We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As a novel type of catalytic Janus micromotor (JM), a double-bubble-powered Janus micromotor has a distinct propulsion mechanism that is closely associated with the bubble coalescence in viscous liquids and corresponding flow physics. Based on high-speed camera and microscopic observation, we provide the first experimental results of the coalescence of two microbubbles near a JM. By performing experiments with a wide range of Ohnesorge numbers, we identify a universal scaling law of bubble coalescence, which shows a cross-over at dimensionless time $\tilde{t}$ = 1 from an inertially limited viscous regime with linear scaling to an inertial regime with 1/2 scaling. Due to the confinement from the nearby solid JM, we observe asymmetric neck growth and find the combined effect of the surface tension and viscosity. The bubble coalescence and detachment can result in a high propulsion speed of ∼0.25 m s−1 for the JM. We further characterise two contributions to the JM’s displacement propelled by the coalescing bubble: the counteraction from the liquid due to bubble deformation and the momentum transfer during bubble detachment. Our findings provide a better understanding of the flow dynamics and transport mechanism in micro- and nano-scale devices like the swimming microrobot and bubble-powered microrocket.
Two-dimensional simulations incorporating detailed chemistry are conducted for detonation initiation induced by dual hot spots in a hydrogen/oxygen/argon mixture. The objective is to examine the transient behaviour of detonation initiation as facilitated by dual hot spots, and to elucidate the underlying mechanisms. Effects of hot spot pressure and distance on the detonation initiation process are assessed; and five typical initiation modes are identified. It is found that increasing the hot spot pressure promotes detonation initiation, but the impact of the distance between dual hot spots on detonation initiation is non-monotonic. During the initiation process, the initial hot spot autoignites, and forms the cylindrical shock waves. Then, the triple-shock structure, which is caused by wave collisions and consists of the longitudinal detonation wave, transverse detonation wave and cylindrical shock wave, dominates the detonation initiation behaviour. A simplified theoretical model is proposed to predict the triple-point path, whose curvature quantitatively indicates the diffraction intensity of transient detonation waves. The longitudinal detonation wave significantly diffracts when the curvature of the triple-point path is large, resulting in the failed detonation initiation. Conversely, when the curvature is small, slight diffraction effects fail to prevent the transient detonation wave from developing. The propagation of the transverse detonation wave is affected not only by the diffraction effects but also by the mixture reactivity. When the curvature of the triple-point trajectory is large, a strong cylindrical shock wave is required to compress the mixture, enhancing its reactivity to ensure the transverse detonation wave can propagate without decoupling.
Little is known about the association between iodine nutrition status and bone health. The present study aimed to explore the connection between iodine nutrition status, bone metabolism parameters, and bone disease (osteopenia and osteoporosis). A cross-sectional survey was conducted involving 391, 395, and 421 adults from iodine fortification areas (IFA), iodine adequate areas (IAA), and iodine excess areas (IEA) of China. Iodine nutrition status, bone metabolism parameters and BMD were measured. Our results showed that, in IEA, the urine iodine concentrations (UIC) and serum iodine concentrations (SIC) were significantly higher than in IAA. BMD and Ca2+ levels were significantly different under different iodine nutrition levels and the BMD were negatively correlated with UIC and SIC. Univariate linear regression showed that gender, age, BMI, menopausal status, smoking status, alcohol consumption, UIC, SIC, free thyroxine, TSH, and alkaline phosphatase were associated with BMD. The prevalence of osteopenia was significantly increased in IEA, UIC ≥ 300 µg/l and SIC > 90 µg/l groups. UIC ≥ 300 µg/l and SIC > 90 µg/l were risk factors for BMD T value < –1·0 sd. In conclusion, excess iodine can not only lead to changes in bone metabolism parameters and BMD, but is also a risk factor for osteopenia and osteoporosis.
