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Large-scale patterns set the predictability limit of
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Events of extreme intensity in turbulent flows from atmospheric to industrial scales
have a strong social and economic impact, and hence there is a need to develop
models and indicators which enable their early prediction. Part of the difficulty here
stems from the intrinsic sensitivity to initial conditions of turbulent flows. Despite
recent progress in understanding and predicting extreme events, the question of how
far in advance they can be ideally predicted (without model error and subject only to
uncertainty in the initial conditions) remains open. Here we study the predictability
limit of extreme dissipation bursts in the two-dimensional Kolmogorov flow by applying
information-theoretic measures to massive statistical ensembles with more than 107 direct
numerical simulations. We find that extreme events with similar intensity and structure can
exhibit disparate predictability due to different causal origins. Specifically, we show that
highly predictable extreme events evolve from distinct large-scale circulation patterns. We
thus suggest that understanding all the possible routes to the formation of extreme events
is necessary to assess their predictability.

Key words: turbulence theory, chaos

1. Introduction

Understanding and predicting extreme events remains an open problem in turbulence
research with important theoretical and practical implications. Particularly now, in the
context of climate change (Rahmstorf & Coumou 2011; Stott 2016), interest has emerged to
develop models and indicators which afford early warnings of extreme events (Travis 2010;
Alfieri et al. 2012; Vitart & Robertson 2018). These models are usually constructed using
variational principles (Farazmand & Sapsis 2017; Blonigan, Farazmand & Sapsis 2019),

† Email address for correspondence: albertovelam@gmail.com

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 986 A2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:albertovelam@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.263&domain=pdf
https://doi.org/10.1017/jfm.2024.263


A. Vela-Martín and M. Avila

reduced-order modelling (Chen & Majda 2020) or machine learning (Lellep et al. 2020; Qi
& Majda 2020; Fernex, Noack & Semaan 2021; Lellep et al. 2022), and their performance
is partly limited by their ability to parse complex dynamics (Kaszás & Haller 2020).
A more fundamental limitation stems from the uncertainty in the initial conditions, which
is amplified in time by the chaotic dynamics, and imposes a maximum or ideal temporal
limit beyond which predictions become impossible (Lorenz 1963).

Predictability is characterised in general by the Lyapunov exponents (Boffetta et al.
2002), which measure the rate of separation of trajectories starting from neighbouring
initial conditions (Lorenz 1965; Aurell et al. 1997; Ziehmann, Smith & Kurths 2000). In
particular, the sum of the positive Lyapunov exponents, the Kolmogorov–Sinai entropy,
quantifies the rate at which different possible future states emerge from the present state of
the system (Boffetta et al. 2002). However, the Lyapunov exponents are very sensitive to
small-scale dynamics (Aurell et al. 1997; Budanur & Kantz 2022) and are only useful
to characterise short-time predictability (Palmer 1993). Moreover, their relationship to
certain features of the flow, such as extreme events, is not straightforward. Specifically,
the predictability of extreme events is not concerned with the number of different possible
future states, but with the fraction of them that will be extreme. This information is given
by the evolution of probability distributions in the phase space of the system, which is
difficult to model due to the high dimension of the chaotic attractor underlying turbulent
flows (Epstein 1969; Palmer 2000). In general, it is unclear how far in advance extreme
events can be predicted and by how much predictive models can be improved.

In this paper, we investigate the ideal predictability limit of extreme events in a
two-dimensional turbulent flow driven by a Kolmogorov (sinusoidal) forcing. We consider
the Navier–Stokes equations as a perfect forecasting model, and reproduce the uncertainty
of the initial conditions using small random perturbations, a technique known as Monte
Carlo forecasting (Epstein 1969). We produce massive ensembles of perturbations to
accurately describe the temporal evolution of probability distributions and quantify
predictability as the information gained by forecasting under these ideal conditions. We
show that the predictability of extreme events fluctuates strongly across the attractor and
that it depends on the state from which the extreme event emerges.

