We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the vertical coherence of the pressure structure and its interaction with velocity fields is critical for elucidating the mechanisms of acoustic generation and radiation in hypersonic turbulent boundary layers. This study employs linear coherence analysis to examine the self-similar coherent structures in the velocity and pressure fields within a Mach 6 hypersonic boundary layer, considering a range of wall-to-recovery temperature ratios. The influence of wall cooling on the geometric characteristics of these structures, such as inclination angles and three-dimensional aspect ratios, is evaluated. Specifically, the streamwise velocity exhibits self-similar coherent structures with the streamwise/wall-normal aspect ratio ranging from 16.5 to 38.7, showing a linear increases with decreasing wall temperatures. Similar linear dependence between the streamwise/wall-normal aspect ratio and the wall temperatures are observed for the Helmholtz-decomposed streamwise velocity and the pressure field. In terms of velocity–pressure coupling, the solenoidal component exhibits stronger interactions with the pressure fields in the near-wall region, while the dilatational component has stronger interactions with the pressure field at large scales with the increase of height. Such coupling generally follows the distance-from-the-wall scaling of the pressure field, except in cooled wall cases. Using the linear stochastic estimation, the pressure field across the boundary layer is predicted by inputting the near-wall pressure/velocity signal along with the transfer kernel. The result demonstrates that near-wall pressure signals provide the most accurate description of the pressure field in higher regions of the boundary layer. As wall-mounted sensors can measure near-wall pressure fluctuations, this study presents a potential approach to predict the off-wall pressure field correlated with the near-wall structures based on wall-pressure measurements.
Political connections have been tested for correlation with outward foreign direct investment (OFDI). Both theoretical rationale and research evidence are mixed. To advance this debate, we conceptualize political connections as a dual-dimensional construct and hypothesize the differential effects of the breadth and the depth of political connections on OFDI. Employing a sample of 2,374 Chinese listed firms, encompassing 15,647 firm-year observations from 2008 to 2016, we find evidence supporting our hypotheses: (1) the breadth of political connections reduces the likelihood of a firm engaging in OFDI and (2) greater depth of political connections increases the likelihood of a firm engaging in the OFDI. Thus, we advise firms to exercise caution when adopting corporate political strategies for internationalization in general and OFDI in particular.
Fine particulate matter (PM2·5) is a known risk factor for heart failure (HF), while plant-based dietary patterns may help reduce HF risk. This study examined the combined impact of PM2·5 exposure and a plant-based diet on HF incidence. A total of 190 092 participants from the UK Biobank were included in this study. HF cases were identified through linkage to the UK National Health Services register, with follow-up lasting until October 2022 in England, August 2022 in Scotland and May 2022 in Wales. Annual mean PM2·5 concentration was obtained using a land use regression model, while the healthful plant-based diet index (hPDI) was calculated using the Oxford WebQ tool based on two or more 24-hour dietary assessments of seventeen major food groups. Cox proportional hazard models assessed the associations of PM2·5 and hPDI with HF risk, and interactions were evaluated on additive and multiplicative scales. During a median of 13·4-year follow-up, 4351 HF cases were recorded. Participants in the highest PM2·5 tertile had a 23 % increased HF risk (hazard ratio: 1·23, 95 % CI: 1·14, 1·32) compared with those in the lowest tertile. Moderate or high hPDI was associated with reduced HF risk relative to low hPDI. The lowest HF risk was observed in individuals with high hPDI and low PM2·5 exposure, underscoring the protective role of a plant-based diet, particularly in areas with lower PM2·5 levels. A healthy plant-based diet may mitigate HF risk, especially in populations exposed to lower PM2·5 levels.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
An increasing number of observational studies have reported associations between frailty and mental disorders, but the causality remains ambiguous.
Aims
To assess the bidirectional causal relationship between frailty and nine mental disorders.
Method
We conducted a bidirectional two-sample Mendelian randomisation on genome-wide association study summary data, to investigate causality between frailty and nine mental disorders. Causal effects were primarily estimated using inverse variance weighted method. Several secondary analyses were applied to verify the results. Cochran's Q-test and Mendelian randomisation Egger intercept were applied to evaluate heterogeneity and pleiotropy.
