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THE SPEED OF EXTINCTION FOR SOME
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Abstract

The speed of extinction for some generalized Jiřina processes {Xn} is discussed. We
first discuss the geometric speed. Under some mild conditions, the results reveal that the
sequence {cn}, where c does not equal the pseudo-drift parameter at x = 0, cannot
estimate the speed of extinction accurately. Then the general case is studied. We
determine a group of sufficient conditions such that Xn/cn, with a suitable constant
cn, converges almost surely as n → ∞ to a proper, nondegenerate random variable. The
main tools used in this paper are exponent martingales and stochastic growth models.
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1. Introduction

The generalized Jiřina process considered in this paper is a modification of the Jiřina
process [1] whose reproductive behavior may depend on the size of the population. This kind of
process was first introduced by Li [4] and called the continuous-state population-size-dependent
branching process (continuous-state PSDBP). Here we recall its definition.

A time-homogeneous Markov process X = {Xn} with state space [0, ∞) is called a contin-
uous-state PSDBP if, for any λ ≥ 0 and x ≥ 0,

E[exp{−λXn+1} | Xn = x] = exp{−xF(x, λ)},
where F(x, λ) is a reproduction cumulative function (RCF) satisfying

F(x, λ) = γ (x)λ +
∫ +∞

0+
(1 − e−λu)ν(x, du).

Here γ (x) is a nonnegative Borel function and (1 ∧ u)ν(x, du) is a finite kernel from [0, +∞)

to (0, +∞). Obviously, the continuous-state PSDBP is uniquely determined by the function
F(x, λ) or the functions γ (x) and ν(x, du). We call γ (x) the drift function, ν(x, ·) the Lévy
measure function, and

m(x) := γ (x) +
∫ +∞

0+
uν(x, du)

the offspring mean function if the integral is finite. Furthermore, we call the limit of γ (x) as
x → 0 the pseudo-drift at x = 0 and the limit of m(x) as x → 0 the pseudo-mean at x = 0.
In general, we call X the subcritical continuous-state PSDBP if its offspring mean function
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m(x) is bounded and limx→+∞ m(x) < 1, or the supercritical continuous-state PSDBP if
limx→+∞ m(x) > 1.

Obviously, if γ (x) ≡ γ is a constant function and ν(x, ds) ≡ ν(ds) for some measure ν(ds)

on (0, ∞), then X = {Xn} is a Jiřina process. Hence, for Jiřina processes, their offspring mean
functions are constants.

It is easy to check that if m(x) exists then, for any k ≥ 0,

E[Xk+1 | Xk] = m(Xk)Xk. (1.1)

Since continuous-state PSDBPs and Jiřina processes have a similar construction, it seems
reasonable to imagine that they have similar properties, though there are some complexities that
require a more comprehensive approach and lead to more difficulties in studying continuous-
state PSDBPs. For example, a continuous-state PSDBP can arise from the limit of a sequence
of scaled generalized Galton–Watson processes (see [4]), while a Jiřina process can arise from
a sequence of scaled Galton–Watson processes. Under some mild conditions, the continuous-
state PSDBPs have the extinct property

P(Xn → 0 or Xn → +∞) = 1,

which is the same as that of the Jiřina processes, though we cannot use the composition of the
RCF F(x, λ) (see [7]). In addition, Li [5], [6] showed that, under certain conditions, a sequence
of scaled continuous-state PSDBPs converges weakly to a diffusion process whose stochastic
differential equation is similar to that of the limiting diffusion arising from a sequence of scaled
Jiřina processes.

Note that Jiřina [2] raised the following question concerning Jiřina processes: if the Jiřina
process X = {Xn} is subcritical, so that in fact Xn → 0 almost everywhere, do there exist
positive constants cn such that {Xn/cn} approaches a nondegenerate random variable in some
sense? Seneta and Vere-Jones [8] obtained a necessary and sufficient condition in the weak
convergence sense, i.e. that γ > 0 and {cn} satisfy limn→+∞ cn+1/cn = γ , where γ is
the drift constant of X. At the same time, Seneta and Vere-Jones pointed out that if X is a
supercritical Jiřina process then Xn/cn with limn→+∞ cn+1/cn = m converges weakly to a
proper, nondegenerate random variable, where m is the offspring mean of X. We remark that
Kesten pointed out in his report of [8] (see MR0246379 in Mathematical Reviews) that strong
convergence can be readily obtained f rom weak convergence.

Natural questions to ask are what is the speed of extinction for the continuous-state PSDBPs
and whether the results proved by Seneta and Vere-Jones [8] still hold to some extent for
continuous-state PSDBPs? We note that the results in [8] show that in order to obtain a proper,
nondegenerate limit for Xn/cn, {cn} must depend on γ for the subcritical case and on m for
the supercritical case. It seems that the convergence mechanisms of Xn/cn are different for
the subcritical case and the supercritical case. Is this difference essential? In this work we
aim to provide some preliminary discussions of these problems. We will seek some sufficient
conditions such that Xn/cn converges almost surely (a.s.) to a proper, nondegenerate random
variable, where Xn is a continuous-state PSDBP with limn→+∞ Xn = 0 a.s. Our results to
some extent generalize the corresponding results of [8]. Applying our results to Jiřina processes,
we can define the parameter 1/γ as the ‘mean’ in some sense; therefore, we can say in some
sense that the results of [8] for the subcritical and supercritical cases are consistent. For more
details, see Subsection 4.2, below.

The main tools used in this paper are exponent martingales and general stochastic growth
models (see, for example, [3]). We divide this paper into four sections. The basic assumptions
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and the main results are introduced in Section 2. In Section 3 we investigate the possible
geometric speed of extinction. In Section 4 we formulate a stochastic growth model based on
the continuous-state PSDBP and use it to find a group of sufficient conditions such that Xn/cn

converges almost everywhere to a proper, nondegenerate random variable.

2. Basic assumptions and main results

From now on, X = {Xn, n = 0, 1, 2, . . . } is a continuous-state PSDBP with X0 > 0 and
RCF

F(x, λ) = γ (x)λ +
∫ +∞

0+
(1 − e−λs)ν(x, ds),

where 1 > γ (x) > 0. In addition, unless stated otherwise, we define

F(λ) = γ λ +
∫ +∞

0+
(1 − e−λu)µ(du),

where 0 < γ < 1 and µ is a measure on (0, +∞) with
∫ +∞

0+ (1 ∧ u)µ(du) < +∞.
Note that X0 > 0 and γ (·) > 0 imply that, for any n ≥ 0, Xn > 0 a.s.
Throughout this paper, we suppose that X becomes extinct, i.e. Xn → 0 a.s. as n → +∞.

According to [7], this is not an extraordinary assumption. If F(x, λ) is continuous on x ∈
[0, +∞) for any λ > 0 and the criterion function

f (x) = sup{λ ≥ 0 : λ ≤ F(x, λ)}
is bounded, then the subcritical continuous-state PSDBP becomes extinct.

Let {cn} be a sequence of positive constants, and, for any n ≥ 0, define

Yn = Xn

cn

.

We first consider the special case in which cn = cn for some c ∈ (0, 1). To this end, we
assume that

(A) as x → 0, γ (x) → γ and F(x, λ) → F(λ) for any λ > 0.

Obviously, all subcritical Jiřina processes satisfy assumption (A). We prove the following
main results in Section 3.

Theorem 2.1. If assumption (A) holds then, for any 1 > c > γ , there exists a generalized
random variable Y ∈ {0, +∞} such that Yn → Y a.s.

Theorem 2.2. If assumption (A) holds then Yn→ + ∞ a.s. for any c < γ .