2. Forecasting the Kolmogorov flow with massive ensembles

The two-dimensional Kolmogorov flow is spatially extended, deterministic and chaotic,
and features some of the complex dynamics of turbulence, in particular, the strong bursting
(Kim, Kline & Reynolds 1971; Encinar & Jiménez 2020) and extreme episodes of the
dissipation (Hack & Schmidt 2021). It has been widely used as a testbed for reduced-order
modelling (Fernex et al. 2021), to describe the geometry of the phase space with simple
invariant solutions of the equations (Chandler & Kerswell 2013; Lucas & Kerswell 2015;
Suri et al. 2017; Page, Brenner & Kerswell 2021) and for the prediction of extreme
dissipation events (Farazmand & Sapsis 2019; Sapsis 2021). This flow is governed by the
two-dimensional Navier–Stokes equations (NSEs) in a doubly periodic square domain of
area L2 = (2π)2,

∂tω + u · ∇ω = ν∇2ω + f , (2.1)

where ν is the kinematic viscosity, ω = (∇ × u)z is the vorticity in z (the direction
normal to the x–y plane) and u is the velocity vector, which satisfies the incompressibility
condition, ∇ · u = 0, and is obtained from ω using a stream function. The forcing of the
flow acts on the velocity field as f u = { f0(L/2π) cos(2πnf y/L), 0}, where f0 is the forcing
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Predictability of extreme events in the Kolmogorov flow

magnitude and nf = 4 its wavenumber. In the vorticity equation (2.1), the forcing reads

f = f0nf sin(2πnf y/L). (2.2)

The flow is characterised by a Reynolds number,

Re = f 1/2
0 (L/2π)2/ν, (2.3)

as defined by Chandler & Kerswell (2013) and Farazmand & Sapsis (2017). In this work,
we set Re = 100. The vorticity is normalised with f 1/2

0 and the time with the Lyapunov
time, Tλ = λ−1, where λ is the leading Lyapunov exponent, which is calculated following
a rescaling method over a long trajectory (Wolf et al. 1985). For comparison, the time scale
of the forcing is Tf = 1/f01/2 = 0.28Tλ and the eddy turnover time is Teto = (ν/ε̄)1/2 =
1.92Tλ, where the overline denotes temporal average and ε is the spatially averaged energy
dissipation. Another important time scale is the delay between energy injection due to
the forcing and the dissipation, TI = 0.66Tλ, which we obtained from their temporal
cross-correlation.

The flow is integrated using a pseudo-spectral method with a Fourier basis of N/2
modes in each direction, where N = 128 is the number of points in physical space. This is
similar to the resolution used by Lucas & Kerswell (2015). The nonlinear terms are fully
dealiased using a 2/3 rule, and a third-order low-storage Runge–Kutta method is used for
time marching. The simulations are carried out using a GPU code based on the spectral
solver described by Cardesa, Vela-Martín & Jiménez (2017), which enables a massive
exploration of phase space at a moderate cost.

We aim to determine the predictability of the instantaneous space-averaged enstrophy,

Ω = 〈ω2〉, (2.4)

where the brackets denote the spatial average over the computational domain. Note that
Ω = ε/ν, so we interchangeably use dissipation and enstrophy throughout. We use the
Navier–Stokes equations as a perfect forecasting model so that uncertainty is only due
to the initial conditions. First, we sample the chaotic attractor with a set of Ni = 8192
independent states ωi, hereafter termed base flows. These base flows represent possible
states of the system from which an extreme enstrophy event may eventually arise, as
exemplified for two cases in figure 1. This figure shows two events of magnitude Ω ≈ 9,
which correspond to the upper 1 % of the enstrophy probability distribution in the attractor.
The average waiting time between events of this magnitude is more than 90Tλ. Despite the
marked differences between the initial circulation patterns in the first and second rows, at
peak enstrophy, the flow patterns are remarkably similar in topology and intensity.