Results
Genetically determined frailty was significantly associated with increased risk of major depressive disorder (MDD) (odds ratio 1.86, 95% CI 1.36–2.53, P = 8.1 × 10−5), anxiety (odds ratio 2.76, 95% CI 1.56–4.90, P = 5.0 × 10−4), post-traumatic stress disorder (PTSD) (odds ratio 2.56, 95% CI 1.69–3.87, P = 9.9 × 10−6), neuroticism (β = 0.25, 95% CI 0.11–0.38, P = 3.3 × 10−4) and insomnia (β = 0.50, 95% CI 0.25–0.75, P = 1.1 × 10−4). Conversely, genetic liability to MDD, neuroticism, insomnia and suicide attempt significantly increased risk of frailty (MDD: β = 0.071, 95% CI 0.033–0.110, P = 2.8 × 10−4; neuroticism: β = 0.269, 95% CI 0.173–0.365, P = 3.4 × 10−8; insomnia: β = 0.160, 95% CI 0.141–0.179, P = 3.2 × 10−61; suicide attempt: β = 0.056, 95% CI 0.029–0.084, P = 3.4 × 10−5). There was a suggestive detrimental association of frailty on suicide attempt and an inverse relationship of subjective well-being on frailty.
Conclusions
Our findings show bidirectional causal associations between frailty and MDD, insomnia and neuroticism. Additionally, higher frailty levels are associated with anxiety and PTSD, and suicide attempts are correlated with increased frailty. Understanding these associations is crucial for the effective management of frailty and improvement of mental disorders.
In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with reshock through three-dimensional double-layer swirling vortex rings. The rapid transition in RMI with reshock has an essential influence on the evolution of supernovas and the ignition of inertial confinement fusion, which has been confirmed in numerical simulations and experiments in shock-tube and high-energy-density facilities over the past few years. Vortex evolution has been confirmed to dominate the late-time nonlinear development of the perturbed interface. However, few studies have investigated the three-dimensional characteristics and nonlinear interactions among vortex structures during the transition to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is hypothesized to induce successive large-scale strain fields, which are the main driving sources for rapid development. The three-dimensional effect is reflected in the presence of local swirling motion in the azimuthal direction, and it decreases the translation velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to describe the development process of RMI with reshock, e.g. vorticity deposited by the reshock, formation of the coexistence of the co-rotating and counter-rotating vortices, iterative cascade under the amplification of the strain fields and viscous dissipation to internal energy. This provides theoretical suggestions for designing practical applications, such as the estimation of the hydrodynamic instability and mixing during the late-time acceleration phase of the inertial confinement fusion.
Biped wall-climbing robots (BWCRs) serve as viable alternatives to human workers for inspection and maintenance tasks within three-dimensional (3D) curtain wall environments. However, autonomous climbing in such environments presents significant challenges, particularly related to localization and navigation. This paper presents a pioneering navigation framework tailored for BWCRs to navigate through 3D curtain wall environments. The framework comprises three essential stages: Building Information Model (BIM)-based map extraction, 3D climbing path planning (based on our previous work), and path tracking. An algorithm is developed to extract a detailed 3D map from the BIM, including structural elements such as walls, frames, and ArUco markers. This generated map is input into a proposed path planner to compute a viable climbing motion. For path tracking during actual climbing, an ArUco marker-based global localization method is introduced to estimate the pose of the robot, enabling adjustments to the target foothold by comparing desired and actual poses. The conducted experiments validate the feasibility and efficacy of the proposed navigation framework and associated algorithms, aiming to enhance the autonomous climbing capability of BWCRs.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.
As the global population continues to age, effective management of longevity risk becomes increasingly critical for various stakeholders. Accurate mortality forecasting serves as a cornerstone for addressing this challenge. This study proposes to leverage Kernel Principal Component Analysis (KPCA) to enhance mortality rate predictions. By extending the traditional Lee-Carter model with KPCA, we capture nonlinear patterns and complex relationships in mortality data. The newly proposed KPCA Lee-Carter algorithm is empirically tested and demonstrates superior forecasting performance. Furthermore, the model’s robustness was tested during the COVID-19 pandemic, showing that the KPCA Lee-Carter algorithm effectively captures increased uncertainty during extreme events while maintaining narrower prediction intervals. This makes it a valuable tool for mortality forecasting and risk management. Our findings contribute to the growing body of literature where actuarial science intersects with statistical learning, offering practical solutions to the challenges posed by an aging world population.