Theorems 2.1 and 2.2 show that the speed of extinction is closely related to γ , the pseudo-
drift at x = 0; for any c 	= γ , cn is not a good estimation for the speed of the continuous-state
PSDBP X to become extinct. A potentially good estimation is γ n. However, the following two
examples show that this case is complicated and subtle.

Example 2.1. Let r ∈ (0, 1/e) and γ (x) = 1
2 (1 + 1/ ln(x ∧ r)). Suppose that X = {Xn, n =

0, 1, 2, . . . } is a continuous-state PSDBP with r > X0 = x0 > 0 and RCF

F(x, λ) = γ (x)λ.
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In this case, γ = limx→0 γ (x) = 1
2 and Xn is indeed a positive sequence with

Xn+1 = Xnγ (Xn) = Xn

2

(
1 + 1

ln Xn

)
.

Let d = 1
2 (1 + 1/ ln r). Then d ≤ γ (x) < 1

2 for any x > 0. Let Yn = Xn/γ
n = 2nXn. Then,

for any n ≥ 0, dnX0 ≤ Yn ≤ X0 and

Yn+1 = Yn

(
1 − 1

n ln 2 − ln Yn

)
≤ Yn

(
1 − 1

n(ln 2 − ln d) − ln x0

)
.

Therefore,

0 ≤ Yn ≤ x0

n∏
k=0

(
1 − 1

k(ln 2 − ln d) − ln x0

)
.

From +∞∑
k=1

1

k(ln 2 − ln d) − ln x0
= +∞

we obtain Yn → 0 as n → +∞.

The following example shows that the limit random variable Y of Xn/γ
n may be proper and

nondegenerate.

Example 2.2. Let X = {Xn} be a continuous-state PSDBP with

F(x, λ) = 1 − (x ∧ 0.5)

2
λ + 1

2

∫ +∞

0+
(1 − e−λs)

1

(x ∧ 0.5)3 exp

{
− s

(x ∧ 0.5)2

}
ds

= 1 − (x ∧ 0.5)

2
λ + (x ∧ 0.5)λ

2(1 + (x ∧ 0.5)2λ)
(2.1)

and X0 = 1. Then Proposition 3.1 shows that Yn := Xn/γ
n = 2nXn converges a.s. to a random

variable Y ∈ (0, +∞).

The two examples show that it is difficult to obtain a satisfactory result for the case in which
c = γ if we suppose that only assumption (A) holds. In Subsection 3.3 we briefly discuss this
case under some special assumptions. In Section 4, via a more general scheme, we find some
suitable sufficient conditions such that Xn/γ

n converges a.s. to a proper, nondegenerate limit.
In Section 4 we further assume that

(B1) for any x > 0, m(x) = γ (x) + ∫ +∞
0+ uν(x, du) < +∞ and limx→0 m(x) = m < 1;

(B2) there exists an x0 > 0 such that −γ (x)/x ≤ γ ′(x) ≤ 0 for any x ∈ (0, x0);

(B3) there exists a measure η on (0, +∞) with
∫ +∞

0+ uη(du) − ∫ 1
0 u ln(u)η(du) < +∞ such

that, for any x ∈ (0, x0) and s > 0, ν(x, [s, +∞)) ≤ η([s, +∞)).

Remark 2.1. Assumption (B3) indicates that, for any x ∈ (0, x0) and λ, β > 0,∫ +∞

0+
(1 − e−λu)ν(x, du) ≤

∫ +∞

0+
(1 − e−λu)η(du),

∫ +∞

0+
u

ux + β
ν(x, du) ≤

∫ +∞

0+
u

ux + β
η(du).
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The main result proved in Section 4 is as follows.

Theorem 2.3. Assume that (B1)–(B3) hold. Then there exists a sequence of positive constants
{cn, n ≥ 0} with limn→+∞ cn+1/cn = γ such that Yn = Xn/cn converges a.s. to a proper,
nondegenerate random variable.

By Theorem 2.3 we can obtain sufficient conditions for Xn/γ
n to converge a.s. to a proper,

nondegenerate limit; see Corollary 4.1, below. In addition, since assumptions (B1)–(B2) always
hold for Jiřina processes, by Theorem 2.3 we obtain the following result, which, in essence, is
the ‘if’ part of Theorem 2.2 of [8]. The proof is omitted.

Corollary 2.1. Suppose that X = {Xn} is a subcritical Jiřina process with parameters γ and
µ(·). If γ > 0 and

∫ 1
0 u| ln u|µ(du) < +∞, then we can take cn = c0γ

n for some c0 > 0 and
all n ≥ 0 such that Xn/cn converges a.s. to a proper, nondegenerate random variable.

In the following example we provide a continuous-state PSDBP which satisfies all the
assumptions given in this section.

Example 2.3. Let g(s) = 1/s3/2 ∧ 1/s5/2 for s > 0. Then∫ +∞

0+
sg(s) ds =

∫ 1

0+
s−1/2 ds +

∫ +∞

1
s−3/2 ds = 4.

For any x ≥ 0 and λ ≥ 0, define

F(x, λ) = λ

2(1 + x/100)
+ 1

6

∫ +∞

0+
(1 − e−λs)

g(s)

2 + sin(xπ)
ds.

Let X = {Xn, n ≥ 0} be a continuous-state PSDBP determined by F(x, λ). Then by some
simple calculations we know that X has the following properties.

(P1) For every x > 0, γ (x) = 50/(100 + x) ∈ (0, 1
2 ) and

ν(x, ds) = g(s)

6(2 + sin(xπ))
ds.

(P2) As x → 0, F(x, λ) converges to

F(λ) = λ

2
+ 1

12

∫ +∞

0+
(1 − e−λs)g(s) ds

and γ (x) → 1
2 .

(P3) For x > 0,

m(x) = 50

100 + x
+ 2

6 + 3 sin(xπ)
< +∞

and, as x → 0, m(x) → 5
6 < 1. In addition, for x = (4k + 3)/2, where 0 ≤ k ≤ 24,

1 < m(x) < 7
6 .

(P4) For x ∈ (0, 1),

γ ′(x) = − 50

(100 + x)2 < 0 and γ ′(x) > − 50

(100 + x)x
= −γ (x)

x
.
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(P5) Let η(ds) = 1
6g(s)ds. Then∫ +∞

0+
sη(ds) −

∫ 1

0+
s ln(s)η(ds) = 2

3
− 1

6

∫ 1

0+
ln s

s1/2 ds = 4

3
< +∞,

and, for any x ∈ (0, 1) and s > 0, ν(x, [s, +∞)) ≤ η([s, +∞)).

(P6) From the fact that, for any x ≥ 0 and λ > 0,∫ +∞

0+

(
1

λ
∧s

)
ν(x, ds) = 1

6

∫ +∞

0+

(
1

λ
∧s

)
g(s)

2 + sin(xπ)
ds ≤ 1

6

∫ +∞

0+

(
1

λ
∧s

)
g(s) ds,

by Proposition 2.4 of [5], we know that the criterion function

f (x) = sup{λ ≥ 0 : λ ≤ F(x, λ)}
is bounded. Furthermore, since m(x) is bounded and lim supx→+∞ m(x) ≤ 2

3 < 1, by
the same proof as Corollary 3.1 of [7], we find that Xn → 0 a.s. as n → ∞.

Properties (P2)–(P6) indicate that assumptions (A) and (B1)–(B3) hold forX, which becomes
extinct. Hence, Theorem 2.3 is true for this process.

3. Geometric speed of extinction

In this section we discuss the geometric speed of extinction. First, recall that Xn → 0 a.s.
implies that, for any δ > 0,

lim
n→+∞ P

(+∞⋂
m=n

{Xm ≤ δ}
)

= 1. (3.1)

The main tool used in this section is exponent martingales.

