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Abstract

Set-based concurrent engineering (SBCE), a process that develops sets of many design candi-
dates for each subproblem throughout a design project, proposes several benefits compared to
point-based processes, where only one design candidate for each subproblem is chosen for
further development. These benefits include reduced rework, improved design quality, and
retention of knowledge to use in future projects. Previous studies that introduce SBCE in prac-
tice achieved success and had very positive future outlooks, but SBCE encounters opposition
because its core procedures appear wasteful as designers must divide their time among many
designs throughout the process, most of which are ultimately not used. The impacts of these
procedures can be explored in detail through open-source computational tools, but currently
few exist to do this. This work introduces the Point/Set-Organized Research Teams (PSORT)
modeling platform to simulate and analyze a set-based design process. The approach is used
to verify statements made about SBCE and investigate its effects on project quality. Such an
SBCE platform enables process exploration without needing to commit many projects and
resources to any given design.

Introduction

Motivation for using SBCE

Concurrent engineering allows design teams to develop subsystems in parallel and communi-
cate with suppliers, manufacturers, and each other throughout the process to shorten project
times and resolve problems as they appear (Koufteros et al., 2001). Studies in this field have
addressed varying degrees of concurrency and communication based on problem complexity
(Le et al., 2012), directing development using design structure matrices (Yassine and Braha,
2003; Pektaş and Pultar, 2006), and timing of design reviews (Ha and Porteus, 1995). Lean
product design is another method which seeks to increase the value of design iteration and
reduce design rework (Ballard, 2000).

It is difficult to eliminate design rework with conventional point-based concurrent engi-
neering (PBCE) practices as they develop only single design candidates (or “points”) for
each subsystem, which may become incompatible or insufficient as project progress reveals
new information and need rework to accommodate the new information. Set-based concurrent
engineering (SBCE) aims to resolve this by developing many design candidates for each sub-
system (creating “sets”) throughout the process and only eliminates candidates once testing
rules them out. This ensures that some designs remain valid as new information is learned
(Khan et al., 2013) which eliminates the need for rework and increases design efficiency.
These subsystems may be as broad as a vehicle’s style, body, manufacturing, and supplied
parts (Sobek et al., 1999) or as narrow as individual components (Maulana et al., 2017).

SBCE description and impacts

The design process in SBCE is guided by three main principles described by Sobek et al.
(1999). The first is mapping the design space, where at the beginning of a project, designers
in each subproblem prototype and test varieties of designs to define what they can and cannot
do and communicate the resulting ranges of possibilities with other subproblems. The second
is integrating by intersection, in which designers use their design space maps to find feasible
solutions, which in this work are defined as collections of subproblem design candidates
that satisfy the project, while maintaining minimal constraints to stay flexible in their devel-
opment. Fallback designs are also identified at this time to ensure the project maintains a
viable solution. The third is establishing feasibility before commitment, where designers
must stay within their communicated sets to prevent incompatibilities while they further inte-
grate designs and eliminate the weakest candidates. These principles are a key element of
Toyota’s process which is considered one of the fastest and most efficient in the industry,
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yet its performance is considered paradoxical as the practice of
pursuing many more preliminary designs is considered wasteful
by conventional project management as designers must divide
their effort between these designs (Sobek et al., 1999).

Figure 1 presents the arguments for how SBCE improves per-
formance despite this division of development. First, it shows how
rework is prompted in PBCE and how SBCE avoids this. PBCE as
shown in Figure 1a selects a single design early on to develop,
adapting it as new information is learned. If this information
reveals that drastic changes are needed such that the chosen
design cannot be adapted to accommodate, significant rework
becomes necessary and a new design must then be created; this
sequential redesign extends the project and requires large
amounts of time. With SBCE shown in Figure 1b, the project
progresses by increasing the detail of many designs in parallel
and eliminating only those proven not to work while continuing
to develop the rest. This parallel development uses time efficiently
through greater concurrency and avoids sequential rework as one
of the maintained designs will likely satisfy all new information
and requirements as the project develops. This dynamic also
reduces the amount of communication needed to ensure compat-
ibility (Lycke, 2018), as fewer adaptations are needed for each
design, and incompatibilities are not as consequential as they
only exclude parts of sets rather than necessitating rework.

Figure 1 also demonstrates how SBCE can discover many solu-
tions, which increases its chances of discovering better solutions.
The sets of many designs for each subproblem enable the synthe-
sis of many solutions to discover which designs work best together
and create a more globally optimal solution. In contrast, a point-
based process, limited by the single design for each subproblem it
develops, explores only one solution and settles on a locally opti-
mal point, potentially blind to better solutions created from sig-
nificantly different design combinations.

Study of SBCE

Despite this potential, there are opportunities to better under-
stand SBCE and its applications. Some design studies introduced
it to companies with positive results (Raudberget, 2010;
Al-Ashaab et al., 2013; Miranda De Souza and Borsato, 2016;
Schulze, 2016; Maulana et al., 2017), with participants going as
far as to state it should be used at most times (Raudberget,
2010). Other studies use SBCE and related methods in computa-
tional assistants (Wang and Terpenny, 2003; Nahm and Ishikawa,
2004; Canbaz et al., 2013; Dafflon et al., 2017) or create tools to
facilitate the process itself (Raudberget, 2011; Miranda De
Souza and Borsato, 2016; Suwanda et al., 2020); however, these
tools have not been applied to study the impacts of SBCE.
Additionally, industry exposure to SBCE as described is still pri-
marily through academic study, indicating that it is still in a
research phase (Lycke, 2018). A primary barrier to adoption is
that SBCE proposes significant changes to the design process
that require support from management, as these changes rely
on decisions being deferred until necessary, rather than made
early to reduce uncertainty. This support is difficult to obtain as
the core element of SBCE that relies on this deferment, developing
many designs simultaneously through the full process, is per-
ceived as wasteful due to the effort expended in designs that are
discontinued (Raudberget, 2010).