Influenced by human activities, microplastics (MPs) are widely distributed in terrestrial ecosystems. However, their ecotoxicity remains unclear. Therefore, we assessed the ecotoxicity of polyamide microplastics (PA-MPs) by investigating their toxic effects on the model insect, the silkworms Bombyx mori (Lepidoptera: Bombycidae). In this study, fifth-instar silkworm larvae were fed mulberry leaves treated with PA-MPs for 120 hours, but no changes in mortality rates were observed. However, the body weight, pupal weight, cocoon weight, egg laying amount, and cocoon shell weight in F0 generation silkworms were significantly reduced. This indicates that PA-MPs have sublethal effects on silkworms. To further investigate the effects of PA-MPs on the offspring of silkworms, we applied the age-stage, two-sex life table analysis. We found that in the PA-MPs treatment group, the duration of the larval and pupal stages of F1 generation silkworms was significantly prolonged, while the lifespan of the adults and total longevity were shortened. Meanwhile, the life history parameters (sxj, exj, lx, fxj, lxmx, and vxj values) and population parameters (R0, λ, r, and T) of F1 generation silkworms in the PA-MPs treatment group were also lower than control. This indicates that PA-MPs have transgenerational effects, affecting the growth, development, and reproduction of F1 generation silkworms. Our research findings demonstrate the sublethal and transgenerational effects of PA-MPs on silkworms, providing evidence for their ecotoxicity.
Recent experiments and simulations have sparked growing interest in the study of Rayleigh–Bénard convection in very slender cells. One pivotal inquiry arising from this interest is the elucidation of the flow structure within these very slender cells. Here we employ tomographic particle image velocimetry, for the first time, to capture experimentally the full-field three-dimensional and three-component velocity field in a very slender cylindrical cell with aspect ratio $\Gamma =1/10$. The experiments cover a Rayleigh number range $5.0 \times 10^8 \leqslant Ra \leqslant 5.0 \times 10^9$ and Prandtl number 5.7. Our experiments reveal that the flow structure in the $\Gamma =1/10$ cell is neither in the multiple-roll form nor in the simple helical form; instead, the ascending and descending flows can intersect and cross each other, resulting in the crossing events. These crossing events separate the flow into segments; within each segment, the ascending and descending flows ascend or descend side by side vertically or in the twisting manner, and the twisting is not unidirectional, while the segments near the boundary can also be in the form of a donut like structure. By applying the mode decomposition analyses to the measured three-dimensional velocity fields, we identified the crossing events as well as the twisting events for each instantaneous flow field. Statistical analysis of the modes reveals that as $Ra$ increases, the average length of the segments becomes smaller, and the average number of segments increases from 2.5 to 3.9 in the $Ra$ range of our experiments.
Knowledge of the critical periods of crop–weed competition is crucial for designing weed management strategies in cropping systems. In the Lower Yangtze Valley, China, field experiments were conducted in 2011 and 2012 to study the effect of interference from mixed natural weed populations on cotton growth and yield and to determine the critical period for weed control (CPWC) in direct-seeded cotton. Two treatments were applied: allowing weeds to infest the crop or keeping plots weed-free for increasing periods (0, 1, 2, 4, 6, 8, 10, 12, 14, and 20 wk) after crop emergence. The results show that mixed natural weed infestations led to 35- to 55-cm shorter cotton plants with stem diameters 10 to 13 mm smaller throughout the season, fitting well with modified Gompertz and logistic models, respectively. Season-long competition with weeds reduced the number of fruit branches per plant by 65% to 82%, decreasing boll number per plant by 86% to 96% and single boll weight by approximately 24%. Weed-free seed cotton yields ranged from 2,900 to 3,130 kg ha−1, while yield loss increased with the duration of weed infestation, reaching up to 83% to 96% compared with permanent weed-free plots. Modified Gompertz and logistic models were used to analyze the impact of increasing weed control duration and weed interference on relative seed cotton yield (percentage of season-long weed-free cotton), respectively. Based on a 5% yield loss threshold, the CPWC was found to be from 145 to 994 growing degree days (GDD), corresponding to 14 to 85 d after emergence (DAE). These findings emphasize the importance of implementing effective weed control measures from 14 to 85 DAE in the Lower Yangtze Valley to prevent crop losses exceeding a 5% yield loss threshold.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with reshock through three-dimensional double-layer swirling vortex rings. The rapid transition in RMI with reshock has an essential influence on the evolution of supernovas and the ignition of inertial confinement fusion, which has been confirmed in numerical simulations and experiments in shock-tube and high-energy-density facilities over the past few years. Vortex evolution has been confirmed to dominate the late-time nonlinear development of the perturbed interface. However, few studies have investigated the three-dimensional characteristics and nonlinear interactions among vortex structures during the transition to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is hypothesized to induce successive large-scale strain fields, which are the main driving sources for rapid development. The three-dimensional effect is reflected in the presence of local swirling motion in the azimuthal direction, and it decreases the translation velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to describe the development process of RMI with reshock, e.g. vorticity deposited by the reshock, formation of the coexistence of the co-rotating and counter-rotating vortices, iterative cascade under the amplification of the strain fields and viscous dissipation to internal energy. This provides theoretical suggestions for designing practical applications, such as the estimation of the hydrodynamic instability and mixing during the late-time acceleration phase of the inertial confinement fusion.