3.1. The case in which c > γ

In this subsection we will prove Theorem 2.1 and obtain some interesting corollaries.

Proof of Theorem 2.1. It is sufficient to prove that, for a given λ > 0, exp{−λYn}→Ỹ :=
e−λY a.s., and that P(Ỹ = 0) + P(Ỹ = 1) = 1. We divide the proof into four steps.

Step 1. There exists a λ0 > 0 such that, for any given λ > λ0, we have δ(λ) > 0 satisfying

γ (x)

c
λ + cnf

(
x,

λ

cn+1

)
≤ λ (3.2)

for all 0 ≤ x < δ(λ) and n ≥ 0. Here, f (x, λ) := ∫ +∞
0+ (1 − e−λs)ν(x, ds).

Let

β = c + γ

2c
and φ(λ) = βλ +

∫ +∞

0+
(1 − e−λs/c)µ(ds).

Since limλ→+∞ φ(λ)/λ = β < 1, there exists a λ0 > 0 such that, for any λ > λ0, φ(λ) ≤ λ.
For a given λ > λ0, since limx→0 F(x, λ/c) = F(λ/c), there exists a constant δ(λ) > 0 such
that, for any x ≤ δ(λ),

F

(
x,

λ

c

)
≤ F

(
λ

c

)
+ c − γ

2c
= φ(λ) ≤ λ. (3.3)
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Note that, for any n ≥ 0, cnf (x, λ/cn+1) ≤ f (x, λ/c) for c < 1. Hence, from (3.3) we obtain

γ (x)

c
λ + cnf

(
x,

λ

cn+1

)
≤ γ (x)

c
λ + f

(
x,

λ

c

)
= F

(
x,

λ

c

)
≤ λ.

In the remainder of the proof we let λ > λ0 be a fixed constant and we suppress the notation
λ in δ(λ).

Step 2. For any k, n ≥ 0, let F (n)
k = F {Xn, Xn+1, . . . , Xn+k} be the σ -algebra generated by

{Xn, Xn+1, . . . , Xn+k}, and let

A
(n)
k =

n+k⋂
m=n

{Xm ≤ δ} and Ỹ
(n)
k+1 = 1

A
(n)
k

Yn+k+1,

where 1
A

(n)
k

is the indicator function of the set A
(n)
k . Then {exp{−λỸ

(n)
k }, k = 1, 2, . . . }

is the bounded, nonnegative submartingale with respect to {F (n)
k , k = 1, 2, . . . } for any

n ≥ 0.

By the definition of Ỹ
(n)
k+1, we have

E[exp{−λỸ
(n)
k+1} | F (n)

k ] = E[1
A

(n)
k

exp{−λỸ
(n)
k+1} | F (n)

k ] + 1
Ā

(n)
k

= 1
A

(n)
k

E[exp{−λYn+k+1} | F (n)
k ] + 1

Ā
(n)
k

, (3.4)

where Ā
(n)
k is the complementary set of A

(n)
k . Note that, for any n > 0,

E[exp{−λYn+k+1} | F (n)
k ] = E

[
exp

{
−λXn+k+1

cn+k+1

} ∣∣∣∣ Xn+k

]
= exp{−Yn+kGn+k(Xn+k, λ)}, (3.5)

where

Gn+k(Xn+k, λ) = γ (Xn+k)
λ

c
+

∫ +∞

0+
cn+k

(
1 − exp

{
− λs

cn+k+1

})
ν(Xn+k, ds).

Obviously, (3.2) shows that
1
A

(n)
k

Gn+k(Xn+k, λ) ≤ λ. (3.6)

From the fact that A
(n)
k ⊂ A

(n)
k−1 for any k > 1, we have

1
A

(n)
k

Yn+k = 1
A

(n)
k

Ỹ
(n)
k . (3.7)

Then (3.4)–(3.7) imply that

E[exp{−λỸ
(n)
k+1} | F (n)

k ] ≥ exp{−λỸ
(n)
k },

which is the desired conclusion.

Step 3. We prove that exp{−λYn} converges a.s. to a random variable Ỹ ∈ [0, 1].
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By the submartingale convergence theorem, there exists a random variable W̃n ∈ [0, 1] such
that, for any n, exp{−λỸ

(n)
k+1}→W̃n a.s. as k → +∞. By the definition of Ỹ

(n)
k , Ỹ

(n+1)
k ≥ Ỹ

(n)
k+1

for any k > 0 and n > 0, which implies that W̃n ≥ W̃n+1 a.s. for any n > 0. Consequently,
there exists a random variable Ỹ ∈ [0, 1] such that W̃n→Ỹ a.s. as n → +∞, which means that,
for any δ > 0 and any ε > 0, there exists an n1 > 0 such that, for any n ≥ n1,

P

(
|W̃n − Ỹ | >

δ

3

)
<

ε

3
. (3.8)

Taking n > n1, by the fact that

{| exp{−λYn+k} − exp{−λỸ
(n)
k }| > 0} ⊂

n+k−1⋃
m=n

{Xm > δ},

we know that

P

(+∞⋃
k=1

{| exp{−λYn+k} − exp{−λỸ
(n)
k }| > 0}

)
≤ P

(+∞⋃
m=n

{Xm > δ}
)

. (3.9)

Combining (3.1) and (3.9), there exists an n2 > n1 such that

P

(+∞⋃
k=1

{| exp{−λYk+n2} − exp{−λỸ
(n2)
k }| > 0}

)
≤ ε

3
. (3.10)

Furthermore, exp{−λỸ
(n2)
k }→W̃n2 a.s. implies that

P

( +∞⋃
k=n3

{
| exp{−λỸ

(n2)
k } − W̃n2 | >

δ

3

})
<

ε

3
for some n3 > 0. (3.11)

Let K = n2 + n3. Define

A :=
+∞⋃

m=n3

{
| exp{−λYn2+m} − exp{−λỸ (n2)

m }| >
δ

3

}
,

B :=
+∞⋃

m=n3

{
| exp{−λỸ (n2)

m } − W̃n2 | >
δ

3

}
,

and

C :=
{
|W̃n2 − Ỹ | >

δ

3

}
.

Then

P

( +∞⋃
m=K

{| exp{−λYm} − Ỹ | > δ}
)

≤ P(A ∪ B ∪ C) ≤ P(A) + P(B) + P(C).

From (3.8), (3.10), and (3.11), we obtain

P

( +∞⋃
m=K

{| exp{−λYm} − Ỹ | > δ}
)

< ε,

which implies that exp{−λYn} converges a.s. to Ỹ as n → +∞.
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Step 4. We prove that Ỹ ∈ {0, 1} a.s., i.e. P(Ỹ = 0) + P(Ỹ = 1) = 1.

By an argument similar to that used to prove (3.5), we have

E[exp{−λYn+1}] = E[exp{−YnGn(Xn, λ)}] = E[(exp{−λYn})Gn(Xn,λ)/λ], (3.12)

where
Gn(Xn, λ)

λ
= γ (Xn)

c
+ λ−1cnf

(
Xn,

λ

cn+1

)
.

Note that, for any ε > 0,

cnf

(
x,

λ

cn+1

)
=

∫ +∞

0+
cn(1 − exp{−λs/cn+1})

1 − e−λs/c
(1 − e−λs/c)ν(x, ds)

≤
∫

(ε,+∞)

cn

1 − e−λε/c
(1 − e−λs/c)ν(x, ds) +

∫
(0,ε]

(1 − e−λs/c)ν(x, ds)

≤ cn

1 − e−λε/c
f

(
x,

λ

c

)
+

∫
(0,ε]

(1 − e−λs/c)ν(x, ds). (3.13)

By assumption (A), we easily find that (1−e−λs)ν(x, ds) converges weakly to (1−e−λs)µ(ds)

as x → 0. Hence,

lim sup
x→0

∫
(0,ε]

(1 − e−λs)ν(x, ds) ≤
∫

(0,ε]
(1 − e−λs)µ(ds).