Rigorous evaluation of SBCE may advise on how to capitalize
on its proposed benefits and minimize waste; however, this evalu-
ation is hampered by the challenge of assessing large, collaborative
processes with traditional human subjects research. SBCE is there-
fore ripe for study through artificial intelligence (AI)-based simu-
lation techniques. Specifically, this work uses multi-agent systems
(MAS) in which intelligent “agents”mimic individual designers to
enable controlled, low-cost exploration of design through simula-
tion (Olson et al., 2009; McComb et al., 2015). Previous works
have applied this method to study subjects ranging from team
communication to organizational structure and multidisciplinary
design (Danesh and Jin, 2001; Hu et al., 2009; Olson et al., 2009;
McComb et al., 2015; Hulse et al., 2019; Lapp et al., 2019). Such
models or similar exploratory tools have not yet been applied to
study SBCE (Lycke, 2018), however, compounding the uncer-
tainty in its adoption and presenting an opportunity for further
study. By using MAS to study SBCE, it is possible to test state-
ments such as its ability to prevent rework, its wide applicability
except in very simple, short projects (Raudberget, 2010), that it
progresses slowly in early phases of projects (Lycke, 2018), and
that its knowledge capture and reuse from mapping the design
space can improve future project efficiency (Raudberget, 2010).

To fill this gap and test these statements, this work introduces
the Point/Set-Organized Research Teams (PSORT) platform, a
multi-agent system that implements the principles of SBCE to
computationally study the method over a variety of set sizes, rang-
ing from point-based design with a set size of 1, to large set sizes.
Agents in this system develop and maintain sets of designs per-
taining to their roles in the project and coordinate by considering
others’ design sets when developing their own. First, descriptions
of the simulated design process and objective functions are pre-
sented, including their ties to the principles of SBCE. Then the
design problems, representing different design projects, are
described, including a contextualized design problem that varies
the importance of coupled and uncoupled subproblems, and a
model problem structured similarly to it that also investigates
how the number of coupled subproblems influences performance.

Figure 1. Illustration of how (b) SBCE’s many designs allow one to proceed to com-
pletion, while (a) PBCE may reach a dead end design, requiring rework.
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The results from the simulated design process will then be pre-
sented, in which the importance of coupled and uncoupled sub-
problems of problems are varied and the resulting project’s
performance at different points in time is measured and analyzed
to compare with previous statements about SBCE. Finally, the
impacts of design space mapping and design reuse on the process
are similarly investigated. These studies will improve understanding
of the impacts of SBCE by realizing how set size and design space
mapping impacts project quality over different timespans and
design problems and verifying statements in previous literature.
By comparing results to previous literature, PSORT may also be
validated so that it may be used to study other phenomena as well.

Methods

Implementation of SBCE

PSORT conducts concurrent engineering by dividing a project
into subproblems and assigning an agent to develop a design
set for each one; dividing a project into more subproblems there-
fore requires more agents and more design sets to resolve the pro-
ject. Subproblems and their designs in this work represent
individual components similar to Maulana et al. (2017); examples
include a car’s wheels or brakes. PSORT has two different strate-
gies to evaluate designs by, an “exploring” strategy and an “inte-
grating” strategy, that direct agents to map the design space or
integrate by intersection according to SBCE. The exploring strat-
egy focuses on creating diverse sets of designs for each agent to
map the design space while the integrating strategy focuses on
creating cohesive project solutions, which require compatible
designs from all agents, to integrate by intersection. The integrat-
ing strategy is strongly influenced by problem coupling, which
requires agents to consider what designs to combine with their
own to make good solutions. The process for this consideration
is further explained with the integrating strategy in Section
“Integrating strategy”. The user directs PSORT to use the explor-
ing or integrating strategy for any period of iteration and may
change between them during the simulation to change the focus
of a developing project.

SBCE is enabled through the design set management described
in Figure 2. Each agent publishes design candidates for their sub-
problem to a set that is visible to other agents to use in project
solutions that are used in the integrating strategy. Set size is
defined by the user at the start of a simulation and allows more
or fewer design candidates for a subproblem to exist at once.

An agent develops designs by periodically copying a design
from its set, iterating on that copy, and then publishing it back
into the set, expanding it if its maximum size has not been
reached. Otherwise, the agent overwrites an old design, preferring
to overwrite those with worse evaluations. The originally copied
design is retained unless overwritten due to a full set and poor
performance. A design used in the current best solution also
may only be overwritten if a better solution is discovered with
the design to be published, ensuring that fallback designs are
always present. Because each agent develops only one design at
a time, each design receives only a fraction of the agent’s total
iterations; larger sets lead to fewer iterations on each design.
This set of published designs samples the design space to map
it for SBCE and define the feasible region. By making the entire
set available to others to use, it communicates an agent’s current
capabilities in a set-based manner as well, as agents can use any
published design from other sets when synthesizing their project
solutions. Agents’ learning schemes, which in this work are
Markov learning schemes, are shared across all designs, reflecting
the agents’ ability to retain the knowledge of effective action
sequences between designs.

