We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the continuous transportation process of coal in mining, exploring real-time detection technology for longitudinal tear of conveyor belts on mobile devices can effectively prevent transport failures. To address the challenges associated with single-dimensional detection, high network complexity, and difficulties in mobile deployment for longitudinal tearing detection in conveyor belts, we have proposed an efficient parallel acceleration method based on field-programmable gate arrays (FPGA) for the ECSMv3-YOLO network, which is an improved version of the you only look once (YOLO) network, enabling multidimensional real-time detection. The FPGA hardware acceleration architecture of the customized network incorporates quantization and pruning methods to further reduce network parameters. The convolutional acceleration engines were specifically designed to optimize the network’s inference speed, and the incorporation of dual buffers and multiple direct memory access channels can effectively mitigate data transfer latency. The establishment of a multidimensional longitudinal tear detection experimental device for conveyor belts facilitated FPGA acceleration experiments on ECSMv3-YOLO, resulting in model parameters of 6.257 M, mean average precision of 0.962, power consumption of 3.2 W, and a throughput of 15.56 giga operations per second (GOP/s). By assessing the effects of different networks and varying light intensity, and comparing with CPU, GPU, and different FPGA hardware acceleration platforms, this method demonstrates significant advantages in terms of detection speed, recognition accuracy, power consumption, and energy efficiency. Additionally, it exhibits strong adaptability and interference resilience.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
This study aims to explore the concept of future orientation, which encompasses individuals’ thoughts about the future, goal-setting, planning, response to challenges and behavioural adjustments in evolving situations. Often viewed as a psychological resource, future orientation is believed to be developed from psychological resilience. The study investigates the curvilinear relationship between childhood maltreatment and future orientation while examining the moderating effects of genotype.
Methods
A total of 14,675 Chinese adults self-reported their experiences of childhood maltreatment and their future orientation. The influence of genetic polymorphism was evaluated through genome-wide interaction studies (GWIS; genome-wide association study [GWAS] using gene × environment interaction) and a candidate genes approach.
Results
Both GWAS and candidate genes analyses consistently indicated that rs4498771 and its linked single-nucleotide polymorphisms, located in the intergenic area surrounding CSF3R, significantly interacted with early trauma to influence future orientation. Nonlinear regression analyses identified a quadratic or cubic association between future orientation and childhood maltreatment across some genotypes. Specifically, as levels of childhood maltreatment increased, future orientation declined for all genotypes. However, upon reaching a certain threshold, future orientation exhibited a rebound in individuals with specific genotypes.
Conclusions
The findings suggest that individuals with certain genotypes exhibit greater resilience to childhood maltreatment. Based on these results, we propose a new threshold model of stress-related growth.
Meta-structures, including metamaterials and metasurfaces, possess remarkable physical properties beyond those observed in natural materials and thus have exhibited unique wave manipulation abilities ranging from quantum to classical transports. The past decades have witnessed the explosive development and numerous implications of meta-structures in elastic-wave control under the Hermitian condition. However, more notably, a lot of recent research has been made to show that non-Hermitian meta-structures offer novel means for wave manipulation. Non-Hermiticity has enhanced both the accuracy and efficiency of wave steering capabilities. To this end, starting from electromagnetics and acoustics, we mainly review the up-to-date progress of non-Hermitian elastic meta-structures with a focus on their extraordinary elastic-wave control. A variety of promising scenarios realized by non-Hermitian elastic metamaterials and metasurfaces, such as the parity-time-symmetric system and the skin effect, are summarized. Furthermore, the perspectives and challenges of non-Hermitian elastic meta-structures for future key opportunities are outlined.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
Gentiana straminea Maxim. (Gentianaceae) is an important traditional Tibetan herb that is mainly distributed on the Qinghai-Tibetan Plateau. Despite its agricultural and pharmacological importance, there remains a paucity of microsatellite markers, particularly expressed sequence tag-simple sequence repeat (EST-SSR) markers, available for this local endemic species. In this study, based on previous Illumina transcriptome data of G. straminea, a total of 96 EST-SSR markers were initially designed and tested. Thirty-two of 96 loci (33.33%) were successfully amplified and verified for validation. Among them, 10 were polymorphic and had clear bands. The polymorphism information content values were 0.09–0.799, the number of alleles per locus ranged from 3 to 14, and the levels of observed and expected heterozygosity were 0.078–0.722 and 0.238–0.884, respectively, which suggested a high level of information. Moreover, cross-amplification was successful for 10 loci in two other related species, Gentiana macrophylla Pallas and Gentiana dahurica Fischer. These EST-SSR markers provide a valuable tool for investigating the genetic diversity related to quantitative traits and population genetic studies on G. straminea and related species in sect. Cruciata Gaudin.