We assess the predictability of the Ni = 8192 base flows by performing a Monte Carlo
ensemble forecast (Leith 1974; Leutbecher & Palmer 2008), in which the uncertainty in
the initial state of the system is modelled by small random perturbations. Around each
base flow ωi(x, t0), we produce Np = 8192 perturbed flows,

ωi,p(x, t0) = ωi(x, t0) + φ(x), (2.5)

with a different realisation of the random perturbation field, φ(x), which is Gaussian
noise with a white spectrum and variance σ 2 = 0.01f0. In the perturbed fields, ωi,p, the
first subscript refers to the base flow and the second subscript to the perturbation. The
small magnitude of the initial perturbations ensures that they first evolve according to
the linearised dynamics and that they have time to align with the most unstable local
directions before triggering nonlinear effects. Thus, the results are independent of the
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Figure 1. Visualisations of two independent realisations of the Kolmogorov flow (a,b) before and during an
enstrophy burst of magnitude Ω > 9; the corresponding time series of Ω(t) are shown in figure 2(a,d). Time
goes from left to right, t = 0, 1.5, 3, 4.4 and te, where te = 5.9 and te = 5.6 is the time of the extreme event
in the runs in panels (a) and (b), respectively. The colour map shows the vorticity, ω, from −8 (dark blue) to
8 (yellow), and the red lines are streamlines of the instantaneous velocity field. Initially, the flow is organised
in large-scale swirls, sometimes with the presence of vertical velocity jets (bottom-left panel), whereas during
the burst, the vorticity is predominantly aligned horizontally, parallel to the forcing driving the flow.

structure of the random perturbation. We have verified this by perturbing the velocity
field (instead of the vorticity field) with the same magnitude of the random perturbations.
The corresponding analysis is described in Appendix A. Predictability depends naturally
on the initial uncertainty, i.e. on the variance of the noise, σ 2, but given its magnitude,
this dependence is weak and only relevant for the initial stage of perturbation growth. This
stage, which in our ensembles corresponds to a time of the order of Tλ, increases only
logarithmically with decreasing σ 2 due to the exponential growth of perturbations with
time (see Appendix A).

In summary, we produced Ni = 8192 ensembles with Np = 8192 members, which were
integrated in time, together with their base states, for 20 Lyapunov times. To study
the predictability of the enstrophy, we stored its temporal evolution, Ωi,p(t), in the
NiNp = 226 = 67 108 864 runs. The probability density function (p.d.f.) of Ωi,p(t) of each
ensemble i, denoted by Pi(t), fully describes the possible values of the enstrophy and
their likelihood at a future time t. In the next section, we show how Pi(t) can be used to
unambiguously quantify the predictability of Ω and, in particular, of its extreme events.

3. Quantifying the predictability of extreme events with information-theoretic
measures

In figure 2(a), we show the temporal evolution of Ωi(t) in the base flow displayed in
figure 1(a), and the values of Ωi,p contained between the first and last deciles of Pi(t),
represented as a shaded area. Initially, the values of the dissipation in the ensemble remain
close to the base flow. Subsequently, the range of possible values of Ωi,p starts increasing
noticeably in a time of the order of the Lyapunov time, indicating that the ensemble is
being spread across the attractor. In figure 2(b), we show snapshots of Pi(t) at selected
times. Initially, Pi has a small spread, but this increases with time. At the time of the
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Figure 2. (a) Temporal evolution of the enstrophy Ωi(t) (red solid line) in the base trajectory visualised in
figure 1(a). The shaded area spans from the first to the last decile of Ωi,p(t) in the corresponding ensemble.
The markers denote the instants in time shown in figure 1(a). (b) Forecast probability distribution Pi(t) at the
time instants indicated in the legend and marked with points in figure 1(a). The climatological distribution
Q is shown as a dashed line. (c) Temporal evolution of the Kullback–Leibler divergence, Di(t), for the base
trajectory in figure 1(a). The points are as in figure 1(a). (d,e) As in panels (a–c), but for the predictable base
trajectory in figure 1(b). In panel ( f ), the shaded are spans from the first to the last decile of the KLD in all the
ensembles.