Iteration process

Figure 3 describes the agents’ iteration process in more detail. An
agent periodically chooses a design to develop by copying it from
the subproblem’s set and then develops that design by randomly
choosing actions to modify it, such as changing part dimensions,
according to its Markov learning scheme; actions an agent may
take are determined by the subproblem it is solving. These actions
are then accepted or rejected via a simulated annealing (SA) pro-
cess, in which the actions such as the dimension change are prob-
abilistically accepted or rejected depending on how much they
improve the design’s evaluation according to the current strategy,
and the design temperature, which in this work is determined by
the Triki annealing schedule (Triki et al., 2005). Once done iter-
ating, the agent publishes its design back to the set to make it
available for project solutions and for future development before
copying a new one to develop. By using an optimization process,
the simulation maintains minimal constraint; the only constraints
imposed are those physically required by the engineering prob-
lem, and those caused by incompatibility between designs.

Markov learning is used to allow agents to learn and use effective
sequences of actions. SA is used because it directs agents toward
globally optimal designs, enabling search in multi-modal spaces,
and only requires objective function information, rather than gradi-
ent information which makes it applicable to a wide range of prob-
lems (Bertsimas and Tsitsiklis, 1992). Triki annealing builds on this
wide applicability by adapting the annealing schedule to the problem
being solved (Triki et al., 2005). To integrate with SBCE, tempera-
tures are assigned to designs instead of agents, so each one experi-
ences a balance of exploration and improvement that navigates
them to more promising regions of the design space. Similar combi-
nations of Markov learning, SA, and Triki annealing have been used
in other simulations validated against human behavior (McComb
et al., 2015; McComb et al., 2017), indicating its applicability.

Design data structure

Design representations are divided into the values of independent
and dependent variables to support the exploration and integrat-
ing strategies. Their use in the process is highlighted in Figure 4.

Figure 2. An agent chooses designs to develop by starting from the base design or
copying an existing design in their set and advance their set by publishing its devel-
oping design to it.
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Agents directly determine independent variables such as part
dimensions and material selection through their actions.
Dependent are calculated from the independent variables and
describe properties that affect project performance or compatibil-
ity with other parts; examples include part weight or strength.
Dependent variables are then used to generate the evaluations
for either strategy that provide feedback for agent actions and
drive their acceptance or rejection.

To support the exploring strategy, dependent variables are
classified based on their effect on the problem objective function,
where they may be lower-is-better, higher-is-better, or a “target”

in which the variable must occupy a certain range to achieve opti-
mal performance. These classifications determine how design
properties should be directed and how they trade off to create
effective design space maps. To support the integrating strategy,
agents keep track of what dependent variable values their designs
require from those of other subproblems. These requirements are
given by constraints in the problem that span subproblems, for
example, if a car’s suspension design requires certain dependent
variable values from the body to be valid, then the suspension
design places requirements on the body design. To determine if
designs in a solution are compatible, each designs’ requirements

Figure 3. Agents concurrently iterate on their respective designs to advance the project. White boxes in the loop are conducted every iteration, while shaded boxes
are conducted intermittently.

Figure 4. Detailed view of connections between agent actions, design variables, and evaluation strategies. Agents can only directly change independent variables,
which determine dependent variables to generate evaluations for agent actions.
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and corresponding dependent variables are checked to see if the
requirements are satisfied; if they are not, the resulting solution’s
evaluation is penalized for being incompatible.

Exploring and integrating strategies

Exploring and integrating strategies are used to steer agents to
develop their designs for different purposes, depending on what
stage the project is in. These strategies are independent of any spe-
cific problem but use information from the problem’s objective
function, which reflects how well a solution performs on the
problem, to create their precise evaluations for SA to probabilisti-
cally accept actions. The exploring strategy directs development to
create a Pareto front to map the design space for SBCE, using the
lower-is-better, higher-is-better, and target classifications of
dependent variables derived from the problem objective function.
The dimensions of this resulting front depend on the number of
dependent variables for the subproblem being worked on. The
integrating strategy uses the problem objective function more
directly by creating solutions to evaluate and optimize designs
for the performance of the whole project.

Exploring strategy
The exploring strategy does not directly use the problem objective
function but instead uses the lower-is-better, higher-is-better, and
target classifications of dependent variables from it to create a new
evaluation. An agent developing with this strategy only considers
its own published designs instead of others to create a Pareto front
that maps its design space. It operates similarly to the Pareto SA
algorithm by Czyz and Jaszkiewicz (1998) and is defined as:

fiexp = [�xi · wx
��]− Pproxlin + Pprox − Pdom , (1)

where �xi are the dependent variables of the design being evalu-
ated, ⋅ is the dot product, and wx

�� are the variable weights.
These weights determine where agents initially explore, and are
determined by the possible ranges of �xi to make them roughly
equally impactful; weights for lower-is-better variables are positive
and weights for higher-is-better variables are negative. Pproxlin,
Pprox, and Pdom are penalties that consider other designs in the
set to focus on unexplored areas and automatically generate a
Pareto front. Pproxlin is defined as:

