Magnetic grain-size variations have been used as sensitive paleoclimate proxies to investigate the evolution of the East Asian summer monsoon, but their relationship with temperature and precipitation is not entirely clear. Here we find that two magnetic grain-size proxy records (χARM/χLF and χARM/SIRM, where χARM, χLF and SIRM are anhysteretic remanent magnetization susceptibility, magnetic susceptibility measured at 470 Hz and saturation isothermal remanent magnetization, respectively) of Chinese loess and red-clay sediments co-vary during the last 6 Ma, except between ~ 4.5 and 2.6 Ma, when these two records had opposite trends. We attribute this disparate behavior to the different responses of χARM/χLF and χARM/SIRM to temperature and precipitation during ~ 4.5–2.6 Ma, when temperature and precipitation on the Chinese Loess Plateau were decoupled. A comparison of the loess and red-clay χARM/χLF and χARM/SIRM records with the global ice-volume proxy records reveals that χARM/χLF is more sensitive to temperature variations than χARM/SIRM. The results suggest that temperature on the Chinese Loess Plateau had a cooling trend from ~ 4.5 to ~ 2.6 Ma, whereas rainfall tended to increase. Our studies demonstrate that joint analysis of loess χARM/χLF and χARM/SIRM records can reveal paleoclimatic information that cannot be revealed by a single parameter.
Manganese (Mn) in lake sediments reacts strongly to changes of redox conditions. This study analyzed Mn concentrations in oxides, carbonates, and bulk phases of the calcareous lacustrine sediments of a 938.5-m-long core (SG-1) taken from the western Qaidam Basin, well dated from 2.77 Ma to 0.1 Ma. Comparisons of extractions from diluted hydrochloric acid, acetic acid and citrate"bicarbonate"dithionite demonstrate that variations of Mn concentrations from acetic acid leaching (MnHOAc) are mostly responsible for Mn (II) fluctuations in the carbonate phase. Taking into account the relevant processes during weathering, transportation, deposition and post-deposition of Mn-bearing rocks, we conclude that Mn input from catchment weathering and paleolake redox condition provide the primary controls on variations in the Mn records of carbonate and oxide phases. We propose MnHOAc as a new sensitive indicator of paleolake redox evolution and catchment-scale climate change. The MnHOAc variations show a long-term upward decreasing trend, indicating a long-term decrease of Mn input from catchment weathering associated with increasing oxygen content in the paleolake bottom water. The great similarities of the MnHOAc record with other regional and global records suggest that paleolake redox changes and climatic drying in the Qaidam Basin may be largely related to global cooling.
The Qaidam Basin is the largest intermontane basin of the northeastern Tibetan Plateau and contains a continuous Cenozoic sequence of lacustrine sediments. A ~ 1000-m-deep drilling (SG-1) with an average core recovery of ~ 95% was carried out in the depocenter of the Chahansilatu playa (sub-depression) in the western Qaidam Basin, aimed to obtain a high-resolution record of the paleoenvironmental evolution and the erosion history. Stepwise alternating field and thermal demagnetization, together with rock magnetic results, revealed a stable remanent magnetization for most samples, carried by magnetite. The polarity sequence consisted of 16 normal and 15 reverse zones which can be correlated with chrons 1n to 2An of the global geomagnetic polarity time scale. Magnetostratigraphic results date the entire core SG-1 at ~ 2.77 Ma to ~ 0.1 Ma and yielded sediment accumulation rate (SAR) ranging from 26.1 cm/ka to 51.5 cm/ka. Maximum SARs occurred within the intervals of ~ 2.6–2.2 Ma and after ~ 0.8 Ma, indicating two episodes of erosion, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling.
In the 21st century, it is a great event in the field of international politics that both China and Africa are marching towards revival and more cooperation among each other. The old international order which centered on the West can no longer meet the demand of the changes of African geopolitical pattern. Therefore, it is high time to establish a multilateral cooperation mechanism concerning Africa's peace and development. The authors argue that there are differences in historical experience, diplomatic ideas and principles as well as extensive common grounds of diplomatic strategy and national interests between China and the West in respect of their relations with Africa. Both China and the West should promote talks which are more open, more cooperative and more conducive to a win-win end. In doing this, they can achieve a win-for-all result for all the parties involved.
The electric-pulse–induced resistance switching of the Ag–La0.7Ca03MnO3(LCMO)–Pt heterostructures was studied. The multilevel resistance switching (MLRS), in which several resistance states can be obtained, was observed in the switching from high to low resistance state (HRS → LRS) by applying electric pulse with various pulse voltages. The threshold pulse voltages of MLRS are related to the initial resistance values as well as the switching directions. On the other hand, the resistance switching behavior from low to high resistance states (LRS → HRS) shows unobvious MLRS. According to the resistance switching behavior in serial and parallel modes, MLRS was explained by the parallel effect of multifilament forming/rupture in the Ag–LCMO interface layer. The present results suggest a possible application of Ag–LCMO–Pt heterostructures as multilevel memory devices.
An extended microbridge test (eMBT) was proposed to assess the adhesion of metallic coatings on metallic substrates. Through loading on the backside of narrow striped freestanding coatings, a two-dimensional stable interfacial delamination was introduced. A cross-sectional scanning electron microscope (SEM) was used to examine the interfacial fracture process. A large deflection solution for elastic deformation of the coating was derived, and an approximate model was established for the estimate of interfacial crack extension force G. The eMBT samples of electroplated Ni coatings on C45 carbon steel substrate were tested, and the measured interfacial fracture toughness was about 5.28 J/m2. Cross-sectional SEM examination showed that the interface crack extended along the interface plane, and therefore the interfacial fracture proceeded by the debonding of Ni/steel interface.