We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Evidence is largely limited regarding the extent to which abnormal behavioural profiles, including physical inactivity, sedentary behaviour and inadequate sleep duration, impact long-term health conditions in individuals with pre-existing depression.
Aims
To investigate the associations between accelerometer-derived daily movement behaviours and mortality in individuals with pre-existing depression.
Method
Between 2013 and 2015, a total of 10 914 individuals with pre-existing depression were identified from the UK Biobank through multiple sources including self-reported symptoms, records of antidepressant usage and diagnostic recording based on the 10th Revision of the International Classification of Diseases (ICD-10) codes F32–F33. These participants were subsequently followed up until 2021. Wrist-worn accelerometers were used for objective measurement of sleep duration, sedentary behaviour, moderate-to-vigorous physical activity (MVPA) and light physical activity (LPA) over a span of seven consecutive days.
Results
During a median follow-up of 6.9 years, 434 deaths occurred among individuals with pre-existing depression. We observed a U-shaped association between sleep duration and mortality in individuals with pre-existing depression, with the lowest risk occurring at approximately 9 h/day. Both MVPA and LPA exhibited an L-shaped pattern in relation to mortality, indicating that engaging in higher levels of physical activity was associated with lower risk of mortality in individuals with pre-existing depression, but the beneficial effect reached a plateau after 50 min/day for MVPA and 350 min/day for LPA. We found a positive association between sedentary time and mortality, and the risk apparently increased above 8 h/day. Moreover, substituting 1 hour/day of sedentary time with LPA or MVPA was significantly associated with a 12% (hazard ratio: 0.88, 95% CI: 0.83–0.94) and 24% (hazard ratio: 0.76, 95% CI: 0.61–0.94) lower risk of mortality, respectively.
Conclusions
Our study found the beneficial effect of adequate sleep duration, high levels of physical activity and short sedentary time on risk of mortality among individuals with pre-existing depression.
We consider linear-fractional branching processes (one-type and two-type) with immigration in varying environments. For $n\ge0$, let $Z_n$ count the number of individuals of the nth generation, which excludes the immigrant who enters the system at time n. We call n a regeneration time if $Z_n=0$. For both the one-type and two-type cases, we give criteria for the finiteness or infiniteness of the number of regeneration times. We then construct some concrete examples to exhibit the strange phenomena caused by the so-called varying environments. For example, it may happen that the process is extinct, but there are only finitely many regeneration times. We also study the asymptotics of the number of regeneration times of the model in the example.
We determine the characteristic polynomials of the matrices $[q^{\,j-k}+t]_{1\le \,j,k\le n}$ and $[q^{\,j+k}+t]_{1\le \,j,k\le n}$ for any complex number $q\not =0,1$. As an application, for complex numbers $a,b,c$ with $b\not =0$ and $a^2\not =4b$, and the sequence $(w_m)_{m\in \mathbb Z}$ with $w_{m+1}=aw_m-bw_{m-1}$ for all $m\in \mathbb Z$, we determine the exact value of $\det [w_{\,j-k}+c\delta _{jk}]_{1\le \,j,k\le n}$.
As a member of the Scathophagidae family, Scathophaga stercoraria (S. stercoraria) is widely distributed globally and is closely associated with animal feces. It is also a species of great interest to many scientific studies. However, its phylogenetic relationships are poorly understood. In this study, S. stercoraria was found in plateau pikas for the first time. The potential cause of its presence in the plateau pikas was discussed and it was speculated that the presence of S. stercoraria was related to the yak feces. In addition, 2 nuclear genes (18SrDNA and 28SrDNA), 1 mitochondrial gene (COI), and the complete mitochondrial genome of S. stercoraria were sequenced. Phylogenetic trees constructed based on 13 Protein coding genes (13PCGs), 18S and 28S rDNA showed that S. stercoraria is closely related to the Calliphoridae family; phylogenetic results based on COI suggest that within the family Scathophagidae, S. stercoraria is more closely related to the genus Leptopa, Micropselapha, Parallelomma and Americina. Divergence times estimated using the COI gene suggest that the divergence formation of the genus Scathophaga is closely related to changes in biogeographic scenarios and potentially driven by a combination of uplift of the Qinghai-Tibetan Plateau (QTP) and dramatic climate changes. These results provide valuable information for further studies on the phylogeny and differentiation of the Scathophaga genus in the future.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
In this chapter, differences between magnetic communication and electromagnetic wave-based communication are summarized and major advantages of magnetic communication are discussed, which provides a big picture of the applicable scenarios of magnetic communication. In addition, the physical circuit for magnetic communications is introduced. The fundamental performance metrics, such as path loss, bandwidth, capacity, and connectivity are discussed.
