We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The propagation of multiple ultraintense femtosecond lasers in underdense plasmas is investigated theoretically and numerically. We find that the energy merging effect between two in-phase seed lasers can be improved by using two obliquely incident guiding lasers whose initial phase is $\pi$ and $\pi /2$ ahead of the seed laser. Particle-in-cell simulations show that due to the repulsion and energy transfer of the guiding laser, the peak intensity of the merged light is amplified by more than five times compared to the seed laser. The energy conversion efficiency from all incident lasers to the merged light is up to approximately 60$\%$. The results are useful for many applications, including plasma-based optical amplification, charged particle acceleration and extremely intense magnetic field generation.
Drawing upon research on the visual complexity effect and Dual Coding Theory, this research examined the influence of character properties and the role of individual learner differences in Chinese character acquisition. The participants included 248 Chinese-speaking children in grades 1 through 3 in Taiwan. The study extended the scope of previous research by concurrently examining two types of cognitive processing: activation of verbal codes with nonverbal codes (activation of word form) and activation of nonverbal codes with verbal codes (activation of meaning). Results revealed the asymmetry in the two types of cognitive processing. Regarding the influence of character properties, while characters with less visual complexity and with radical presence are generally more acquirable, the interaction between these two properties was only present in the activation of meaning but not the activation of word form. Individual differences contributing to character acquisition did not mirror each other in the two directions of cognitive processing either. The contribution of radical awareness and visual skills remained the same across grade levels in the activation of meaning but varied with grades and the properties of the characters in the activation of word form. The methodological and theoretical contributions of the study were discussed.
The neural correlates underlying late-life depressive symptoms and cognitive deterioration are largely unclear, and little is known about the role of chronic physical conditions in such association. This research explores both concurrent and longitudinal associations between late-life depressive symptoms and cognitive functions, with examining the neural substrate and chronic vascular diseases (CVDs) in these associations.
Methods
A total of 4109 participants (mean age = 65.4, 63.0% females) were evaluated for cognitive functions through various neuropsychological assessments. Depressive symptoms were assessed by the Geriatric Depression Scale and CVDs were self-reported. T1-weighted magnetic resonance imaging (MRI), diffusion tensor imaging, and functional MRI (fMRI) data were acquired in a subsample (n = 791).
Results
Cognitively, higher depressive symptoms were correlated with poor performance across all cognitive domains, with the strongest association with episodic memory (r = ‒0.138, p < 0.001). Regarding brain structure, depressive symptoms were negatively correlated with thalamic volume and white matter integrity. Further, white matter integrity was found to mediate the longitudinal association between depressive symptoms and episodic memory (indirect effect = −0.017, 95% CI −0.045 to −0.002) and this mediation was only significant for those with severe CVDs (β = −0.177, p = 0.008).
Conclusions
This study is one of the first to provide neural evidence elucidating the longitudinal associations between late-life depressive symptoms and cognitive dysfunction. Additionally, the severity of CVDs strengthened these associations, which enlightens the potential of managing CVDs as an intervention target for preventing depressive symptoms-related cognitive decline.