Pproxlin = Cproxlin

∑n
j = i

∑
x

max ((�xj − �xi)∗ wx
��, �0), (2)

where Cproxlin is a scaling constant, �xj are the dependent variables
of other designs in the set, n is the number of designs in the set,
and * is element-by-element multiplication. The (�xj − �xi)∗ wx

��
term defines what �xi is superior or inferior in; positive values
are superior and negative are inferior. The max function zeroes
out any negative variables, ensuring only factors in which �xi is
superior are considered. This penalty encourages the designer to
focus on the aspects the design is superior to others in and
push its region of the Pareto front. Pprox is defined as:

Pprox =
∑n
j= i

Cprox

1+∑
xmax ((�xj − �xi)∗ wx

��, �0)
+ Cprox

1+∑
x abs(�tj −�ti)∗ wt

�
[ ]

,

(3)

where Cprox is a scaling constant and 1 is a constant to prevent
singularities due to duplicate designs, which commonly occurs
just after copying a design. �ti and �tj are target variables, and �wt

are their respective weights, determined by the ranges of �ti sim-
ilarly to �wx . This penalty creates a nonlinearity that promotes
improving on characteristics that a design is especially close to
another in and allows designs to settle on non-convex regions
of the Pareto front, which is otherwise difficult when using
weighted sums (Marler and Arora, 2004; Ghane-Kanafi and
Khorram, 2014). This penalty also encourages the dispersion of
target variables with situational effects on the objective function
to ensure greater design variety. Pdom is defined as:

Pdom = Cdom

∑n
j = i

min(amax((�xj − �xi)∗ wx
�� ), 0)− bprox , (4)

where Cdom is a scaling constant, the amax function returns the
highest element of the vector to select the variable in which the
evaluated design is least inferior. This directs the dominated
design to take the shortest route to the Pareto front. The min
function nullifies the penalty if the design is superior in at least
one aspect. bprox is added to nonzero penalties in Pdom so that
Pdom is always greater than the largest values of Pprox, ensuring
that the evaluation monotonically improves with improvement
in variables. It is defined as:

bprox =
Cprox

1
if min(amax((�xj − �xi)∗ wx

�� ), 0) , 0

0 otherwise
.

⎧⎨
⎩ (5)

Figure 5 provides a demonstration of the exploring strategy’s
evaluation on a simplified two-dimensional case. When applied
to a subproblem, the number of dependent variables in the sub-
problem’s corresponding design determines the dimensionality
of the resulting exploring strategy. Two design points, located at
(1,2) and (2,1) represent existing designs in the set. Region A
shows how Pdom causes clear penalties to the evaluation if a
design is dominated and directs the agent to resolve that domina-
tion. Contours toward the bottom left that curve around the two

Figure 5. Contour plot of the exploring strategy’s evaluation given existing designs.
Letters A, B, and C indicate regions of interest that demonstrate penalty effects.
Parameters used for this figure are wx

�� = [1,1], Cproxlin, Cprox, = 2, Cdom = 10, and 1 = 0.5.
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designs in region B indicate how Pproxlin encourages designs to
build on variables in which they are superior. Additionally, con-
cave contours can be observed in the space between the two exist-
ing design points at region C, indicating how Pprox enables designs
to settle on a concave front, rather than collapsing onto existing
designs. Altogether these penalties allow designers to automati-
cally construct a Pareto front and map the design space by con-
sidering their other designs while they develop. While Cproxlin,
Cprox, Cdom, and 1 are determined by the user, they are only
used to create a rough Pareto front which serves as the starting
set to create refined designs with the integrating strategy; there-
fore, tuning is only required at a coarse level. Because this starting
set is later refined with the integrating strategy, uncertainty is not
represented in the exploring strategy; however, this may be imple-
mented in future work using new solving methods.

Integrating strategy
The integrating strategy directly uses the problem’s objective func-
tion by constructing a solution around an individual design to
evaluate it. An agent developing designs with this strategy
searches other subproblems” designs for those that make the
best solution with the one they are developing, and the resulting
solution’s problem objective function is the design’s value. The
resulting evaluation is:

fiint = argmin( f problem(da1, da2 . . . dan)) subject to daj = di, (6)

where fproblem is the problem’s objective function, da1…dan are the
designs of the first through nth agents, which together form a
solution. aj represents the agent currently iterating, and di is the
design being evaluated. The constraint enables agents to construct
solutions around the design they are developing for the integrat-
ing strategy as shown in Figure 6, evaluating the project’s best
solution if it includes the developing design. fproject is additionally
penalized if the submitted solution is incompatible, defined as
containing any design with requirements that are unmet by the
others in the solution. This strategy directs agents to optimize

their designs for the overall project solution’s performance, rather
than the performance of their individual subsystems.

Figure 6 shows how new solutions are created from agents’ sets
and evaluated to solve the minimization problem. An initial pop-
ulation of random solutions is first created using published
designs, and designs within the solutions are changed according
to a greedy algorithm. The best solution’s value is then used as
the fiint value. Agents do not have to search for new solutions
at every iteration and instead may continue using the previously
used solution to save resources. The integrating strategy finds
the intersection of sets by discovering the best combinations of
designs, measured by the project objective function of the solution
they create. It also establishes feasibility by ensuring that designers
stay within their sets; if a designer strays from its set and creates
an incompatible design, then that design’s evaluation becomes
heavily penalized, resulting in the rejection of actions that make
it incompatible.