extreme event in the base trajectory, te = 5.9, the forecast distribution Pi(t) is very similar
to the (stationary) probability distribution of Ω in the attractor, Q, which is known as
the climatological distribution (DelSole 2004). Hence, with the level of uncertainty in the
initial conditions (set by φ(x) in (2.5)), forecasts obtained by solving the NSE are hardly
more accurate than the null forecast, i.e. with the assumption that the initial condition
was taken randomly from anywhere in the attractor. This means that, given the initial
uncertainty, this extreme event is fundamentally unpredictable regardless of the forecasting
model in a time horizon of 6Tλ.
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Predictability may be quantified with information-theoretic measures of how different
Pi(t) is from the climatological probability distribution (Kleeman & Majda 2005; DelSole
& Tippett 2007). We use the Kullback–Leibler divergence (KLD)

Di(Pi(t) | Q) =
∑

P̃i(t) log
P̃i(t)

Q̃
, (3.1)

where the tilde indicates that the probability distributions have been discretised in 40
intervals of equal width in the range [1.5, 13.5], which contain all the samples in the
database. The summation is taken over these probability intervals. We have checked
that reducing the number of members in the ensemble by a half produces only small
variations of Di. The KLD is always positive unless Pi(t) = Q, when it is zero (MacKay
2003). The more that Pi(t) differs from Q, the larger Di and the more informative the
ensemble forecast. In other words, Di is a measure of the amount of information we
gain by forecasting with massive ensembles of NSE simulations with respect to taking
the climatological distribution as the forecasting model (null forecast).

The temporal evolution of Di for the base trajectory in figure 1(a) is shown in figure 2(c).
It fluctuates, as has been observed previously for other information-theoretic measures in
low-dimensional systems (Latora & Baranger 1999), but decreases overall with time. At
the time of the extreme event in the base trajectory, the KLD has decreased by more than
one order of magnitude with respect to its initial value, signalling the lack of information
in the forecast distribution and the unpredictability of the extreme event, given the initial
uncertainty.

We now examine the predictability of the extreme event displayed in figure 1(b).
As shown in figure 2(d), this extreme event occurs at te ≈ 5.6 and has a magnitude
similar to the event examined above. The evolution of the probability distribution of the
ensemble, Pi(t), is shown in figure 2(e). For this base flow, the probability distribution
at te is highly skewed towards large values, indicating that this extreme event is largely
predictable. In figure 2( f ), we show the temporal evolution of Di for the predictable (blue)
and unpredictable (red) extreme events. There is a difference of an order of magnitude
between their Di at the time of the extreme event. This is particularly remarkable given
that the temporal evolution of Ω , and the flow patterns near the maximum enstrophy,
are qualitatively similar. In figure 2( f ), we have also plotted the evolution of the average
(solid black line) and the first and last deciles (shaded area) of Di in the 8192 base flows.
Again, there is a difference of more than one order of magnitude between the first and last
deciles, indicating that the strong fluctuations of predictability between the two trajectories
of figure 1 are a general, intrinsic feature of the system.

The strong fluctuations in predictability are confirmed using another indicator: the ratio
of successful predictions (RSPs) (Farazmand & Sapsis 2017). For each base trajectory i,
we define an extreme event happening at time te as a local maximum of Ωi in which
Ωi > α, where α is a threshold. Now, we consider each ensemble member p as an
individual forecast and tag this forecast as successful (true positive) if it gives Ωi,p > α

at the time of the extreme event in the base trajectory, te. However, we tag this forecast as
unsuccessful (false negative) if it gives Ωi,p < α at te. In each ensemble, we calculate the
number of true positives, Ntrue pos. and false negatives Nfalse neg., and define the RSP as

RSP = Ntrue pos.