Intracytoplasmic sperm injection (ICSI) is a technique that directly injects a single sperm into the cytoplasm of mature oocytes. Here, we explored the safety of single-sperm cryopreservation applied in ICSI. This retrospective study enrolled 186 couples undergoing ICSI-assisted pregnancy. Subjects were allocated to the fresh sperm (group A)/single-sperm cryopreservation (group B) groups based on sperm type, with their clinical baseline/pathological data documented. We used ICSI-compliant sperm for subsequent in vitro fertilization and followed up on all subjects. The recovery rate/cryosurvival rate/sperm motility of both groups, the pregnancy/outcome of women receiving embryo transfer, and the delivery mode/neonatal-related information of women with successful deliveries were recorded. The clinical pregnancy rate, cumulative clinical pregnancy rate, abortion rate, ectopic pregnancy rate, premature delivery rate, live birth delivery rate, neonatal birth defect rate, and average birth weight were analyzed. The two groups showed no significant differences in age, body mass index, ovulation induction regimen, sex hormone [anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH)/luteinizing hormone (LH)] levels, or oocyte retrieval cycles. The sperm recovery rate (51.72%-100.00%) and resuscitation rate (62.09% ± 16.67%) in group B were higher; the sperm motility in the two groups demonstrated no significant difference and met the ICSI requirements. Group B exhibited an increased fertilization rate, decreased abortion rate, and increased safety versus group A. Compared with fresh sperm, the application of single-sperm cryopreservation in ICSI sensibly improved the fertilization rate and reduced the abortion rate, showing higher safety.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs) in toroidal geometries such as tokamaks was discovered through a full orbit simulation approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically investigated that a new expression for the magnetic moment, including the second-order corrections, could essentially reproduce the so-called collisionless pitch-angle scattering process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron radiation, extensive numerical verification of the validity of the high-order guiding-centre theory is given for simulations involving REs by incorporating such an expression for the magnetic moment into our particle tracing code. A high-order guiding-centre simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation plays an essential role in the life cycle of REs. The energy of REs first increases and then becomes saturated until the electric field acceleration is balanced by the radiation dissipation. Unfortunately, the process cannot be simulated accurately with the standard guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found that the HGSA can effectively produce the fundamental process of REs. Since the time scale of the energy saturation of REs is close to seconds, the computational cost becomes significant. In order to save costs, it is necessary to estimate the time of energy saturation. An analytical estimate is derived for the time it takes for synchrotron drag to balance an accelerating electric field and the provided formula has been numerically verified. Test calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
Severe fever with thrombocytopenia syndrome (SFTS) virus has caused a large number of human infections since discovered in 2009. This study elucidated epidemiological features and fatal risk factors of SFTS cases accumulated up to ten years in Taizhou, a coastal prefecture of Zhejiang Province in Eastern China. A total of 188 hospitalised SFTS cases (including 40 deaths) reported to Taizhou Center for Disease Control and Prevention (CDC) during 2011–2020 were enrolled in the study. In the past decade, the annual incidence of SFTS increased over the years (P < 0.001) along with an expanding epidemic area, and the case fatality of hospitalised cases has remained high (21.3%). Although most cases occurred in hilly areas, a coastal island had the highest incidence and case fatality. The majority of cases were over the age of 60 years (72.3%), and both incidence and case fatality of SFTS increased with age. Multivariate logistic regression analysis showed that age (OR 7.47, 95% CI 1.32–42.33; P = 0.023), and haemorrhagic manifestations including petechiae (OR 7.76, 95% CI 1.17–51.50; P = 0.034), gingival haemorrhage (OR 5.38, 95% CI 1.25–23.15; P = 0.024) and melena (OR 5.75, 95% CI 1.18–28.07; P = 0.031) were significantly associated with the death of SFTS cases. Five family clusters identified were farmers, among four of which the index patients were female with a history of hypertension. Based on the study, age is a critical risk factor for incidence and case fatality of SFTS. With an increased annual incidence over the last ten years, SFTS remains a public health threat that should not be ignored. Further study is needed to look at the natural foci in the coastal islands.