Choline and betaine are important in the body, from cell membrane components to methyl donors. We aimed to investigate trends in dietary intake and food sources of total choline, individual choline forms and betaine in Chinese adults using data from the China Health and Nutrition Survey (CHNS) 1991–2011, a prospective cohort with a multistage, random cluster design. Dietary intake was estimated using three consecutive 24-h dietary recalls in combination with a household food inventory. Linear mixed-effect models were constructed using R software. A total of 11 188 men and 12 279 women aged 18 years or older were included. Between 1991 and 2011, total choline intake increased from 219·3 (95 % CI 215·1, 223·4) mg/d to 269·0 (95 % CI 265·6, 272·5) mg/d in men and from 195·6 (95 % CI 191·8, 199·4) mg/d to 240·4 (95 % CI 237·4, 243·5) mg/d in women (both P-trends < 0·001). Phosphatidylcholine was the major form of dietary choline, and its contribution to total choline increased from 46·9 % in 1991 to 58·8 % in 2011. Cereals were the primary food source of total choline before 2000, while eggs had ranked at the top since 2004. Dietary betaine intake was relatively steady over time with a range of 134·0–151·5 mg/d in men (P-trend < 0·001) and 111·7–125·3 mg/d in women (P-trend > 0·05). Chinese adults experienced a significant increase in dietary intake of choline, particularly phosphatidylcholine during 1991–2011 and animal-derived foods have replaced plant-based foods as the main food sources of choline. Betaine intake remained relatively stable over time. Future efforts should address the health effects of these changes.
Previous animal studies found beneficial effects of choline and betaine on maternal glucose metabolism during pregnancy, but few human studies explored the association between choline or betaine intake and incident gestational diabetes mellitus (GDM). We aimed to explore the correlation of dietary choline or betaine intake with GDM risk among Chinese pregnant women. A total of 168 pregnant women with GDM cases and 375 healthy controls were enrolled at the Seventh People’s Hospital in Shanghai during their GDM screening at 24–28 gestational weeks. A validated semi-quantitative FFQ was used to estimate choline and betaine consumption through face-to-face interviews. An unconditional logistic regression model was adopted to examine OR and 95 % CI. Compared with the controls, those women with GDM incidence were likely to have higher pre-pregnancy BMI, be older, have more parities and have higher plasma TAG and lower plasma HDL-cholesterol. No significant correlation was observed between the consumption of choline or betaine and incident GDM (adjusted OR (95 % CI), 0·77 (0·41, 1·43) for choline; 0·80 (0·42, 1·52) for betaine). However, there was a significant interaction between betaine intake and parity on the risk of GDM (Pfor interaction = 0·01). Among those women with no parity history, there was a significantly inverse correlation between betaine intake and GDM risk (adjusted OR (95 % CI), 0·25 (0·06, 0·81)). These findings indicated that higher dietary betaine intake during pregnancy might be considered a protective factor for GDM among Chinese women with no parity history.
The 10-item Montgomery–Åsberg Depression Rating Scale (MADRS) measures different dimensions of depression symptomatology. Digital traits may generate deeper understanding of the MADRS subscales and provide insights about depression symptomatology.
Objectives
To identify digital traits that predict specific MADRS subscales and ascertain which digital traits are important for which MADRS subscales.
Methods
During a Phase II decentralised clinical trial in major depressive disorder (MDD), patients completed the MADRS and used AiCure (LLC, New York, NY, USA), a smartphone application, to complete image description tasks at baseline. Digital measurements identified from the literature as relevant to MDD symptomatology were conducted using audio and video data derived from the image description tasks. Digital measurements included speech (rate, sentiment and first-person singular pronouns), vocal acoustics (intensity, pause fraction and fundamental frequency), facial expressivity (regional facial movement) and head pose (Euclidean and angular head movement). Digital traits analysis involved data pre-processing followed by machine learning (ML) using Elastic Net, Decision Tree, and Random Forest models; model performance was evaluated using 5-fold cross-validation and mean absolute error (MAE). Important digital traits were calculated by percentage change in MAE after permuting a specific variable. Important digital traits for the MADRS Apparent Sadness subscale score were mapped to defined, interpretable domains.
Results
The ML model predictions varied for different MADRS subscales (Table). Overall, Elastic Net and Random Forest models outperformed Decision Tree across all subscales scores other than suicidal thoughts. Half of the literature-based digital traits contributed to the prediction of ≥1 MADRS sadness sub-scale score. The important digital traits for the Apparent Sadness subscale score could be mapped to 4 domains (Figure); this aligned with findings from the literature.
Image:
Image 2:
Conclusions
Digital traits collected from patients with MDD were able to predict certain MADRS subscales better than others.
Funding
Boehringer Ingelheim.