Design problems

Design methodologies may be tested in various situations by
simulating over different design problems. One key factor that
is varied in these problems is the degree of coupling, indicating
how much a design for one subproblem influences which designs
for other subproblems are best. Other factors that change with
problems are the difficulties of individual subproblems, and the
number of agents to coordinate.

Model problem
A model problem allows a clear definition of coupled and
uncoupled subobjectives to test the impacts of SBCE with different
problems and numbers of agents. In this problem, the uncoupled
subobjective promotes maximizing each agents’ dependent vari-
ables, while the coupled subobjective requires balancing these vari-
ables and their scaling factors. To make the problem simple and
extendable, all agents control similarly structured variables. The
agents manage two dependent variables each, defined as

Figure 6. The searching method to find the best solution from a combination of designs; it may be forced to use a particular design to evaluate it under the
integrating strategy. Design subscripts indicate the agent, and then design used. In this case, agent 2 is using the searcher to evaluate the global objective for Di.
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Agent i: ai, bi, i = 1…n,
where a is the primary dependent variable and b is its scaling

factor in the coupled subobjective. Dependent variables use the
relations

a1 . . . an = w1...n∗x1...n, 2 , w1...n, x1...n , 10, (7)

b1 . . . bn = y1...n∗z1...n, 0 , y1...n, z1...n , 0.5, (8)

where w1…n, x1…n, y1…n, z1…n are the independent variables. All
variables are continuous and are changed by Eqs (9) and (10):

Continuous Increase: vnew = vold + (vmax − vold)∗r; (9)

Continuous Decrease: vnew = vold − (vold − vmin)∗r, (10)

where vold is the pre-change value, vnew is the post-change value,
vmax is the variable’s upper limit, vmin is the lower limit, and r is a
uniform random number from 0 to 1.

The problem objective function for the model problem is
defined as follows:

f = fu∗wu + fc∗wc (11)

fu =
∑n
1

−an (12)

fc = abs a1 +
∑n
2

an∗(b1 − bn + 1.125)∗(−1)n−1

( )
(13)

where fu, fc are the uncoupled and coupled portions of the objec-
tive function, and wu, wc are their respective weights which allow
the problem to transition between uncoupled and coupled. The
coupled subobjective is made to avoid trivial solutions and
allow the coordination of any number of agents. The (− 1)n−1

factor ensures that agents are split evenly between positive and
negative contributions to the sum, though odd numbers of agents
will be slightly imbalanced. The (b1− bn + 1.125) term gives agents
limited control over the scaling of their an contributions. The con-
stant of 1.125 is used to prevent the overall scale from becoming 1
or 0 at extreme values of b1…bm, which would trivially solve the
coupled subobjective by repeated use of Eqs (9) or (10).

The absolute value of a sum of variables controlled by different
agents represents the need to finely balance different subproblem
properties. Additionally, the primary dependent variable used in
the coupled subproblem is also maximized for the uncoupled sub-
problem. This prevents agents from driving the relevant values
down to their minimum to avoid the coupled subproblem and
requires them to reconcile the two in a mixed case.

SAE car design problem
The contextual design problem used to verify the process in this
work is the formula SAE car problem defined by Soria Zurita
et al. (2018). This problem is chosen as it presents a large enough
project to distribute among a design team while being simple
enough to quickly evaluate for the simulator. Some roles in the
previous work are merged to make each subproblem roughly
equally complex. The new subproblems are given in Table 1.

Designs options consist of varying parameters for the architec-
ture described in Soria Zurita et al. (2018) to create designs with

different characteristics; these parameters are the independent
variables in this work and include continuous variables such as
part dimensions or locations and discrete variables such as mate-
rial selection or catalogue selections for complex parts like
engines. Continuous variables are changed by Eqs (9) and (10),
while discrete variables are similarly changed with the following
equations:

Discrete Increase: vnew = vold + randint(1, vmax − vold) (14)

Discrete Decrease: vnew = vold − randint(1, vold − vmin), (15)

where the randint function returns a random integer between the
given lower and upper bounds. Dependent variables include func-
tional characteristics such as part masses, wing downforces, or tire
radii.

The problem objective function for the SAE car problem is a
weighted sum of 12 factors. Factors to minimize are the car’s
mass, center of gravity, aerodynamic drag, crash force, impact
attenuator volume, braking distance, suspension acceleration,
and pitch moment. Factors to maximize are the car’s aerodynamic
downforce, acceleration, and corner velocity.

Weights between the subobjectives differ from Soria Zurita
et al. (2018) to account for differences in the scales of subobjec-
tives, which range from tenths to millions of units.
Subobjectives are divided into primary and secondary subobjec-
tives like the previous work. Primary subobjectives are the car’s
mass, center of gravity, drag, downforce, and acceleration.
Secondary subobjectives are the crash force, impact attenuator
volume, corner velocity, braking distance, suspension acceleration,
and pitch moment. Weights are adjusted to make each primary
and secondary subobjective contribute roughly equally to others
in its group, with secondary subobjectives contributing less than
primary subobjectives. The resulting weights are given in Table 2.