Helicity is a quadratic inviscid conservative quantity in three-dimensional turbulent flows and is crucial for turbulent system evolution. Helicity effects have mainly been highlighted over the past few decades to explore the intrinsic mechanism of turbulent flows, while the statistical characteristics of helicity itself are nearly absent in general anisotropic turbulent flows. In this paper, we investigate the helicity statistics in turbulent channel flows with streamwise rotation at moderate rotation numbers ($Ro_{\tau }=7.5,15$ and 30) and Reynolds numbers ($Re_{\tau }=180$ and 395), including their spatial and scale distributions, anisotropy and cross-scale transfer. The appearance of a mean secondary flow in the spanwise direction corresponds to a mean streamwise vorticity, which indicates the presence of a high-helicity distribution. Numerical results reveal a regular helicity profile along the wall-normal direction, and a new peak is found in the near-wall region around $y^+=6$ of the streamwise or spanwise helicity profiles. The inter-scale helicity transfer is analysed by the filtering method, and the numerical consequences reveal that the second channel of the helicity cascade we proposed previously is dominant in contrast to the first channel. The rotation effects are explored by comparing the numerical results obtained under different rotation numbers. With increasing rotation number, more helical structures in the near-wall regions are present, with peaks of helicity profiles and fluxes coming closer to the wall. With a higher Reynolds number, their amplitudes are larger and scale-space transfer is strengthened. These systematic numerical analyses uncover the helicity distributions and transfer in wall-bounded turbulent flows.
Accumulating evidence suggests that supplementation of n-3 PUFA was associated with reduction in risk of major cardiovascular events. This meta-analysis was to systematically evaluate whether daily supplementation and accumulated intake of n-3 PUFA are associated with improved left ventricular (LV) remodelling in patients with chronic heart failure (CHF). Articles were obtained from Pubmed, Clinical key and Web of Science from inception to January 1 in 2021, and a total of twelve trials involving 2162 participants were eligible for inclusion. The sources of study heterogeneity were explained by I2 statistic and subgroup analysis. Compared with placebo groups, n-3 PUFA supplementation improved LV ejection fraction (LVEF) (eleven trials, 2112 participants, weighted mean difference (WMD) = 2·52, 95 % CI 1·25, 3·80, I2 = 87·8 %) and decreased LV end systolic volume (five studies, 905 participants, WMD = –3·22, 95 % CI 3·67, −2·77, I2 = 0·0 %) using the continuous variables analysis. Notably, the high accumulated n-3 PUFA dosage groups (≥ 600 g) presented a prominent improvement in LVEF, while the low and middle accumulated dosage (≤ 300 and 300–600 g) showed no effects on LVEF. In addition, n-3 PUFA supplementation decreased the levels of pro-inflammatory mediators including TNF-α, IL-6 (IL-6) and hypersensitive c-reactive protein. Therefore, the present meta-analysis demonstrated that n-3 PUFA consumption was associated with a substantial improvement of LV function and remodelling in patients subjected to CHF. The accumulated dosage of n-3 PUFA intake is vital for its cardiac protective role.
T long-term effects of cognitive therapy and behavior therapy (CTBT) for menopausal symptoms are unknown, and whether the effects are different between natural menopause and treatment-induced menopause are currently unclear. Therefore, we sought to conduct an accurate estimate of the efficacy of CTBT for menopausal symptoms.
Methods
We conducted searches of Cochrane Library, EMBASE, PsycINFO, PubMed, and Web of Science databases for studies from 1 January 1977 to 1 November 2021. Randomized controlled trials (RCTs) comparing intervention groups to control groups for menopausal symptoms were included. Hedge's g was used as the standardized between-group effect size with a random-effects model.
