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OSCILLATORY PROPERTIES OF THE SOLUTIONS
OF LINEAR EQUATIONS OF NEUTRAL TYPE

D.D. BAINOV, A.D. MYSHKIS AND A.I. ZAHARIEV

In this paper the oscillatory and asymptotic properties of solutions of the equation

( x(t - .)*•(.) J + / x(t - s)dv(s) = 0,

are investigated where S = ±1 , r > 0, <r > 0, the functions r(«) and f(«) are non-
decreasing and f(a-) > f(0) = r(0) = 0.

The results of the investigation of the oscillatory and asymptotic properties of
functional differential equations of neutral type, besides being of independent theoretical
interest, have numerous important practical applications. Some examples of real objects
simulated by equations of neutral type are given in [3, 7, 8]. We shall note that in
comparison with the equations with a deviating argument considerably fewer results
have been obtained about equations of neutral type. For the linear case oscillatory
properties of the solutions in the case of one constant delay are given in [4 - 6] and for
distributed delay in [2]. Oscillatory and asymptotic results on non-linear equations of
neutral type have been obtained in [1, 12, 14, 15]. We note that the oscillatory and
asymptotic properties of linear equations and systems of delaying type with distributed
delay have been studied in detail in [11].

In the present paper the oscillatory and asymptotic properties of the equation

(1) j t (x(t) + S £ x(t - «)dr(*)) + £ x(t - s)df(s) = 0,

are investigated where £ = ±1, T > 0, a > 0, the function r and f are non-decreasing
and f(cr) > f(0) = r(0) = 0. The results obtained in the paper generalise some of the
assertions proved in [5].
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256 D.D. Bainov, A.D. Myshkis and A.I. Zahariev [2]

DEFINITION 1: A function x : [tx, oo) —> R is called a regular solution of equation

(1) if

x ec[tx,oo),

(t H-> x(t) + 6 I x(t- s)dr{s)) £ C1 [tx + a, oo),
V Jo I

a : = max(r, a),

x satisfies equation (1) for almost all t ^ tx + a and

sup \x(s)\ > 0 for t > tx + a.
j£[t,oo)

DEFINITION 2: We say t h a t a property Q(t) is ultimately satisfied if it is satisfied
for all sufficiently large values of t.

DEFINITION 3 : We shall call a regular solution x(t) of equation (1) non-oscillating
if it. is ei ther ul imately non-negat ive or ult imately non-positive. Otherwise we shall call
the solution x(t) oscillating. We shall denote the set of all ul t imatley non-negative
solutions of equat ion (1) by J7+ .

Let x be a solution of equat ion (1) and define the sequence of functions

/ N x k { t ) = x f c _ i ( < ) + S I x k _ ! { t - s ) d r ( s ) , t £ [ t x + k r , o o ) ,
(2) Jo

x o ( t ) = x ( t ) , < € [ t x , o o ) , k = 1 , 2 , . . . .

It is immediately verified by induction with respect to k that each function xu is
a solution of equation (1) and from the equality

(3) a;j.(f) = — / xj ._i(t — s)dr(s), t £ [tx -{- (k — 1 ) T , O O ) , & = 1 , 2 , . . .
Jo

it follows that x € Ck [tx + ka , oo).

We distinguish the following subcases of choices of 8 and r(r) for equation (1):

(i) « = + l ;
(ii) 5 = - l , r ( r ) < l ;

(iii) 6 = -l,r(r) = 1;

(iv) « = - l , r ( T ) > l .

LEMMA 1. Let i e f i + .

Then in cases (i)-(iii) the function Xk are ultimately non-increasing, xu. G
x-k(oo) = 0, k = 1, 2 , . . . . In cas

•easing and ( — 1) Xfc(oo) = oo, k

are ult imately strictly monotone.

and Xk(oo) = 0, fc = 1 , 2 , . . . . In case (iv) the function ( — 1) £fc are ultimately non-

decreasing and ( — 1) Xfc(oo) = oo, k = 1 ,2 , . . . . For k ^ 2 in all cases the functions
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PROOF: From equation (3) it follows that all functions xk, k = 1, 2 , . . . are regular

and ultimately monotone solutions of equation (1) and, moreover, that x\ is a non-

increasing function. We shall prove that .-Cfc(oo) £ {—oo, 0, oo}, A; = 1, 2 , . . . .