The subobjectives of the SAE car problem are analyzed to gen-
erate a Design Structure Matrix as shown in Figure 7 to highlight
subproblem dependencies and coupled systems. It is found that
most subobjectives do not create significantly coupled subpro-
blems as either subobjectives belonging to different subproblems
are summed, allowing them to independently optimize, or

Table 1. Subproblems for the SAE car problem used in this work

Subproblem Roles

1 Rear wing

2 Front wing

3 Side wings

4 Rear tires

Front tires

Rear brakes

Front brakes

5 Cabin

Engine

6 Rear suspension

Front suspension

Impact attenuator
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dependencies are simple and only between two subproblems, such
as subproblem 4 coupling only with subproblem 5 to balance the
car’s braking distance and acceleration, indicated by the lightly
shaded box in Figure 7. Constraints also add some dependencies
between subproblems, but these effects have minor influences on
project development.

The only significantly coupled subobjective identified is pitch
moment, which is modified from the previous work by using
an absolute value to minimize the moment in either direction.
This necessitates coordination between all agents except subpro-
blem 4 indicated by the darkly shaded box in Figure 7, as forces
are positive or negative based on where they are positioned on the
car and are scaled based on the cabin length and wing lengths.
Due to the absolute value agents must balance relevant variables
to reach 0 as closely as possible, similar to the model problem.

The pitch moment subobjective, by coupling five out of the six
agents, presents an opportunity to easily vary the necessity of
agent coordination in this problem by changing its weight. The
default weighting, which considers it only a secondary subobjec-
tive and therefore weights it low, will behave as an uncoupled
problem as agents favor optimizing primary subobjectives which
do not require coordination. Increasing its weight such that it
becomes significant, however, will make the problem behave as
coupled, allowing testing of SBCE on both coupled and
uncoupled contextualized problems.

While the SAE car problem uses a similar mechanism to cou-
ple agents, it is distinguished from the model problem by the

difficulty of its uncoupled subobjectives, which are more numer-
ous and have more complex relationships with their independent
variables. This may change how SBCE impacts the uncoupled
objective as it develops at a different rate. It is also more hetero-
geneous than the model problem, as each agent has a different
degree of influence on the overall objective function and the
coupled pitch moment subobjective; for example, the wing agents
have significantly more influence on pitch moment than the cabin
or suspension agents.

Experimental setup

All simulations are run for 1000 iterations to allow quality trends
to settle, indicating rough project completion. Because these itera-
tions are constant with respect to set size and are divided over
designs in the sets, this also establishes an equal amount of devel-
opment effort per project. Progress is also observed at shorter
timespans to investigate shorter deadlines and lower-effort pro-
jects. Simulations are run 20 times for each condition and the
results are averaged to account for the stochasticity of agents’
move selection, acceptance, and rejection. Rework is not con-
ducted in these simulations, therefore projects that would other-
wise require it are expected to perform poorly. Agents publish
their designs every 20 iterations, and when using the integrating
strategy, search for new solutions every 10 iterations where they
reassess which designs to combine their own with during develop-
ment. The objective function is minimized so results are pre-
sented as lower-is-better. In most cases the integrating strategy
is used for the entire project; the investigation of the exploring
strategy is conducted in a separate study only on the SAE car
problem. The model problem is excluded from the exploration
study due to its simplicity; each agent does not control enough
variables to meaningfully use the exploring strategy.

Results and discussion

Model problem

Figure 8 investigates the performance of the model problem with
respect to set size and weighting of uncoupled versus coupled
objectives to test if SBCE can prevent rework and how applicable
it is in various scenarios. The uncoupled model problem only
considers its uncoupled subobjective, the coupled model problem
only considers its coupled subobjective, and the mixed model
problem considers both of them equally. The horizontal axis
represents set sizes and therefore design candidates per set,
while the number of sets is fixed by the problem itself. Each
point on the vertical axis represents the best solution made
from candidate designs from each set in a simulated project.
Figure 8a displays the uncoupled case, with weight given to
only the uncoupled objective; Figure 8b displays the mixed case,
with equal weight to both, and Figure 8c displays the coupled
case, with weight given only to the coupled objective. Y axes differ
between these figures due to the different scales of relevant effects.
Box plots are used as the data are skewed with long tails of lower-
quality solutions. The box spans the 75th and 25th percentiles of
the data, or upper and lower quartiles. The horizontal line in the
box marks the data median. The whiskers extend to the nearest
data points within 1.5 times the height of the box, or interquartile
distance (IQD). All data points beyond this distance are marked
as outliers with individual points. The many outlying points are

Figure 7. Design structure matrix of the SAE car problem. Constraining dependencies
are marked with Xs. Subproblems 4 and 5 coupled through acceleration are lightly
shaded, while subproblems coupled through pitch moment are more darkly shaded

Table 2. Weights of the SAE car subobjectives used in this work

Objective Weights

Mass (kg) 45

Center of gravity (m) 11,000

Drag (N) 45

Downforce (N) 3

Acceleration (m/s2) 1000

Crash force (N) 1/600

Impact attenuator volume (m3) 1

Corner velocity (m/s) 5

Braking distance (m) 10

Suspension acceleration (m/s2) 2

Pitch moment (Nm) 1/30
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due to the saturation of solutions at the problem’s minimum
objective function value of −600, causing small IQDs.