For any xn → 0, from (3.13), it follows that

lim sup
n→+∞

cnf

(
xn,

λ

cn+1

)
≤ lim sup

n→+∞

∫
(0,ε]

(1 − e−λs/c)ν(xn, ds)

≤
∫

(0,ε]
(1 − e−λs/c)µ(ds)

→ 0 as ε → 0. (3.14)

Since Xn→0 a.s., (3.14) implies that

cnf

(
Xn,

λ

cn+1

)
→ 0 a.s.

Consequently, Gn(Xn, λ)/λ → γ /c a.s. as n → +∞, and

(exp{−λYn})Gn(Xn,λ)/λ → Ỹ (λ)γ/c a.s. (3.15)

Combining (3.12) and (3.15), we obtain

E[Ỹ ] = E[Ỹ γ /c]. (3.16)

Since γ /c < 1, (3.16) implies that P(0 < Ỹ < 1) = 0. The proof of step 4 and, hence, of the
theorem is now complete.

Corollary 3.1. Under assumption (A), if in a neighborhood of 0 the offspring mean function
m(x) exists and m(x) → m < 1 as x → 0, then, for any c > m, Xn/c

n → 0 a.s. as n → +∞.
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Proof. From Theorem 2.1 we know that Xn/c
n → Y ∈ {0, +∞} a.s. Suppose that p =

P{Y = +∞} > 0. Since m(x) → m < 1 and c > m, there exists a constant δ > 0 such that,
for any x < δ, m(x) < c. When p > 0, by (3.1), there exists a positive integer N which may
depend on δ and p/2 such that

P

( +∞⋂
m=N

{Xm ≤ δ}
)

> 1 − p

2
.

For any n ≥ 0, let A
(n)
N = ⋂N+n

m=N {Xm ≤ δ}, AN = ⋂+∞
m=N {Xm ≤ δ}, and

F (n)
N = F {XN, XN+1, . . . , XN+n}.

Then

Wn := 1
A

(n)
N

Xn

cn
→ W := 1AN

Y.

Hence, P(W = +∞) > p/2 > 0. On the other hand, by (1.3) we have

E[Wn+1] = E

[
E

[
1
A

(n+1)
N

XN+n+1

cN+n+1

∣∣∣∣ F (n)
N

]]

≤ E

[
E

[
1
A

(n)
N

XN+n+1

cN+n+1

∣∣∣∣ F (n)
N

]]

= E

[
1
A

(n)
N

m(XN+n)XN+n

cN+n+1

]

≤ E

[
1
A

(n)
N

XN+n

cN+n

]
≤ · · ·
≤ E

[
1
A

(0)
N

XN

cN

]

≤ δ

cN

< +∞ for any n ≥ 0.

By Fatou’s lemma, we find that E[W ] < +∞, which contradicts the fact that P(W = +∞) > 0.
Consequently, p = 0. That is, Xn/c

n → 0 a.s.

Corollary 3.2. Suppose that assumption (A) holds. If in a neighborhood of 0 the offspring
mean function m(x) exists and, as x → 0, m(x) tends in a monotone fashion from below to a
constant m with γ < m < 1, then Xn/mn → 0 a.s. as n → +∞.

Proof. The proof is similar to that of Corollary 3.1. We omit it here.

Remark 3.1. Theorem 2.1 indicates that, for any c larger than the pseudo-drift at x = 0,
{cn, n ≥ 0} is not a sequence of suitable parameters to estimate the speed of extinction.
Corollary 3.1 and Corollary 3.2 show that the pseudo-mean at x = 0 is an upper bound for the
geometric speed of extinction.
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3.2. The case in which c < γ

Now we prove Theorem 2.2, which in essence discusses the lower bound for the geometric
speed of extinction.

Proof of Theorem 2.2. The proof is very similar to that of Theorem 2.1. For any λ > 0, let
β = (γ + c)/2c. From assumption (A), it follows that there exists a δ > 0 such that

γ (x)

c
λ ≥ βλ > λ for any x ≤ δ. (3.17)

Let Ỹ
(n)
0 = Yn,

Ỹ
(n)
k+1(ω) =

{
Yn+k+1(ω), ω ∈ A

(n)
k ,

Ỹ
(n)
k (ω), ω ∈ Ā

(n)
k ,

where A
(n)
k = ⋂n+k

m=n{Xm ≤ δ}, and let F (n)
k = F {Xn, Xn+1, . . . , Xn+k}. Then

E[exp{−λỸ
(n)
k+1} | F (n)

k ] = E[1
A

(n)
k

exp{−λYn+k+1} | F (n)
k ] + 1

Ā
(n)
k

exp{−λỸ
(n)
k }. (3.18)

Note that Yn = Xn/c
n for any n > 0. Hence,

E[exp{−λYn+k+1} | F (n)
k ]

= exp

{
−Yn+k(γ (Xn+k)

λ

c
+

∫ +∞

0+
ck+n

(
1 − exp

{
− λs

ck+n+1

}
ν(Xn+k, ds)

)}

≤ exp

{
−Yn+kγ (Xn+k)

λ

c

}
. (3.19)

Combining (3.18) and (3.19), we obtain

E[exp{−λỸ
(n)
k+1} | F (n)

k ] ≤ 1
A

(n)
k

exp

{
−Ỹ

(n)
k γ (Xn+k)

λ

c

}
+ 1

Ā
(n)
k

exp{−λỸ
(n)
k }. (3.20)

Then (3.17) and (3.20) imply that

E[exp{−λỸ
(n)
k+1} | F (n)

k ] ≤ exp{−λỸ
(n)
k },

which shows that {exp{−λỸ
(n)
k+1}, k = 1, 2, . . . } is the bounded, nonnegative supermartingale

with respect to {F (n)
k , k = 1, 2, . . . } for any n > 0. By the supermartingale convergence

theorem, there exists a random variable W̃n ∈ [0, 1] such that

exp{−λỸ
(n)
k+1} → W̃n a.s.

as k → +∞ for any n. According to the definition of Ỹ
(n)
k ,

Ỹ
(n+1)
k = Ỹ

(n)
k+1

on A
(n)
k for any k > 0 and n > 0. Therefore,

W̃n = W̃n+1 a.s. on A(n) :=
+∞⋂
m=n

{Xm ≤ δ} for any n > 0.
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Let B1 = A(1), Bn = A(n) \ A(n−1), n ≥ 2. Then

+∞⋃
i=1

Bi = lim
n→+∞

n⋃
i=1

Bi = lim
n→+∞ A(n) = lim

n→+∞

+∞⋂
m=n

{Xm ≤ δ}.

Define

W̃ =
+∞∑
k=1

1Bk
W̃k =

+∞∑
k=n+1

1Bk
W̃k + 1A(n)W̃n.

Obviously, for any ε > 0,

P

(+∞⋂
m=n

{|W̃m − W̃ | ≤ ε}
)

≥ P

(+∞⋂
m=n

A(m)

)
= P(A(n)) → 1 as n → +∞.

This means that W̃k→W̃ a.s. Then by similar arguments to those used in step 3 of the proof of
Theorem 2.1 we obtain

exp{−λYn} → W̃ ≥ 0 a.s.