If we suppose that this is not true, then substituting xk{t) into the equation and

integrating, we obtain the relation

xk{t) +6 I xk(t - s)dr(s) = -xk(oo)f(<r)t + 0(0, (< -» oo),
Jo

which implies that the solution xk is unbounded which contradicts our assumption.

From equation (2) it follows that if Xj(oo) = 0, then xjt(oo) = 0, k ^ 1 as well

and in view of equation (3) we conclude that the functions xk, k ^ 1 are ultimately

non-increasing and xk £ f2+ for k ^ 1.

If we have case (i), then from equation (2) it follows that X\ £ fi+ , hence Xi(oo) =

0.

Suppose that in cases (ii) or (iii) the relation xi(oo) = —oo holds.

Then sup.r(<) = oo and for any sufficiently large number 7 £ R there exists a

point / 7 > tx such that x(<7) = 7 , x(t) < 7 , t £ [tx, ty) and, moreover, we have

lim <-. = 00.
7—00

Hence equation (2) implies the inequaltiy

(4) Xl(iy) = x(t-y) - I x(ty - s)dr(s) > 7 - / Jdr{s) = 7[1 - r(r)} > 0,

Jo Jo

which contradicts the assumption that xi(oo) = —00, so xi(oo) = 0 in cases (ii) and

(iii) as well.

Consider case (iv). If we suppose that xi(oo) = 0, then ultimately the inequality

xi(t) > 0 holds which implies that the function X2 is ultimately decreasing. In view

of x2(oo) = 0 we obtain that ultimately the inequality #2(0 > 0 holds, hence the

inequalities

x1(t)> I x1{t-s)dr(s)^r{r)x1(t)>x1(t),
Jo

hold. This is impossible, so ^(oo) = —00. Analogously, if we repeat the arguments

considering the function — xi(t) instead of x(t), we obtain x2(oo) = 00, etcetera. I

COROLLARY 1. Suppose case (iv) holds.

Then:

a) if x £ ft+ , then s\ypx{t) = 00,

b) the characteristic equation

-z f e-z'dr{s) + [ e-z'df(s) = 0
Jo Jo

z
/o

has no real roots z < 0 .
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PROOF: Assertion a) follows from the fact that xi(oo) = —oo and assertion b)
follows directly from assertion a). |

R e m a r k 1. In (iv), if x G O,+ , then the limit z(oo) may not exist. Thus, for instance,
the equation

H O - [10e"x(t - | ) + Ae^x{t - *)]}' + \x{t) + 25e'x(< - £ ) + \e*«x(t - TT) = 0,

has a particular solution x(t) = e2 t(l + cosO-

THEOREM 1. Suppose that either case (i) or case (ii) holds. If the function x G fi+ ,
then x(oo) = 0.

PROOF: In case (i), if x G fl+ , then ultimately the inequality x(t) < Xi(t) holds
and then Theorem 1 follows immediately from Lemma 1.

Let us consider case (ii) and let x G f2+ . Then supa;(£) < oo since otherwise from
relation (4) passing to the limit for 7 —> 00 we would obtain l imsupt_o o x^t) = 00
which contradicts Lemma 1. Let us write limsupt_,oo x(t) = x° , and choose a sequence
{<„}, lim tn = 00 such that lim x(tn) = a;0 . Then we obtain the inequality

lim x(tn) — l imsup,^,^ / x(tn - s)dr(s) = x°[l — r(r)] > 0,
—00 Jo

liminfn_»o
n—00 Jo

which contradicts Lemma 1. Hence the result. |

LEMMA 2. ([9, 10, 13]). Let the constants p, fj, G R+ and p/tt > e~l .

Then each of the inequalities

x - px(t + fi) ^ 0, x' + px(t - n) < 0

iias 110 u/timateiy positive solutions.