This study investigates the effects of retrieval schedules on the acquisition of second language (L2) collocations. Chinese learners of English first studied 36 target verb-noun collocations using flashcards and form-meaning matching practice. Subsequently, the participants practiced retrieving the target collocations from memory, following either a massed (consecutive) or spaced schedule. After each retrieval attempt, corrective feedback was provided. The acquisition of L2 collocations was measured by near-immediate and 1-week delayed posttests that assessed explicit knowledge with an offline form recall task, automatized explicit knowledge using an online acceptability judgment task, and implicit knowledge with an online collocation priming (lexical decision) task. Results showed equal learning effects of massed and spaced retrieval at both posttests of explicit knowledge and the near-immediate posttest of automatized explicit knowledge. The spacing effect was observed for the implicit knowledge across the two posttests and the automatized explicit knowledge at the delayed posttest.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Warm ice at temperatures close to the pressure melting point is often encountered in deep ice-core drilling. The heat generated by rotary cutting can melt ice chips, which seriously threatens the safety of drilling if the chips refreeze on the drill bit or barrel. Lowering the cutting heat is an effective method to reduce the melting of ice chips. In this study, a general theoretical model was established based on heat transfer theory and the cutting mechanism to calculate and analyze the cutter temperature during the circulation of the drilling fluid. The model was validated by a series of experiments, which demonstrated reasonable agreement between the calculated data and experimental results, with a maximum error of <16%. The factors that contribute to the rise in the cutter temperature during warm ice drilling were investigated. Results suggest that the drilling fluid has excellent cooling performance, and its type and flow rate have minimal impact on the cutter temperature. To mitigate the cutter temperature rise, maximizing the rake angle and thermal conductivity of the cutter, while minimizing the rotation speed of the drill bit, cutting depth, cutter width and friction coefficient between the ice and cutter is recommended.
With the recent outbreak of COVID-19, evaluating the epidemic risk appears to be a pressing issue of global concern and one of the major challenges recently. In the fight against pandemics, the ability to understand, model, and forecast the transmission dynamics of infectious diseases plays a crucial role. This paper provides an overview of foundational compartment models and introduces the Susceptible-Exposed-Infected-Containing-3-Substates-Recovered-Dead model to study the dynamics of COVID-19. A meticulous data calibration procedure is employed to study the evolution trend of an actual pandemic using real-world data from Victoria, Australia. Additionally, the paper discusses innovative applications of epidemic models to the insurance industry, which are currently under investigation. Through the use of the newly developed analytically tractable model, insurance companies are able to determine fair premium levels during an outbreak. Moreover, the paper provides practical guidance for insurance companies by examining the variation in reserve levels over time.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
Flexible cables in cable-driven parallel robots (CDPRs) are easy to be excited and vibrate. Cable vibration will react on the end-effector, causing attitude deviation of the end-effector. The main objective of this study is to accurately model axially moving flexible cables and characterize the dynamic behaviors of associated compliant CDPRs. Firstly, a model for transverse vibration of the axially moving length-variable cable is developed. On this basis, an original nonlinear dynamic model of the CDPRs able to capture the vibration of the cables and the dynamics of the end-effector is proposed. Secondly, the frequency–amplitude relationship of the CDPR is obtained. Moreover, the significance of the excitation effect caused by the axially moving length-variable cables is demonstrated, by comparing the results with and without excitation effect at different frequencies. It turns out that, as the oscillation frequency of the end-effector increases, the end-effector and cables exhibit the dynamics process from steady state to unstable large-amplitude vibration and finally to stable small-amplitude vibration. This indicates that the dynamics of the CDPR exhibit non-linear characteristics, due to the influence of flexible cables. Finally, the proposed dynamic model of compliant CDPRs is validated by experiments performed in the laboratory.
Childhood maltreatment exerts long-term consequences on sleep health, and different subtypes could constitute maltreatment patterns. However, how naturally occurring patterns of childhood maltreatment affect subsequent sleep quality and the underlying mechanisms remain relatively unclear, particularly in youths undergoing a transitional period and in the Chinese cultural context. In this study, we identified childhood maltreatment patterns and explored how these patterns predicted sleep problems through differential emotion regulation strategies. We tracked 1929 Chinese youths (Mage = 18.49; 63.1% females) for one year. Three latent profiles were identified: low maltreatment exposure, high physical and emotional maltreatment, and high sexual abuse. Compared with “low maltreatment exposure,” youths in “high physical and emotional maltreatment” used fewer cognitive reappraisal strategies, and those in “high sexual abuse” used more expressive suppression, and then leading to more sleep problems. This study reveals new insights into the patterns of childhood maltreatment in Chinese youths and implies that individuals exposed to sexual abuse or a combination of physical and emotional maltreatment experience sleep problems through the impairment of differential emotion regulation processes. It also highlights the necessity of setting differential targets on emotion regulation strategies for distinct groups of maltreatment and considering the co-occurrence of physical and emotional maltreatment.
Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.
This paper studies the open-loop equilibrium strategies for a class of non-zero-sum reinsurance–investment stochastic differential games between two insurers with a state-dependent mean expectation in the incomplete market. Both insurers are able to purchase proportional reinsurance contracts and invest their wealth in a risk-free asset and a risky asset whose price is modeled by a general stochastic volatility model. The surplus processes of two insurers are driven by two standard Brownian motions. The objective for each insurer is to find the equilibrium investment and reinsurance strategies to balance the expected return and variance of relative terminal wealth. Incorporating the forward backward stochastic differential equations (FBSDEs), we derive the sufficient conditions and obtain the general solutions of equilibrium controls for two insurers. Furthermore, we apply our theoretical results to two special stochastic volatility models (Hull–White model and Heston model). Numerical examples are also provided to illustrate our results.
An active lifestyle can mitigate physical decline and cognitive impairment in older adults. Regular walking exercises for older individuals result in enhanced balance and reduced risk of falling. In this article, we present a study on gait monitoring for older adults during walking using an integrated system encompassing an assistive robot and wearable sensors. The system fuses data from the robot onboard Red Green Blue plus Depth (RGB-D) sensor with inertial and pressure sensors embedded in shoe insoles, and estimates spatiotemporal gait parameters and dynamic margin of stability in real-time. Data collected with 24 participants at a community center reveal associations between gait parameters, physical performance (evaluated with the Short Physical Performance Battery), and cognitive ability (measured with the Montreal Cognitive Assessment). The results validate the feasibility of using such a portable system in out-of-the-lab conditions and will be helpful for designing future technology-enhanced exercise interventions to improve balance, mobility, and strength and potentially reduce falls in older adults.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Prolonged parturition duration has been widely demonstrated to be a risk factor for incidence of stillbirth. This study evaluated the supply of dietary fibre on the parturition duration, gut microbiota and metabolome using sows as a model. A total of 40 Yorkshire sows were randomly given diet containing normal level of dietary fibre (NDF, 17·5 % dietary fibre) or high level of dietary fibre (HDF, 33·5 % dietary fibre). Faecal microbiota profiled with 16S rRNA amplicon sequencing, SCFA and metabolome in the faeces and plasma around parturition were compared between the dietary groups. Correlation analysis was conducted to further explore the potential associations between specific bacterial taxa and metabolites. Results showed that HDF diet significantly improved the parturition process as presented by the shorter parturition duration. HDF diet increased the abundance of the phyla Bacteroidetes and Synergistetes and multiple genera. Except for butyrate, SCFA levels in the faeces and plasma of sows at parturition were elevated in HDF group. The abundances of fifteen and twelve metabolites in the faeces and plasma, respectively, markedly differ between HDF and NDF sows. These metabolites are involved in energy metabolism and bacterial metabolism. Correlation analysis also showed associations between specific bacteria taxa and metabolites. Collectively, our study indicates that the improvement of parturition duration by high fibre intake in late gestation is associated with gut microbiota, production of SCFA and other metabolites, potentially serving for energy metabolism.
Automated commonsense reasoning (CR) is essential for building human-like AI systems featuring, for example, explainable AI. Event calculus (EC) is a family of formalisms that model CR with a sound, logical basis. Previous attempts to mechanize reasoning using EC faced difficulties in the treatment of the continuous change in dense domains (e.g. time and other physical quantities), constraints among variables, default negation, and the uniform application of different inference methods, among others. We propose the use of s(CASP), a query-driven, top-down execution model for Predicate Answer Set Programming with Constraints, to model and reason using EC. We show how EC scenarios can be naturally and directly encoded in s(CASP) and how it enables deductive and abductive reasoning tasks in domains featuring constraints involving both dense time and dense fluents.