To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a quasi-incompressible Navier–Stokes–Cahn–Hilliard (q-NSCH) diffuse interface model for two-phase fluid flows with variable physical properties that maintains thermodynamic consistency. Then, we couple the diffuse domain method with this two-phase fluid model – yielding a new q-NSCH-DD model – to simulate the two-phase flows with moving contact lines in complex geometries. The original complex domain is extended to a larger regular domain, usually a cuboid, and the complex domain boundary is replaced by an interfacial region with finite thickness. A phase-field function is introduced to approximate the characteristic function of the original domain of interest. The original fluid model, q-NSCH, is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the solid surface. We show that the q-NSCH-DD system converges to the q-NSCH system asymptotically as the thickness of the diffuse domain interface introduced by the phase-field function shrinks to zero ($\epsilon \rightarrow 0$) with $\mathcal {O}(\epsilon )$. Our analytic results are confirmed numerically by measuring the errors in both $L^{2}$ and $L^{\infty }$ norms. In addition, we show that the q-NSCH-DD system not only allows the contact line to move on curved boundaries, but also makes the fluid–fluid interface intersect the solid object at an angle that is consistent with the prescribed contact angle.
In this paper, we compute a phase field (diffuse interface) model of Cahn-Hilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids. The generalized Navier boundary condition proposed by Qian et al. [1] is adopted here. We discretize model equations using a continuous finite element method in space and a modified midpoint scheme in time. We apply a penalty formulation to the continuity equation which may increase the stability in the pressure variable. Two kinds of immiscible fluids in a pipe and droplet displacement with a moving contact line under the effect of pressure driven shear flow are studied using a relatively coarse grid. We also derive the discrete energy law for the droplet displacement case, which is slightly different due to the boundary conditions. The accuracy and stability of the scheme are validated by examples, results and estimate order.
A method is presented for the type synthesis of a class of parallel mechanisms having one-dimensional (1D) rotation based on the theory of Generalized Function sets (GF sets for short), which contain two classes. The type synthesis of parallel mechanisms having the first class GF sets and 1D rotation is investigated. The Law of one-dimensional rotation is given, which lays the theoretical foundation for the intersection operations of GF sets. Then the kinematic limbs with specific characteristics are designed according to the 2D and 3D axis movement theorems. Finally, several synthesized parallel mechanisms have been sketched to show the effectiveness of the proposed methodology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.