THEOREM 2. Suppose case (i) holds and there exists a constant <T\ G [0, a] satis-

fying the inequality

(5) (a, - r)[f(a) - rfa)}} > i[l + r(T)}.

(if cr1 = 0. then we put ?(er^~) = 0).

Then each regular solution of equation (1) oscillates.

PROOF: Let x G fi+ . Then from Lemma 1 and equation (3) it follows that ulti-

mately the inequalities £2(0 > 0, x'2(t) < 0, ^ ' (O ^ 0 hold. Hence we obtain

(6) 0 = x'2(t)+ f x'2{t - s)dr(s) + j x2{t-s)df(s)
Jo Jo

>x'2{t-r)+ f x'2(t - T)dr(s) + f x2(t - <n)df(s)
J0 J<T~

= [1 + r(r)]x'2(t - r ) + [?(*) - f{^))x2{t - a,)
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which implies the inequality

Using inequality (5) and applying Lemma 2 to the above inequality we conclude that
it has no ultimately non-negative solutions which contradicts the assumption that

x e n+. I

THEOREM 3. Suppose case (ii) holds and one of the following two conditions hold:

a) there exists a constant <j\ G [0, cr] satisfying the inequality

(7) H<r)-fM]>\[l-r{r)),

b) there exist constants TJ G [0, T] and cr\ G [0, cr] satisfying the inequality

(8) [ r ( T)_r(T i -)][ r -( ( 7)_f(< T r)]( c r i + T l ) ^ i.

Then each regular solution of equation (1) is oscillating.

PROOF: Let x G il+ . Then, arguing as in the proof of inequality (6), we conclude
that for each constant <j\ G [0, cr] ultimately the following inequality holds

(9) 0 > [1 - r(r)K(<) + [f(«7) - f (cr-)]x2(t - <r,).

If inequality (7) holds and we apply Lemma 2 to inequality (9), then as in Theorem 1
we arrive at a contradiction to the assumption that x G fi+ .

Provided that inequality (8) holds, substituting the solution x2 into equation (1)
and integrating from t to t + <y\ + TJ we obtain that ultimately the following inequality
holds

*2{t + <r\ +T1)-x2{t)- I x2(t + a1 +Ti -s)dr(s)+ I x2(t - s)dr(s)
Jo Jo

(10) + (TJ + <7,)./?.a:2(< + T,) < 0, 0 := f2{<r) - f a ^ f ) - .

Inequality (10), since the function x2 is ultimately decreasing, implies the inequality
(11) Xt(t + Tl + (Ti) - X2(t) + 0(Tl +<71)x{t + T1) < 0.

Replace t by t — s in inequality (11) and integrate with respect to r(s) from 5 = 0 to
5 = r ; then adding inequality (10) to the inequality obtained, we get

K2(< + ri +<n) + 0.{T1 +o-i)z2(< + r1) + {(T1 + <r, )/3[r{T) - r (rf)]} < 0,

which contradicts inequality (8). |
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THEOREM 4. In case (Hi) each regular solution of equation (1) oscillates.

PROOF: If ,-c G fl+ , then setting <jj = 0 we obtain inequality (9) which contradicts
the assertion of Lemma 2. |

THEOREM 5. Suppose case (iv) holds and that there exist constants Tj G [0, T) ,

G [0, cr] satisfying the inequaltiy

(12) r(<r+)(r1 - er,) > ±[r{t) - 1], r(t) = 0, t G [0, T, )

(if ITJ = cr, then we set f=(<7̂ ) = r(cr) ) .

Then each regular solution of equation (1) oscillates.

PROOF: Let x G fi+ • Then from Lemma 1 and equality (3) it follows that
x'2(oo) — oo and ultimately the inequality x'2(t) ^ 0 holds, whence we obtain

0 = x'2(t) - I x'2{t - s)dr(s) + / x2{t - s)dr(s)
JT~ JO

x'2(t - Ti)dr(s) + / x2(t - cri)dr(s)
! Jo

~ [r(r) - l]4(t - n ) + f{*+)x2(t - o-i),

hence ultimately the inequaltiy

?? ( + TI -

holds, which, in view of inequaltiy (12), contradicts the assertion of Lemma 2. |
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