Consequently, for any n ≥ 0, from (3.17), it follows that

E[W̃ ] = lim
k→+∞ E[exp{−λYn+1+k}]

= lim
k→+∞ E

[
exp

{
−Yn+k

(
λγ (xn+1)

c

+
∫ +∞

0+
cn

(
1 − exp

{
λs

cn+1

})
ν(xn+k, ds)

)}]

≤ lim
k→+∞ E[1

A
(n)
k

exp{−βλYn+k}] + P(Ā
(n)
k ). (3.21)

Since A
(n)
k ⊂ A

(n)
k−1 for any n ≥ 1 and k ≥ 1, we have, similarly,

E[1
A

(n)
k

exp{−βλYn+k}] ≤ E[1
A

(n)
k−1

exp{−βλYn+k}] ≤ E[1
A

(n)
k−1

exp{−β2λYn+k−1}]. (3.22)

Therefore, from (3.21) and (3.22), by induction we obtain, as n → +∞,

E[W̃ ] ≤ lim
k→+∞(E[1

A
(n)
0

exp{−βkλYn}] + P(Ā
(n)
k )) = P

(+∞⋃
m=n

{Xm ≥ δ}
)

,

where the right-hand side goes to 0 because Xn > 0 a.s. and β > 1. Hence, E[W̃ ] = 0. This
implies that Yn→ + ∞ a.s.

3.3. The case in which c = γ

In this subsection we study the case in which c = γ . This case is more complicated than
those discussed above. Here, we only deal with some simple subcases.

Theorem 3.1. Suppose that F(x, λ) ≥ F(λ) for any x > 0 and λ > 0. If F(x, λ) → F(λ) as
x → 0 for any λ > 0 then Xn/γ

n→Y ∈ (0, +∞] a.s.
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Proof. From the fact that

E

[
exp

{
−λ

Xn+1

γ n+1

} ∣∣∣∣ Xn

]

= exp

{
−Xn

(
γ (Xn)

λ

γ n+1 +
∫ +∞

0+

(
1 − exp

{
− λ

γ n+1 s

})
ν(Xnds)

)}

= exp

{
−XnF

(
Xn,

λ

γ n+1

)}

≤ exp

{
−XnF

(
λ

γ n+1

)}

≤ exp

{
−λ

Xn

γ n

}
, (3.23)

we easily find from the supermartingale convergence theorem that there exists a random variable
Y ∈ [0, +∞] such that Xn/γ

n → Y a.s. as n → +∞. Then, for any λ ≥ 0,

E[e−λY ] = lim
n→+∞ E

[
exp

{
−λ

Xn

γ n

}]
≤ E

[
exp

{
−λ

X1

γ

}]
.

Let λ → +∞. We have

P(Y = 0) ≤ lim
λ→+∞ E[e−λY ] ≤ lim

λ→+∞ E

[
exp

{
−λ

X1

γ

}]
= 0.

This implies that we can take Y ∈ (0, +∞] such that Xn/γ
n→Y a.s.

Similarly, we have the following result.

Theorem 3.2. (i) If γ (x) ≥ γ for any x > 0 then Xn/γ
n→Y ∈ (0, +∞] a.s.

(ii) If F(x, λ) ≤ γ λ for all x > 0 and λ > 0, then Xn/γ
n→Y ∈ [0, +∞) a.s.

Proof. (i) The proof is the same as that of Theorem 3.1, except that (3.23) is replaced by

E

[
exp

{
−λ

Xn+1

γ n+1

} ∣∣∣∣ Xn

]

= exp

{
−Xn

(
γ (Xn)

λ

γ n+1 +
∫ +∞

0+

(
1 − exp

{
− λ

γ n+1 s

})
ν(Xn ds)

)}

≤ exp

{
−Xnγ (Xn)

λ

γ n+1

}

≤ exp

{
−λ

Xn

γ n

}
.
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(ii) Note that

E

[
exp

{
−λ

Xn+1

γ n+1

} ∣∣∣∣ Xn

]

= exp

{
−Xn

(
γ (Xn)

λ

γ n+1 +
∫ +∞

0+

(
1 − exp

{
− λ

γ n+1 s

})
ν(Xn ds)

)}

= exp

{
−XnF

(
Xn,

λ

γ n+1

)}

≥ exp

{
−λ

Xn

γ n

}
.

By the submartingale convergence theorem, there exists a random variable Y ∈ [0, +∞] such
that Xn/γ

n → Y a.s. as n → +∞. Then, for any λ > 0,

E[e−λY ] = lim
n→+∞ E

[
exp

{
−λ

Xn

γ n

}]
≥ E

[
exp

{
−λ

X1

γ

}]
.

Let λ → 0. We have

P(Y = +∞) =
(

1 − lim
λ→0

E[e−λY ]
)

≤
(

1 − lim
λ→0

E

[
exp

{
−λ

X1

γ

}])
= 0.

This implies that we can take Y ∈ [0, +∞) such that Xn/γ
n→Y a.s.

To end this section, we explain why Yn := Xn/γ
n = 2nXn in Example 2.2 converges a.s.

to Y ∈ (0, +∞). We state it as a proposition.

Proposition 3.1. The limit random variable Y in Example 2.2 is proper and nondegenerate,
i.e. P(0 < Y < +∞) = 1.

Proof. From γ (x) := (1 − (x ∧ 0.5))/2 > 0, it follows that Xn > 0 a.s. for any n ≥ 0.
In addition, F(x, λ) ≤ λ/2 for all x > 0, λ ≥ 0, and γ (x) → 1

2 as x → 0. Therefore, from
Theorem 3.2, Yn converges a.s. to some random variable Y ∈ [0, +∞). Moreover, from (2.1)
we obtain the offspring mean function of X as follows:

m(x) = F ′
λ(x, λ)|λ=0 = 1 − (x ∧ 0.5)

2
+ (x ∧ 0.5)

2(1 + (x ∧ 0.5)2λ)2

∣∣∣∣
λ=0

= 1

2

for all x > 0. Hence, from (1.3), it follows that, for any n ≥ 0,

E[Xn] = 1

2n
E[X0] = 1

2n
.

Let Wn = 2n/2Xn. Corollary 3.1 indicates that

Wn→0 a.s. as n → +∞. (3.24)

For any n, m ≥ 0, define

Am
n =

n+m⋂
k=n

{Wn ≤ 1} =
n+m⋂
k=n

{
Xk ≤ 1

2k/2

}
.
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Let A∞
n = limm→+∞ Am

n . Equation (3.24) implies that

lim
n→+∞ P(A∞

n ) = lim
n→+∞ P

(+∞⋂
k=n

{Wk ≤ 1}
)

= lim
n→+∞ P

(+∞⋂
k=n

{
Xk ≤ 1

2k/2

})
= 1. (3.25)

If P(Y = 0) = p > 0 then, from (3.25), for any λ > 0 and sufficiently large n,

p

2
≤ E[e−λY 1A∞

n
]

= lim
m→+∞ E[exp{−λYn+m+1}1Am+1

n
]

≤ lim
m→+∞ E[exp{−λYn+m+1}1Am

n
]

= lim
m→+∞ E[E[exp{−λYn+m+1}1Am

n
| Fn+m]],

where Fk = F {X0, . . . , Xk} for any k ≥ 0. Note that, for any λ > 0,

E[exp{−λYn+m+1}1Am
n

| Fn+m] = 1Am
n

exp{−2−(n+m)Yn+mF(Xn+m, 2n+m+1λ)}
≤ 1Am

n
exp

{
−2−(n+m)Yn+m

1 − (Xn+m ∧ 0.5)

2
2n+m+1λ

}
≤ 1Am

n
exp{−Yn+m(1 − (Xn+m ∧ 0.5))λ}

≤ 1Am
n

exp

{
−Yn+m

(
1 − 1

2(n+m)/2

)
λ

}
.