Problems in Figure 8a, which focus only on the uncoupled
subobjective, indicate that PBCE, corresponding to the set size
of 1, performs better and more consistently than SBCE. SBCE’s
worse performance, in this case, can be explained by less time
being devoted to each design, so they are less likely to reach the
minimum. Problems in Figure 8c focus only on the coupled sub-
objective. In these, the trend is reversed where PBCE performs

worse it cannot reliably coordinate agents to resolve the coupled
subobjective. SBCE succeeds in coordinating the agents, with
somewhat better performance at a set size of 2 and much better
at 3 and greater. The mixed problem in Figure 8b shows results
like those in Figure 8c as the coupled subobjective creates a larger
difference than the uncoupled one. PBCE performs adequately
much of the time in this case but has two extreme failures indi-
cated by the outlying points at −560 and −470 quality, while
SBCE does not show any similar failures. These severe failures
in coupled cases result from failure to coordinate agents and
reconcile the two subobjectives and would require restarting the
project to achieve better performance. These failures correlate to
the “dead end” designs in PBCE that require rework, corroborat-
ing arguments that SBCE reduces the need for rework in complex
projects.

Figure 9 investigates the same simulations as Figure 8, but at
shorter timescales to investigate the rate that SBCE progresses
in the early phases of projects. To account for skew, median
regression was used. The 75th percentile is also plotted to inves-
tigate if a process is frequently failing. Because the integrating
strategy is used from the beginning of each project, no time is
spent explicitly exploring the design space. For the uncoupled
problem in Figure 9a, it is found that the trend of quality with
respect to set size becomes significantly worse at shorter time-
spans (t(316) > 8.17, p < 0.001), supporting the statement that
early phases of projects progress slowly in SBCE (Lycke, 2018).
For the coupled problem in Figure 9c, this degradation is not
observed. Instead, performance improves with increasing set
size and improves even more at shorter timespans (t(316) >
3.35, p < 0.001), suggesting that shorter timespans magnify both
PBCE’s poor coordination of agents and SBCE’s underdevelop-
ment of uncoupled designs, as there is little time to compensate
for process weaknesses with additional optimization. Figure 9b,
presenting the mixed problem, clearly demonstrates both effects
at 500 and 250 iterations. PBCE performs inconsistently due to
its inability to coordinate agents for the coupled subobjective,
with failures prevalent in the 75th percentiles. Large set sizes
show gradual degradation of quality due to the underdevelopment
of designs for the uncoupled subobjective. In this case, small set
sizes perform the best as they coordinate agents while allowing
them sufficient time to develop individual designs.

SAE car problem

Figure 10 shows how the SAE car project performs over different
set sizes and weightings of the pitch moment subobjective, pre-
senting effects on the contextualized problem with varying
degrees of coupling. The uncoupled problem in Figure 10a uses
the default pitch moment weighting, the mixed problem in
Figure 10b uses 100× weighting, and the coupled problem in
Figure 10c 1000× weighting. For the uncoupled problem in
Figure 10a, results are like those in Figure 8a, where a trend of gra-
dually decreasing quality with set size is observed (t(158) = 6.052,
p < 0.001). Figure 10b presents the mixed problem. Here PBCE
and the set size of 2 show bimodal distributions, indicating “suc-
cess” and “failure” cases. This bimodal distribution transitions to
a more normal distribution at set sizes 3 and higher, indicating
resolution of agent coordination; however, overall quality also
decreases as set size further increases (t(158) = 4.359, p < 0.001).
This simultaneously demonstrates the failure to coordinate agents
in PBCE, and inefficiency due to dividing time among designs in
SBCE. The highly coupled case in Figure 10c shows that PBCE

Figure 8. Project objective function values with respect to set size for the (a)
uncoupled, (b) mixed, and (c) coupled model problems with six agents. Figures for
other numbers of agents are given in the Appendix. Whiskers are +/1.5 IQD. Axes dif-
fer between figures due to the different scales of relevant effects.
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fails to coordinate agents even more frequently, while SBCE suc-
cessfully does so at any set size. These results indicate that results
from the model problem generalize to contextualized problems.
Additionally, small set sizes around 3 perform similarly to PBCE

on uncoupled problems while also succeeding in coupled problems,
suggesting that SBCE should be widely applicable in problems of
unknown structure.

Figure 11 investigates the previous results at shorter timespans
similar to Figure 9. Performance with respect to set size continues
to worsen at short timespans as in the model problem but to a lesser
degree. For the uncoupled SAE car problem in Figure 11(a), the only
significant difference is between 1000 and 500 iterations (t(316) =

Figure 10. Solution objective function values for different pitch moment weightings
on the SAE car problem. (a) represents low weightings, (b) intermediate weightings,
and (c) high weightings of the coupled subobjective, respectively. Whiskers are +/1.5
IQD (c) uses a different axis due to the large value at set size of 1.

Figure 9. Solution objective function values with respect to subobjective weightings,
set size, and elapsed time for the (a) uncoupled, (b) mixed, and (c) coupled model
problems. Dark lines are sample medians, while light lines are 75th percentiles.
Axes differ between figures due to the different scales of relevant effects.
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4.52, p < 0.001). In the mixed problem in Figure 11b, significant
differences are observed with respect to 1000 iterations (t(316)
> 2.43, p = 0.015), but not between 250 and 500 iterations (t
(316) = 0.854, p = 0.39). In the highly coupled problem in
Figure 11c, only 250 iterations show significant differences
between other timespans (t(316) > 2.60, p < 0.010). While these
results are weaker, they continue to suggest that large set sizes per-
form especially worse on short projects, lending further credibility
to the statement that SBCE projects often have slow starts (Lycke,
2018). Small set sizes continue to perform well while mitigating
difficulties on coupled subobjectives, however, promising a solu-
tion to this dilemma.