Results
We included 14 RCTs comprising 1618 patients with a mean sample size of 116. CTBT significantly outperformed control groups in terms of reducing hot flushes [g = 0.39, 95% confidence interval (CI) 0.23–0.55, I2 = 45], night sweats, depression (g = 0.50, 95% CI 0.34–0.66, I2 = 51), anxiety (g = 0.38, 95% CI 0.23–0.54, I2 = 49), fatigue, and quality of life. Egger's test indicated no publication bias.
Conclusions
CTBT is an effective psychological treatment for menopausal symptoms, with predominantly small to moderate effects. The efficacy is sustained long-term, although it declines somewhat over time. The efficacy was stronger for natural menopause symptoms, such as vasomotor symptoms, than for treatment-induced menopause symptoms. These findings provide support for treatment guidelines recommending CTBT as a treatment option for menopausal symptoms.
Schistosomiasis has been subjected to extensive control efforts in the People's Republic of China (China) which aims to eliminate the disease by 2030. We describe baseline results of a longitudinal cohort study undertaken in the Dongting and Poyang lakes areas of central China designed to determine the prevalence of Schistosoma japonicum in humans, animals (goats and bovines) and Oncomelania snails utilizing molecular diagnostics procedures. Data from the Chinese National Schistosomiasis Control Programme (CNSCP) were compared with the molecular results obtained.
Sixteen villages from Hunan and Jiangxi provinces were surveyed; animals were only found in Hunan. The prevalence of schistosomiasis in humans was 1.8% in Jiangxi and 8.0% in Hunan determined by real-time polymerase chain reaction (PCR), while 18.3% of animals were positive by digital droplet PCR. The CNSCP data indicated that all villages harboured S. japonicum-infected individuals, detected serologically by indirect haemagglutination assay (IHA), but very few, if any, of these were subsequently positive by Kato-Katz (KK).
Based on the outcome of the IHA and KK results, the CNSCP incorporates targeted human praziquantel chemotherapy but this approach can miss some infections as evidenced by the results reported here. Sensitive molecular diagnostics can play a key role in the elimination of schistosomiasis in China and inform control measures allowing for a more systematic approach to treatment.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
Video monitoring is an important means of ship traffic supervision. In practice, regulators often need to use an electronic chart platform to determine basic information concerning ships passing through a video feed. To enrich the information in the surveillance video and to effectively use multimodal maritime data, this paper proposes a novel ship multi-object tracking technology based on improved single shot multibox detector (SSD) and DeepSORT algorithms. In addition, a night contrast enhancement algorithm is used to enhance the ship identification performance in night scenes and a multimodal data fusion algorithm is used to incorporate the ship automatic identification system (AIS) information into the video display. The experimental results indicate that the ship information tracking accuracies in the day and night scenes are 78⋅2% and 70⋅4%, respectively. Our method can effectively help regulators to quickly obtain ship information from a video feed and improve the supervision of a waterway.
A 1178 J near diffraction limited 527 nm laser is realized in a complete closed-loop adaptive optics (AO) controlled off-axis multi-pass amplification laser system. Generated from a fiber laser and amplified by the pre-amplifier and the main amplifier, a 1053 nm laser beam with the energy of 1900 J is obtained and converted into a 527 nm laser beam by a KDP crystal with 62% conversion efficiency, 1178 J and beam quality of 7.93 times the diffraction limit (DL). By using a complete closed-loop AO configuration, the static and dynamic wavefront distortions of the laser system are measured and compensated. After correction, the diameter of the circle enclosing 80% energy is improved remarkably from 7.93DL to 1.29DL. The focal spot is highly concentrated and the 1178 J, 527 nm near diffraction limited laser is achieved.
Coronavirus disease 2019 (COVID-19) is a newly emerged disease with various clinical manifestations and imaging features. The diagnosis of COVID-19 depends on a positive nucleic acid amplification test by real-time reverse transcription-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the clinical manifestations and imaging features of COVID-19 are non-specific, and nucleic acid test for SARS-CoV-2 can have false-negative results. It is presently believed that detection of specific antibodies to SARS-CoV-2 is an effective screening and diagnostic indicator for SARS-CoV-2 infection. Thus, a combination of nucleic acid and specific antibody tests for SARS-CoV-2 will be more effective to diagnose COVID-19, especially to exclude suspected cases.