Therefore,

E[exp{−λYn+m+1}1Am+1
n

] ≤ E

[
1Am

n
exp

{
−Yn+m

(
1 − 1

2(n+m)/2

)
λ

}]
. (3.26)

Recursively using (3.26), we obtain

E[exp{−λYn+m+1}1Am
n
] ≤ E

[
1A0

n
exp

{
−λYn

m∏
k=0

(
1 − 1

2(n+k)/2

)}]
.

Hence, for any λ > 0 and n ≥ 2,

p

2
≤ lim

m→+∞ E

[
1A0

n
exp

{
−λYn

m∏
k=0

(
1 − 1

2(n+k)/2

)}]

≤ E

[
exp

{
−λYn

+∞∏
k=0

(
1 − 1

2(n+k)/2

)}]

≤ E

[
exp

{
−λYn exp

{
− 4

2n/2(2 − √
2)

}}]
, (3.27)

where the last inequality follows from the fact that, for n ≥ 2,

+∞∏
k=0

(
1− 1

2(n+k)/2

)
≥ 1∏+∞

k=0

(
1 + 2/2(n+k)/2

) ≥ exp

{
−

+∞∑
k=0

2

2(n+k)/2

}
= exp

{
−2−(n−4)/2

2 − √
2

}
.

However, letting λ → +∞, the right-hand side of (3.27) becomes 0, since Yn > 0 a.s. The
contradiction shows that P(Y = 0) = 0. Consequently, P(0 < Y < +∞) = 1.
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4. General speed of extinction

The purpose of this section is to find a suitable sequence {cn} and some sufficient conditions
such that Yn = Xn/cn converges a.s. to a proper, nondegenerate random variable. The main
tool in this section is the growth model.

We consider a general growth model W = {Wn, n ≥ 0} defined recursively as follows:

W0 > 0 a.s., Wn+1 = g̃(Wn) + ζn+1 + R̃n+1 for any n ≥ 0, (4.1)

where {ζn}, {R̃n}, and the function g̃ : (0, +∞) → (0, +∞) satisfy some conditions. Küster
[3] chose the following assumptions.

(H1) g̃(w) > w for w ≥ w0 > 0.

(H2) For w ≥ w0, g̃(w) is increasing and g̃(w)/w is nonincreasing.

(H3) ζn is measurable with respect to F̃n ⊃ F {W0, W1, . . . , Wn} and E[ζn | F̃n−1] = 0.

(H4) There is a function σ̃ 2 : (0, +∞) → (0, +∞) such that

E[ζ 2
n+11{Wn≥w0} | F̃n] ≤ σ̃ 2(Wn)1{Wn≥w0} a.s.,

where

σ̃ 2(w) = o(1)g̃2(w) ln

(
g̃(w)

w

)
<

g̃2(w) ln(g̃(w)/w)

2b−1 + 2(1 − 3b)−2

for some b ∈ (0, 1
3 ) and every w ≥ w0.

(H5) Let wn+1 = g̃(wn) for any n ≥ 0. If {yn, n ≥ 0} is a sequence with

lim inf
n→+∞

ln yn

ln wn

≥ 1

then
∑+∞

n=1 σ̃ 2(yn)/g̃
2(yn) < +∞.

Then a result was proved as follows.

Lemma 4.1. For the process {Wn, n ≥ 0} given by (4.1), suppose that (H1)–(H5) hold. If the
random variables R̃n, n ≥ 0, satisfy

+∞∑
n=0

|R̃n+1|
g̃(Wn)

1{Wn≥w0} < +∞ a.s. (4.2)

then
Wn

wn

→ W a.s. with P(0 < W < +∞) = P
(

lim sup
n→+∞

Wn > w0

)
.

Remark 4.1. This result was stated as Proposition 1 in [3], where condition (4.2) was written
as +∞∑

n=0

|R̃n|
g̃(Wn)

1{Wn≥w0} < +∞ a.s. (4.3)

From the proof of Proposition 1 of [3], it is evident that expression (4.3) published in [3] includes
a typo. The correct formula is (4.2).
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4.1. An auxiliary process and some lemmas

Now we introduce an auxiliary process Z = {Zn} with Zn = 1/Xn for any n ≥ 0, using
the conventions that 1

0 =: +∞ and 1/+∞ =: 0. Recall that X = {Xn, n ≥ 0} is an extinct
continuous-state PSDBP with X0 > 0 and RCF

F(x, λ) = γ (x)λ +
∫ +∞

0+
(1 − e−λs)ν(x, ds),

where 1 > γ (x) > 0. Then from 0 < Xn < +∞ a.s. we know that 0 < Zn < +∞ a.s.
Furthermore, from Xn → 0 a.s., it follows that Zn → +∞ a.s. Let

Fn := F (Z0, Z1, . . . , Zn) = F (X0, X1, . . . , Xn).

Define

G(x) :=
∫ +∞

0
exp

{
− 1

x
F(x−1, λ)

}
dλ.

Then, for any x > 0,

G(x) ≤
∫ +∞

0
exp

{
− 1

x
γ (x−1)λ

}
dλ = x

γ (x−1)
< +∞.

Therefore, for any n ≥ 0, we can calculate the conditional expectation of Zn+1 with respect to
Fn as follows:

E[Zn+1 | Fn] = E[Zn+1 | Zn]
= E

[
1

Xn+1

∣∣∣∣ Xn

]

= E

[∫ +∞

0
exp{−λXn+1} dλ

∣∣∣∣ Xn

]

=
∫ +∞

0
E[exp{−λXn+1} | Xn] dλ

=
∫ +∞

0
exp{−XnF(Xn, λ)} dλ

=
∫ +∞

0
exp

{
− 1

Zn

F(Z−1
n , λ)

}
dλ

= G(Zn). (4.4)

Consequently,

Zn+1 = G(Zn) + ξn+1 = g(Zn) + ξn+1 + Rn+1 for any n ≥ 0,

where ξn+1 = Zn+1 − G(Zn), g(x) = x/γ (x−1), Rn+1 = G(Zn) − g(Zn), and Z0 = X−1
0 .

Below, we regard Z as a growth model and prove that if assumptions (A) and (B1)–(B3) hold,
then conditions (H1)–(H5) are true for Z.

For any x > 0, let

φ(x) = exp

{
− 1

x

∫ +∞

0+
(1 − e−su)ν(x−1, du)

}
− exp

{
− 2

x

∫ +∞

0+
(1 − e−su)ν(x−1, du)

}
,
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and define

σ 2(x) :=
∫ +∞

0
4s exp

{
− 2

x
γ (x−1)s

}
φ(x) ds.

If
∫ +∞

0+ uν(x, du) < +∞, x > 0, then, by the inequality 1 − e−x ≤ x,

φ(x) ≤ 1

x

∫ +∞

0+
(1 − e−su)ν(x−1, du) ≤ s

x

∫ +∞

0+
uν(x−1, du) < +∞,

and, hence,

σ 2(x) ≤
∫ +∞

0
4

s

x
exp

{
− 2

x
γ (x−1)s

} ∫ +∞

0+
(1 − e−su)ν(x−1, du) ds < +∞. (4.5)

Therefore, assumption (B1) implies that σ 2(x) is well defined for every x > 0. We have the
following lemmas.

Lemma 4.2. If assumptions (A) and (B2) hold, then

1. g(z) > z for z ≥ z0, where z0 ≥ x−1
0 is a given constant;

2. for z ≥ z0, g(z) is increasing while g(z)/z is nonincreasing.

Proof. The proof is straightforward and is thus omitted.