Design exploration impacts

Figure 12 further investigates the slow start of projects in SBCE by
considering the cost of time spent mapping the design space. In
this figure, projects are given 1000 total iterations, divided
between exploration and integration. The default SAE car subob-
jective weightings are used, and the PBCE case is omitted as it
lacks the multiple designs needed to use the exploring strategy
well. Most projects perform worse if they spend time exploring
(t(316) > 2.54, p < 0.011); however, there is little difference
between the cases that do explore. When 100% of the time is
spent exploring, projects frequently perform poorly, indicated
by the upper quartile line, as they do not explicitly optimize for
the project. Large set sizes mitigate this as the design space is
more thoroughly explored, however. These losses in performance
due to exploration are because the exploring strategy does not
directly solve the problem’s objective function. Such a misalign-
ment is unavoidable, as the precise priorities for designs are
unknown until the time is devoted to making an integrated solu-
tion which requires using the integrating strategy. This loss in per-

Figure 11. Solution objective function values with respect to pitch moment weight,
set size, and elapsed time on the SAE car problem. (a) represents low weightings, (b)
intermediate weightings, and (c) high weightings of the coupled subobjective, respec-
tively. Dark lines are sample medians, while light lines are 75th percentiles. (c) uses a
different axis due to the large values at set size of 1.

Figure 12. Solution objective function values for a project with 1000 total iterations
using the default weights, divided between exploration and integration. Dark lines
are sample medians, while light lines are 75th percentiles.
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formance, therefore, suggests that taking time to explore the
design space and generate knowledge contributes to the slow
start of projects in SBCE.

While design space exploration may contribute to the slow
start of a project, a key practice in SBCE is reusing that explora-
tion and its generated knowledge for future projects. Designs cre-
ated using the exploring strategy can represent pre-existing
knowledge, as they are generally useful but are not aligned with
the specific project being developed. In this case, exploration
has already been completed, and so does not detract from integra-
tion. Figure 13 presents the impacts of varying amounts of
exploration on the SAE car problem at different timespans of inte-
gration to test the benefits of design capture and reuse.
Exploration significantly improves project performance at all
timespans and set sizes (t(158) > 2.80, p < 0.006), and becomes
especially important for very short projects as in the 250 iterations
case (t(316) > 3.70, p < 0.003). These performance gains can be
explained as generic designs created when mapping the design
space, which may occur in previous projects, are carried over
and reused to get a head start on new projects which allows
them to create good solutions much faster.

Conclusion

This work introduces the PSORT platform to simulate the SBCE
process and its impacts on a design project. PSORT reproduces
the chance for PBCE to fail on coupled problems, correlating to
dead-end projects that require rework. These failures are miti-
gated or absent when simulating SBCE, reproducing its proposed
stability. Additionally, it lends plausibility to concerns about
dividing designers’ time over designs as uncoupled projects per-
form worse with large set sizes, though small set sizes perform
adequately on uncoupled problems while consistently resolving
coupled ones as well, supporting statements of SBCE’s wide
applicability except in very simple, short projects in Raudberget
(2010). Other effects reproduced include the slow start on projects
observed in Lycke (2018), and the benefits of recording and reus-
ing designs in future projects. The reproduction of all these effects
when implementing the principles of SBCE suggests the applic-
ability of this platform to further study the impacts of SBCE on
new team and problem structures.

While the simulated projects lend plausibility to concerns
about the inefficiency of developing many designs throughout
the project, a conservative approach in which small sets are
used, combined with a focus on creating an integrated solution
from the beginning, is found to mitigate this inefficiency while
still performing well on coupled problems. Therefore, it may be
desired to use SBCE to mitigate potential difficulties when the
coupling of the problem is uncertain.

SBCE’s principle of mapping the design space may significantly
contribute to the slow start of projects, as designers must first devote
time to learning the capabilities of their discipline and how they
interact with others. The knowledge and designs generated from
this process can be reused in future projects to significantly improve
performance under tight schedules, however. This highlights how
mapping the design space allows future projects to be completed
much more efficiently, despite its upfront costs.

Future work includes expanding on the limitations of PSORT
to explore how SBCE interacts with other aspects of design team
composition. PSORT currently requires that only one agent works
on each subproblem, presenting an opportunity for SBCE to coor-
dinate multiple agents assigned to a single subproblem in new
ways. Another limitation is that only one decomposition of the
SAE car problem is used, leaving open further investigation of
how SBCE’s benefits to coordination interact with other degrees

Figure 13. Solution objective function values with respect to exploration iterations at
different timespans in integration and set sizes of (a) two, (b) four, and (c) seven.
Dark lines are sample medians, while light lines are 75th percentiles.
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of problem decomposition. Modeling with more complex and
varied agents may investigate how agent properties and commu-
nication influence the process. Finally, the use of other solving
methods during iteration may allow for new insights and explicit
modeling of other factors such as uncertainty.
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Appendix

Trends of solution quality with respect to set size were found to be similar over
the number of agents present. Demonstration of this is shown in Figure A1 for
both 3 and 4 agents, demonstrating similar cases for both even and odd num-
bers of agents.

Figure A1. Solution objective function values with respect to set size for the model problem for three (A,B,C) and four (D,E,F) agents. U represents the weight of the
uncoupled objective, and C represents the weight of the coupled objective. Error bars are +/1 SE Axes that differ between figures due to the different scales of
relevant effects.
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