Ntrue pos. + Nfalse neg.

, (3.2)

which depends on the time of the extreme event in the base trajectory, te, and on the
threshold α. Since the number of members in the ensemble is Np = Ntrue pos. + Nfalse neg.,
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Figure 3. Average RSP as a function of the time of extreme events, te, for different thresholds: Ω > 8 (black
line); Ω > 9 (blue line); Ω > 10 (red line). The average is calculated in time intervals centred at multiples of
Tλ and width Tλ. The bars in the blue line correspond to the mean plus-minus the standard deviation of the
RSP in each interval (except when it is negative). For ease of visualisation, bars are only plotted for Ω > 9, but
are comparable for the other two cases.

the RSP is defined as the probability that Ωi,p > α at te. In brief, the RSP quantifies
the probability of making a successful forecast considering the initial uncertainty and
taking the base trajectory as the true trajectory. Here the idea of successful prediction
is considered with respect to an ideal forecasting model, i.e. the NSE, which is free of
model uncertainty.

In figure 3, we show the RSP averaged over temporal intervals of width Tλ, centred at
integer times, for different thresholds. The RSP decreases on average with time and with
the intensity of the extreme event. The standard deviation of the RSP in the intervals,
shown as bars in the figure, is of the order of the average, corroborating the fluctuations
of predictability measured by the KLD. In particular, for the event in figure 1(b), the
probability that Ωp,i > 8.0 at te is close to 50 % (RSP = 0.5), indicating that this event
is largely predictable. By contrast, for the unpredictable extreme event in figure 1(a), this
probability is less than 3 % (RSP = 0.03).

4. Large-scale circulation patterns set the predictability limit of extreme events

In the following, we perform a conditional statistical analysis to determine the differences
between predictable and unpredictable extreme events. From the Ni = 8192 base flows, we
select those that exhibit a local maximum of the enstrophy in the time interval 3 < te < 17
in which Ωi(te) > 8, where te is the time of the maximum. We find that a total of 1040
trajectories satisfy these criteria. The average enstrophy of this group of base trajectories,
centred about te, is shown as a black line in figure 4(a). It remains close to the average in
the attractor (shown as a horizontal dotted line) up to approximately t − te ∼ −3, when it
shoots up monotonically towards the extreme event.

Within this group, we define two subgroups with high and low predictability,
corresponding to the base trajectories above the last and below the first decile of Di(te),
respectively. These two groups comprise 167 extreme events which are predictable
(above the last decile of Di) and 174 which are unpredictable (below the first decile
of Di). Before the extreme event, the average enstrophy of the base trajectories in
the group with unpredictable extreme events (shown as a red line) is 15 % above the
unconditional average. By contrast, the extreme events in the predictable group (blue
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Figure 4. (a) Conditional average dissipation. The black line shows the average of Ωi over all base trajectories
featuring an extreme event (with Ωi(te) > 8, for 3 < te < 17). The red and blue lines show the average
conditional to low and high predictability, respectively. The corresponding trajectories have a Di(t) below
and above the first and last deciles. The dotted line shows the long-term average of Ω over the attractor.
(b) Conditional average of the enstrophy contained in the horizontal and vertical large-scale modes, Ωx and
Ωy. Colours as in panel (a). In panels (a) and (b), we have moved the time origin to the time of the extreme
event.

line) are preceded by a quiescent phase with approximately 25 % lower-than-average
enstrophy. Approximately two Lyapunov times before and after the extreme event, the
evolution of the enstrophy in the predictable and unpredictable events is indistinguishable
from the unconditional average. This suggests that the structure of extreme events in the
Kolmogorov flow is similar regardless of their predictability, in line with the similarity of
the flow patterns in the rightmost panels of figure 1(a,b).