Lemma 4.3. If assumptions (A), (B1), and (B3) hold, then

E[ξ2
n+11{Zn≥z0} | Fn] ≤ σ 2(Zn)1{Zn≥z0} a.s.

and

lim
z→+∞

σ 2(z)

g2(z) ln(g(z)/z)
= 0.

Proof. Note that, by assumption (A),

lim
z→+∞

σ 2(z)

g2(z) ln(g(z)/z)
= lim

z→+∞
σ 2(z)γ (z−1)

z2 ln(γ −1(z−1))
= γ

− ln γ
lim

z→+∞
σ 2(z)

z2 , (4.6)

and that, for sufficiently large z > 0, by (4.5) and assumption (B3),

0 ≤ σ 2(z)

z2

≤ 1

z3

∫ +∞

0
4s exp

{
−2

z
γ (z−1)s

} ∫ +∞

0+
(1 − e−su)ν(z−1, du) ds

≤ 1

z3

∫ +∞

0
4s exp

{
−2

z
γ (z−1)s

} ∫ +∞

0+
(1 − e−su)η(du) ds

= 1

z

∫ +∞

0
4s exp{−2γ (z−1)s}f (zs) ds, (4.7)

where f (s) = ∫ +∞
0+ (1 − e−su)η(du). Since

lim
s→+∞

f (s)

s
= 0, (4.8)
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we know that, as z → +∞, f (zs)/zs → 0 for s > 0. Furthermore, by (4.8), there exists an
M > 0 such that f (s) ≤ Ms, and, hence, for sufficiently large z,

1

z
4s exp{−2γ (z−1)s}f (zs) ≤ 4s2M exp{−2γ (z−1)s} ≤ 4s2Me−sγ

follows from the fact that γ (z−1) tends to γ > 0 as z → +∞. Applying the dominated
convergence theorem to (4.7), we find that σ 2(z)/z2 → 0 as z → +∞. Then, from (4.6), it
follows that

lim
z→+∞

σ 2(z)

g2(z) ln(g(z)/z)
= 0.

On the other hand, from the fact that

E

[
1

X2
n+1

∣∣∣∣ Xn

]
= E

[∫ +∞

0

∫ +∞

0
exp{−(s + t)Xn+1} ds dt

∣∣∣∣ Xn

]

=
∫ +∞

0
t exp{−XnF(Xn, t)} dt

and the convexity of F , it follows that

E[ξ2
n+1 | Fn] =

∫ +∞

0
t exp{−Z−1

n F (Z−1
n , t)} dt

−
∫ +∞

0
exp{−Z−1

n F (Z−1
n , s)} ds

∫ +∞

0
exp{−Z−1

n F (Z−1
n , u)} du

≤
∫ +∞

0
s exp{−Z−1

n F (Z−1
n , s)} ds

−
∫ +∞

0

∫ +∞

0
exp

{
−2Z−1

n F

(
Z−1

n ,
s + u

2

)}
ds du

≤
∫ +∞

0
4s exp{−Z−1

n F (Z−1
n , 2s)} ds −

∫ +∞

0
4s exp{−2Z−1

n F (Z−1
n , s)} ds

=
∫ +∞

0
4s exp{−2Z−1

n F (Z−1
n , s)}

× (exp{2Z−1
n F (Z−1

n , s) − Z−1
n F (Z−1

n , 2s)} − 1) ds.

Then, by the fact that, for any x > 0,

2F(x, s) − F(x, 2s) =
∫ +∞

0+
(1 − e−su)2ν(x, du) ≤

∫ +∞

0+
(1 − e−su)ν(x, du),

we obtain

E[ξ2
n+1 | Fn] ≤

∫ +∞

0
4s exp{−2Z−1

n F (Z−1
n , s)}

×
(

exp

{
Z−1

n

∫ +∞

0+
(1 − e−su)ν(Z−1

n , du)

}
− 1

)
ds

=
∫ +∞

0
4s exp{−2Z−1

n γ (Z−1
n )s}φ(Zn) ds

= σ 2(Zn).

This completes the proof.

https://doi.org/10.1239/aap/1246886624 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886624


Speed of extinction 595

Lemma 4.4. Suppose that assumptions (A) and (B1)–(B3) hold. Let zn+1 = g(zn) for any
n ≥ 0. If, for any n ≥ 0, yn > 0 and lim infn→+∞ ln yn/ln zn ≥ 1, then

+∞∑
n=1

σ 2(yn)

g2(yn)
< +∞.

Proof. By assumptions (A) and (B2), we know that

γ (x−1
0 ) ≤ γ0 := γ (z0) ≤ γ (z−1) ≤ γ for any z ≥ z0. (4.9)

Hence, it is easy to obtain zn ≥ z0/γ
n. Then lim infn→+∞ ln yn/ln zn ≥ 1 indicates that

there exist some k > 0 and β > 1 such that, for all n ≥ k, z0/γ
n ≥ βn and yn ≥ βn ≥ z0.

Consequently,

+∞∑
n=0

σ 2(yn)

g2(yn)
=

+∞∑
n=0

γ 2(y−1
n )σ 2(yn)

y2
n

≤
+∞∑
n=0

σ 2(yn)

y2
n

=
k∑

n=0

σ 2(yn)

y2
n

+
+∞∑

n=k+1

σ 2(yn)

y2
n

.

Using assumption (B3) for the case yn ≥ z0, from (4.5) we further obtain

+∞∑
n=0

σ 2(yn)

g2(yn)
≤

k∑
n=0

σ 2(yn)

y2
n

+
+∞∑

n=k+1

1

yn

∫ +∞

0
4s exp{−2γ (y−1

n )s}f (yns) ds

=
k∑

n=0

σ 2(yn)

y2
n

+
∫ +∞

0

+∞∑
n=k+1

1

yn

4s exp{−2γ (y−1
n )s}f (yns) ds

≤
k∑

n=0

σ 2(yn)

y2
n

+
∫ +∞

0
4s exp{−2γ0s}

+∞∑
n=k+1

1

βn
f (βns) ds, (4.10)

where we have used the fact that f (xs)/x is nonincreasing with respect to x. Note that

+∞∑
n=0

1

βn
f (βns) ≤

∫ +∞

0

1

βx
f (βxs) dx (4.11)

=
∫ 1

0
f

(
s

y

)
1

ln β
dy

= 1

ln β

∫ +∞

0+

(
1 −

∫ +∞

u

e−sy u

y2 dy

)
η(du)

= 1

ln β

∫ +∞

0+

(
1 − e−su + u

∫ +∞

u

s

y
e−sy dy

)
η(du)

≤ 1

ln β

∫ +∞

0+

(
1 − e−su + u

∫ +∞

u

s

y

1

1 + sy
dy

)
η(du)

= 1

ln β

∫ +∞

0+
(1 − e−su + us(ln(1 + su) − ln(u)))η(du). (4.12)

Since

ln(1 + su) − ln(u) ≤
{

ln(1 + s) − ln(u), 0 < u ≤ 1,

ln(1 + s), u > 1,
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we obtain

1 − e−su + us(ln(1 + su) − ln(u)) ≤ su(1 + s) − su ln(u)1{u≤1}. (4.13)

Assumption (B3) indicates that there exists a positive constant M satisfying∫ +∞

0+
uη(du) +

∫ 1

0+
u| ln u|η(du) < M.

Hence, using (4.13), we obtain∫ +∞

0+
(1 − e−su + us(ln(1 + su) − ln(u)))η(du) < M(s2 + 2s). (4.14)

Combining (4.10), (4.11), and (4.14), we immediately obtain the desired conclusion.