Disclosure of Interest
Z. Zhu Employee of: Boehringer Ingelheim Pharmaceuticals, Inc., Y. Wu Employee of: Boehringer Ingelheim Pharmaceuticals, Inc., J. Seidel Employee of: Boehringer Ingelheim International GmbH, D. Roy Employee of: Boehringer Ingelheim Pharmaceuticals, Inc., E. Salzmann Employee of: Boehringer Ingelheim International GmbH
The Weng'an Biota from the Ediacaran Doushantuo Formation in Guizhou Province, southwestern China, is known for its three-dimensionally phosphatized acritarchs, multicellular algae, and embryo-like animal fossils. Among these diverse microfossils, acanthomorphic acritarchs have played a significant role in the biostratigraphic subdivision and correlation of the lower-middle Ediacaran System. However, most previous studies on the biostratigraphy of the Doushantuo Formation in the Weng'an area have focused on large acanthomorphic acritarchs (LAAs, vesicle diameter >200 μm), whereas the smaller acanthomorphic acritarchs (SAAs, vesicle diameter <100 μm) from the Weng'an Biota have been largely overlooked. In this study, we examined >500 thin sections and discovered a large number of well-preserved, small (<100 μm) and medium-sized acanthomorphic acritarchs (MAAs, vesicle diameter ranging 100–200 μm). In total, we have identified SAAs in four genera and six species (Tanarium conoideum Kolosova, 1991, emend. Moczydłowska et al., 1993; Tanarium elegans Liu et al., 2014; Mengeosphaera membranifera Shang, Liu, and Moczydłowska, 2019; Mengeosphaera minima Liu et al., 2014; Estrella recta Liu and Moczydłowska, 2019; Variomargosphaeridium gracile Xiao et al., 2014), as well as two types of MAAs (Tanarium tuberosum Moczydłowska, Vidal, and Rudavskaya, 1993, emend. Moczydłowska, 2015; Weissiella cf. W. grandistella Vorob'eva, Sergeev, and Knoll, 2009, emend. Liu and Moczydłowska, 2019). This updated acritarch assemblage of the Weng'an Biota is valuable for correlating the Ediacaran Doushantuo Formation between the Weng'an and Yangtze Gorges areas. It also serves as a tool to test the proposed acritarch biozones in Ediacaran formations of South China and other localities, including Australia, Siberia, and the East European Platform.
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Shock waves are of great interest in many fields of science and engineering, but the mechanisms of their formation, maintenance and dissipation are still not well understood. While all transport processes existing in a shock wave contribute to its compression and irreversibility, they are not of equal importance. To figure out the roles of viscosity and heat conduction in shock transition, the existence of smooth shock solutions and the counter-intuitive entropy overshoot phenomenon (the specific entropy is not monotonically increasing and exhibits a peak inside the shock front) are theoretically and numerically investigated, with emphasis on the effects of viscosity and heat conduction. Instead of higher-order hydrodynamics, the Navier–Stokes formalism is employed for its stability and simplicity. Supplemented with nonlinear thermodynamically consistent constitutive relations, the Navier–Stokes equations are adequate to demonstrate the general nature of shock profiles. It is found that heat conduction cannot sustain strong shocks without the presence of viscosity, while viscosity can maintain smooth shock transition at all strengths, regardless of heat conduction. Hence, the critical role in shock compression is played by viscosity rather than heat conduction. Nevertheless, the dispensability of heat conduction would not compromise its essential role in the emergence of an entropy peak. It is the entropy flux resulting from heat conduction that neutralises the positive entropy production and thus prevents the decreasing entropy from violating the second law of thermodynamics. This mechanism of entropy overshoot has not been addressed previously in the literature and is revealed using the entropy balance equation.
This research aimed to print realistically detailed and magnified three-dimensional models of the inner ear, specifically focusing on visualising its complex labyrinth structure and functioning simulation.
Methods
Temporal bone computed-tomography data were imported into Mimics software to construct an initial three-dimensional inner-ear model. Subsequently, the model was amplified and printed with precision using a three-dimensional printer. Five senior attending physicians evaluated the printed model using a Likert scale to gauge its morphological accuracy, clinical applicability and anatomical teaching value.
Results
The printed inner-ear model effectively demonstrated the intricate internal structure. All five physicians agreed that the model closely resembled the real inner ear in shape and structure, and simulated certain inner-ear functions. The model was considered highly valuable for understanding anatomical structure and disorders.
Conclusion
The three-dimensionally printed inner-ear model is highly simulated and provides a valuable visual tool for studying inner-ear anatomy and clinical teaching, benefiting otologists.
In this work, smoothed particle hydrodynamics (SPH) is employed to investigate the segregation evolution in granular flows. We first provide the Lagrangian description-based governing equations, including the linear momentum conservation and the segregation–diffusion equation. Then the hybrid continuum surface reaction scheme is introduced to formulate the concentration-related inhomogeneous Neumann boundary condition on the free and wall surfaces. We follow a two-stage strategy to advance boundary particle searching and normal direction identification. Moreover, $C^1$ consistency is considered based on the Taylor series to obtain accurate segregation flux gradient along the boundary. Our SPH model is validated with a shear box experiment. The model is then applied to investigate the segregation mechanism in bidisperse-sized granular flows in a rotating drum.