The paper presents a novel control method aimed at enhancing the trajectory tracking accuracy of two-link mechanical systems, particularly nonlinear systems that incorporate uncertainties such as time-varying parameters and external disturbances. Leveraging the Udwadia–Kalaba equation, the algorithm employs the desired system trajectory as a servo constraint. First, the system’s constraints to construct its dynamic equation and apply generalized constraints from the constraint equation to an unconstrained system. Second, we design a robust approximate constraint tracking controller for manipulator control and establish its stability using Lyapunov’s law. Finally, we numerically simulate and experimentally validate the controller on a collaborative platform using model-based design methods.
This paper proposes an online robust self-learning terminal sliding mode control (RS-TSMC) with stability guarantee for balancing control of reaction wheel bicycle robots (RWBR) under model uncertainties and disturbances, which improves the balancing control performance of RWBR by optimising the constrained output of TSMC. The TSMC is designed for a second-order mathematical model of RWBR. Then robust adaptive dynamic programming based on an actor-critic algorithm is used to optimise the TSMC only by data sampled online. The system closed-loop stability and convergence of the neural network weights are guaranteed based on the Lyapunov analysis. The effectiveness of the proposed algorithm is demonstrated through simulations and experiments.
The Central Asian Orogenic Belt is the world’s largest accretionary orogenic belt, associated with the closure of the Paleo-Asian Ocean (PAO). However, the final closure timing of the eastern PAO remains contentious. The Permian-Triassic sedimentary sequences in the Wangqing area along the Changchun-Yanji suture zone offer important clues into this final closure. New data on petrology, whole-rock geochemistry, zircon U-Pb geochronology and zircon Hf isotopes of sedimentary rocks from the Miaoling Formation and Kedao Group in Wangqing area provide new insights into the final closure of the eastern end of the PAO. The maximum deposition ages of the Miaoling Formation and Kedao Group have been constrained to the Late Permian (ca. 253 Ma) and early Middle Triassic (ca. 243 Ma), respectively. These sedimentary rocks exhibit similar geochemical characteristics, showing low textural and compositional maturities, implying short sediment transport, with all detrital zircons suggesting their origins from felsic igneous rocks. The εHf(t) values of the Miaoling Formation range from −6.09 to 12.43 and from −2.20 to 7.59 for the Kedao Group, implying these rocks originated from NE China. Considering our new data along with previously published data, we propose that a reduced remnant ocean remained along the Changchun-Yanji suture zone in the early Middle Triassic (ca. 243 Ma), suggesting the final closure of the eastern PAO likely occurred between the latest Middle Triassic and early Late Triassic.
High prevalence of long COVID symptoms has emerged as a significant public health concern. This study investigated the associations between three doses of COVID-19 vaccines and the presence of any and ≥3 types of long COVID symptoms among people with a history of SARS-CoV-2 infection in Hong Kong, China. This is a secondary analysis of a cross-sectional online survey among Hong Kong adult residents conducted between June and August 2022. This analysis was based on a sub-sample of 1,542 participants with confirmed SARS-CoV-2 infection during the fifth wave of COVID-19 outbreak in Hong Kong (December 2021 to April 2022). Among the participants, 40.9% and 16.1% self-reported having any and ≥3 types of long COVID symptoms, respectively. After adjusting for significant variables related to sociodemographic characteristics, health conditions and lifestyles, and SARS-CoV-2 infection, receiving at least three doses of COVID-19 vaccines was associated with lower odds of reporting any long COVID symptoms comparing to receiving two doses (adjusted odds ratio [AOR]: 0.69, 95% CI: 0.54, 0.87, P = .002). Three doses of inactivated and mRNA vaccines had similar protective effects against long COVID symptoms. It is important to strengthen the coverage of COVID-19 vaccination booster doses, even in the post-pandemic era.