Lemma 4.5. Suppose that assumptions (A) and (B1)–(B3) hold. The random variables {Rn}n≥0
satisfy

+∞∑
n=0

|Rn+1|
g(Zn)

1{Zn≥z0} < +∞ a.s.

Proof. Using integration by parts, we obtain

G(x) = x

γ (x−1)
−

∫ +∞

0+
s

γ (x−1)

∫ +∞

0
exp{−x−1F(x−1, λ) + λs}ν(x−1, ds) dλ.

Since γ (x)λ ≤ F(x, λ) for all x > 0,

G(x) ≥ x

γ (x−1)
−

∫ +∞

0+
1

γ (x−1)

sx

sx + γ (x−1)
ν(x−1, ds). (4.15)

Hence,

|Rn+1| = |G(Zn) − g(Zn)| ≤
∫ +∞

0+
1

γ (Z−1
n )

sZn

sZn + γ (Z−1
n )

ν(Z−1
n , ds)

and

|Rn+1|
g(Zn)

1{Zn≥z0} ≤
∫ +∞

0+
1

γ (Z−1
n )

sγ (Z−1
n )

sZn + γ (Z−1
n )

ν(Z−1
n , ds)1{Zn≥z0}. (4.16)

Let

Ak =
+∞⋂
n=k

{
Zn ≥ 1

mn/2

}
, k = 1, 2, . . . .

Since m(x) → m < 1 as x → 0 and assumption (A) holds, by Corollary 3.1 we find that
Xn/mn/2 → 0 a.s., which indicates that

lim
k→∞ P(Ak) = 1. (4.17)

From (4.9), it follows that

1

γ (Z−1
n )

sγ (Z−1
n )

sZn + γ (Z−1
n )

1{Zn≥z0} ≤ 1

γ0

sγ

sZn + γ
1{Zn≥z0}. (4.18)
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Then, for any k ≥ 1, using (4.16) and (4.18), we obtain

1Ak

+∞∑
n=0

|Rn+1|
g(Zn)

1{Zn≥z0} ≤
+∞∑
n=0

∫ +∞

0+
1

γ0

sγ

sZn + γ
ν(Z−1

n , ds)1{Zn≥z0}1Ak

≤
k−1∑
n=0

∫ +∞

0+
γ s

γ0(sZn + γ )
η(ds)

+
∫ +∞

0+
1

γ0

+∞∑
n=k

sγ

sm−n/2 + γ
η(ds). (4.19)

Assumption (B3) implies that∫ +∞

0+
1

γ0

+∞∑
n=k

sγ

sm−n/2 + γ
η(ds) ≤

∫ +∞

0+
1

γ0

∫ +∞

0

sγ

sm−x/2 + γ
dxη(ds)

≤
∫ +∞

0+
1

γ0

∫ 1

0

2sγ

s + γy

dy

| ln m|η(ds)

= 2

γ0| ln m|
∫ +∞

0+
s(ln(s + γ ) − ln s)η(ds)

≤ 2

γ0| ln m|
(∫ +∞

0+
s ln(1 + γ )η(ds) −

∫ 1

0+
s ln(s)η(ds)

)
< +∞ (4.20)

and that
k−1∑
n=0

∫ +∞

0+
γ s

γ0(sZn + γ )
η(ds) ≤ k

γ0

∫ +∞

0+
sη(ds) < +∞. (4.21)

From (4.19)–(4.21), it follows that

1Ak

+∞∑
n=0

|Rn+1|g(Zn)
−11{Zn≥z0} < +∞ for any k ≥ 1.

Then (4.17) implies that

+∞∑
n=0

|Rn+1|g(Zn)
−11{Zn≥z0} < +∞ a.s.

This completes the proof.

4.2. Proper and nondegenerate limits

Now we give the proof of Theorem 2.3.

Proof of Theorem 2.3. Obviously, ξn is measurable with respect to Fn and E[ξn | Fn−1] = 0.
In addition, from Lemma 4.3 we know that there exists a z̃0 ≥ x−1

0 such that

σ 2(z) <
g2(z) ln(g(z)/z)

2b−1 + 2(1 − 3b)−2

for some b ∈ (0, 1
3 ) and every z ≥ z̃0. Without loss of generality, we rewrite z̃0 as z0. Then,
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using Lemmas 4.2–4.5, we can show that the conditions of Lemma 4.1 hold for Z = {Zn}
and {zn}. Applying Lemma 4.1, we find that Zn/zn converges a.s. to a proper, nondegenerate
random variable L ∈ (0, +∞). Let cn = z−1

n . Since zn → +∞, we have

lim
n→+∞

cn+1

cn

= lim
n→+∞

zn

zn+1
= lim

n→+∞ γ (z−1
n ) = γ.

Moreover,

lim
n→+∞

Xn

cn

= lim
n→+∞

zn

Zn

= 1

L
∈ (0, +∞) a.s.

This completes the proof.

Remark 4.2. Under assumptions (A) and (B1)–(B3), Theorem 2.3 shows that Xn/c
n → 0 a.s.

for c > γ and Xn/c
n → +∞ a.s. for c < γ .

Furthermore, we have the following corollary.

Corollary 4.1. Suppose that assumptions (A), (B1), and (B3) hold. Let γ (x) ≡ γ for suffi-
ciently small x. Then we can take cn = c0γ

n for some c0 > 0 and all n ≥ 0 such that Xn/cn

converges a.s. to a proper, nondegenerate random variable. Therefore, Xn/γ
n converges a.s.

to a proper, nondegenerate random variable.

Proof. Since γ (x) ≡ γ for sufficiently small x, there exists an x0 > 0 such that, for all
x ∈ (0, x0), γ (x) ≡ γ , which implies that assumption (B2) holds. Then by Theorem 2.3 we
can have {cn} such that Xn/cn converges a.s. to a proper, nondegenerate random variable, where
c−1
n = zn = g(zn−1) for any n ≥ 1, g(x) = x/γ (x−1), and z0 is any sufficiently large constant.

Note that, when z0 > x−1
0 , zn = z0/γ

n, and, hence, cn = c0γ
n, where c0 = z−1

0 > 0.

By Corollary 4.1 we can obtain a group of sufficient conditions such that the speed of
extinction is γ n. However, Example 2.2 is not included in this corollary. For an application of
Theorem 2.3 to Jiřina processes, see Corollary 2.1.

To end, we point out that the parameter 1/γ is the limit of the unit conditional mean of Zn+1
with respect to Zn = z as z → +∞, namely,

1

γ
= lim

z→+∞
E[Zn+1 | Zn = z]

z
= lim

z→+∞
G(z)

z
.

In fact, from (4.4), (4.15), and assumption (B3), we have

1

γ
≥ lim sup

z→+∞
G(z)

z

≥ lim inf
z→+∞

G(z)

z

≥ 1

γ
− lim

z→+∞
1

z

∫ +∞

0+
sz

sz + γ (z−1)
ν

(
1

z
, ds

)

≥ 1

γ
− lim

z→+∞

∫ +∞

0+
s

sz + γ0
ν

(
1

z
, ds

)

≥ 1

γ
− lim

z→+∞

∫ +∞

0+
s

sz + γ0
η(ds)

= 1

γ
.
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Applying this fact to the Jiřina process, we discover that Theorem 2.1 of [8] for the subcritical
case and Theorem 3.1 of [8] for the supercritical case are consistent to some extent. The two
theorems seem different; the former depends on the drift parameter γ and the latter depends on
the offspring mean m. However, in essence, they both depend on the so-called limit of the unit
conditional mean. Here 1/γ is the limit of the unit conditional mean of Zn+1 = 1/Xn+1 as
Zn = z → +∞, and m is the limit of the unit conditional mean of Xn+1 as Xn = x → +∞.
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