Magnetic communication is a novel physical communication technology. To connect a large number of magnetic communication devices, traditional networking protocols can be employed, but we need to make significant modifications on the physical layer to accommodate the special features of magnetic communication. For example, to access the communication medium, traditional carrier-sense multiple access or Zigbee can be adopted, but the magnetic communication has a short communication range, and the antennas of different devices may have substantial coupling, which can affect the communication performance. To address this issue, we need dedicated scheduling algorithms to reduce mutual couplings among coils and increase the network throughput. In this chapter, we first introduce a complete magnetic communication network stack. Then, we show the unique features of magnetic communication at the network level. After that, we introduce the scheduling algorithms for magnetic communication networks.
We study the connectivity of a large-scale ad hoc MI networks, whose nodes are randomly located with randomly deployed MI antennas. The pathloss model we use here considers the effect of MI noise via a signal-to-noise ratio threshold instead of magnetic signal strength. In addition, the effects of carrier frequency and eddy current both are considered for the determination of signal coverage. To study the MI coverage and connectivity under such assumptions, we develop a Lambert W-function-based integral method to evaluate the effective coverage space and the expected node degree of an MI node. The probability of having no isolated node in the network is further derived to estimate the required parameters for an almost surely connected network. Passive MI waveguide is not considered in this chapter. We also performed carrier frequency optimizations.
The so-called magnetic communication makes use of the time-varying magnetic field produced by the transmitting antenna, so that the receiving antenna receives the energy signal by mutual inductance. Research studies show that the penetrability of a magnetic communication system depends on the magnetic permeability of the medium. Because the magnetic permeability of the layer, rock, ice, soil, and ore bed is close to that of the air, channel conditions have less effects on magnetic transmission than electric transmission. Therefore, the communication network based on deep-penetrating MI can expand the perception ability and sensing range of information technology effectively, which can be applied to complex environments such as underground, underwater, tunnel, mountain, rock, ice, and forest. We conclude that the network construction of IoT based on magnetic communication is of great value and can be regarded as one of the reliable technologies to improve the connectivity of a wireless network.
One of the important peculiarities of MI communications is the use of magnetic antennas that can deliver information by using inductive coupling instead of radiation. The magnetic coupling is constrained in the near field, which is more secure since it is not easy to be detected. Moreover, magnetic fields have better penetration efficiency than electric fields. A magnetic antenna is more robust to environment changes than its electric counterpart. In this chapter, we first introduce the fundamentals of antennas to show the difference between magnetic antennas and the widely used electric antennas to gradually narrow our discussion from a big picture. We present the advantages of magnetic antennas and their applicable conditions. Also, we introduce the signal transmission techniques and channel characteristics for the single-input-single-output (SISO) system. Finally, we discuss the multiple-antenna MI system with different antenna placement strategies, which is more reliable and efficient than the SISO system.
In this chapter, several kinds of MI-based applications are introduced. Specifically, the MI-based localization system is one of the most widely used and mature applications of the MI-based techniques. Thus, this chapter first describes several typical MI localization applications, such as the motion capture system, pipeline position systems, and fusion localization with other techniques (such as inertial measurement correction). Second, we summarize some MI-based communication applications for IoT, such as radio frequency identification, through-the-earth communication and underwater communication.
In this chapter, the network throughput and capacity are derived and analyzed. The deployment strategies for MI networks are first introduced. Then, we present the typical network topologies for MI networks. After that, we compare the performance of different network topologies regarding congestion, node failure, and power consumption, among others.