Pro-environmental behavior, including waste sorting and recycling, involves a combination of future-oriented (futureness) and other-oriented (otherness) attributes. Inspired by the perspective of intergenerational choice, this work explores whether eliciting concerns for future others could increase public support for recycling policy and recycling behavior. Study 1 consisted of an online random controlled trial and a laboratory experiment. In Study 1A (N = 400), future other-concern was primed using a static text manipulation, whereas in Study 1B (N = 192), a dynamic virtual manipulation was employed. The results showed that people in the conditions that elicited future other-concern reported greater household recycling intentions and more actual recycling behavior than those in the control conditions. Study 2A (N = 467) and Study 2B (N = 600) generalized this effect on the acceptance of the ‘Certain Time Certain Place’ waste sorting policy in China. Consistent with the intergenerational choice model, envisioning the future of subsequent generations is more impactful in gaining policy approval than merely envisioning a future time. These findings provide a new method for promoting public policy approval and recycling behavior, suggesting that people could become environmentally friendly when they are guided to consider future others.
A recent study published in Oryx proposed that the extinct Javan tiger Panthera tigris sondaica may still survive on the Island of Java, Indonesia, based on mitochondrial DNA analysis of a single hair sample collected from a location where a tiger was reportedly encountered. However, upon reanalysing the genetic data presented in that study, we conclude that there is little support for this claim. The sequences of the putative tiger hair and Javan tiger museum specimens generated are not from tiger cytoplasmic mitochondrial DNA but more likely the nuclear pseudogene copies of mitochondrial DNA. In addition, the number of mismatches between the two Javan tiger sequences is unusually high for homologous sequences that are both from tigers, suggesting potential issues with data reliability. The paper provides insufficient details on quality control measures, making it impossible to rule out the possibility that errors were introduced during the analysis. Consequently, it is inappropriate to use the sequences presented in that study to infer the existence of the Javan tiger.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
Exercise-based cardiac rehabilitation is effective in improving cardiovascular disease risk factor management, cardiopulmonary function, and quality of life. However, the precise mechanisms underlying exercise-induced cardioprotection remain elusive. Recent studies have shed light on the beneficial functions of noncoding RNAs in either exercise or illness models, but only a limited number of noncoding RNAs have been studied in both contexts. Hence, the present study aimed to elucidate the pathophysiological implications and molecular mechanisms underlying the association among exercise, noncoding RNAs, and cardiovascular diseases. Additionally, the present study analysed the most effective and personalized exercise prescription, serving as a valuable reference for guiding the clinical implementation of cardiac rehabilitation in patients with cardiovascular diseases.
Femtosecond oscillators with gigahertz (GHz) repetition rate are appealing sources for spectroscopic applications benefiting from the individually accessible and high-power comb line. The mode mismatch between the potent pump laser diode (LD) and the incredibly small laser cavity, however, limits the average output power of existing GHz Kerr-lens mode-locked (KLM) oscillators to tens of milliwatts. Here, we present a novel method that solves the difficulty and permits high average power LD-pumped KLM oscillators at GHz repetition rate. We propose a numerical simulation method to guide the realization of Kerr-lens mode-locking and comprehend the dynamics of the Kerr-lens mode-locking process. As a proof-of-principle demonstration, an LD-pumped Yb:KGW oscillator with up to 6.17-W average power and 184-fs pulse duration at 1.6-GHz repetition rate is conducted. The simulation had a good agreement with the experimental results. The cost-effective, compact and powerful laser source opens up new possibilities for research and industrial applications.
We describe a development and feasibility study of a Sitting Simple Baduanjin program for advanced cancer patients suffering from the fatigue–sleep disturbance symptom cluster. This study was to evaluate the practicality and safety of the Sitting Simple Baduanjin intervention and determine its preliminary efficacy.
Methods
This work employed a single-arm mixed-methods approach. The primary outcome measures were feasibility (i.e., recruitment, adherence, and satisfaction) and safety. Validated self-report questionnaires were used to evaluate the preliminary effects of the program, including fatigue, sleep quality, and quality of life at the 4th, 8th, and 12th weeks of the intervention. Qualitative interviews were also conducted after the program.
Results
A total of 30 participants were enrolled, of which 23 (77%) completed the 12-week Sitting Simple Baduanjin program. The mean adherence rate was 88% and no adverse events were reported. Statistically significant improvements were observed in terms of fatigue, sleep quality, and quality of life after program completion. Four themes emerged from the qualitative interview data: (a) acceptability of the Sitting Simple Baduanjin technique, (b) perceived benefits of exercise, (c) barriers, and (d) facilitators.
Significance of Results
The findings support the feasibility of the Sitting Simple Baduanjin program for advanced cancer patients and show promise in improving patients’ levels of the fatigue–sleep disturbance symptom cluster and quality of life.