We now examine the circulation patterns preceding predictable extreme events to search
for early signatures of predictability. For this analysis, we Fourier-transform the vorticity
field, ω̂(k, t) = F(ω(x, t)), where k = (kx, ky) is the wavenumber vector. Then we
calculate the magnitude of the modes with wavenumbers k|| = (0, ±1), which represent
the vorticity generated by two infinite sinusoidal jets of width L/2 in the direction parallel
to the forcing (x), and k⊥ = (±1, 0), which represent the vorticity generated by the same
configuration but in the direction perpendicular to the forcing (y). The enstrophy of these
modes is defined as

Ωx(t) =
∑

k||

ω̂(k||, t)ω̂∗(k||, t) (4.1)

and
Ωy(t) =

∑

k⊥

ω̂(k⊥, t)ω̂∗(k⊥, t), (4.2)

where the asterisk represents the complex conjugate, and the summation is taken over pairs
of modes.

The predictable extreme event shown in figure 1(b) originates from a base flow that
exhibits two conspicuous vertical jets of opposite sign separated by elongated vortices
of opposite circulation (first panel). For this specific base flow, the contribution to the
enstrophy arising from the large-scale vertical flow, Ωy, clearly exceeds the horizontal
contribution, Ωx. Specifically, at t = 0, which corresponds to 5.6 Lyapunov times before
the extreme event (t − te = −5.6), Ωy = 12.3Ωx, whereas for the base flow shown
in figure 1(a), the circulation pattern displays two coherent vortices without a strong
orientation and Ωy = 1.06Ωx at t = 0 (t − te = −5.9).
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In view of this marked difference, we compute conditional averages of Ωx and Ωy
in the groups of highly predictable and highly unpredictable extreme events, as defined
in the previous section. The conditional averages shown in figure 4(b) confirm that
highly predictable extreme events are preceded at t − te ≈ −6 by a large-scale jet that is
predominantly aligned perpendicular to the forcing (in this group, Ωy = 3.7Ωx on average
at this time). However, extreme events with low predictability are preceded by Ωy ≈
Ωx, which is slightly lower than the unconditional average (Ωy = 1.3Ωx, not shown).
Regardless of the predictability, slightly before the burst (t − te ≈ −1), the large-scale
flow is mostly oriented in the direction parallel to the forcing, and hence the contribution
of the horizontal jet mode dominates, Ωx > 20Ωy. The maximum of the energy injection
happens approximately 0.5Tλ after this point (t − te ≈ −0.5Tλ) due to the energy transfer
from the jet-mode represented by Ωy to the forcing mode through a third mode that
completes a triad interaction (Farazmand & Sapsis 2019). This time is comparable to the
prediction time obtained with a variational method (Farazmand & Sapsis 2017).

Finally, we point out that the base flow generating the predictable enstrophy burst
shown in figure 1(b) resembles an unstable equilibrium solution (Chandler & Kerswell
2013) that dominates the quiescent, low-enstrophy dynamics of the Kolmogorov flow.
Interestingly, experiments of a similar Kolmogorov flow, but at a much lower Reynolds
number, demonstrated that the temporal evolution of the flow may be forecasted when
certain unstable equilibrium solutions are shadowed by the dynamics (Suri et al. 2017).
Such a connection between simple solutions of the governing equations and extreme
events deserves further investigation and may be a stepping stone to construct predictive
algorithms (Cvitanović 1991; Yalnız, Hof & Budanur 2021; Cenedese et al. 2022).

5. Conclusion

We determined the predictability of extreme events in a turbulent flow by studying
the evolution of massive Monte Carlo ensembles (Leith 1974) to which we
applied information-theoretic measures (DelSole 2004). For some specific large-scale
configurations, it is theoretically possible to produce informative predictions of extreme
events several Lyapunov times in advance. This is an order of magnitude longer than
the prediction times computed for the same Kolmogorov flow with variational principles
(Farazmand & Sapsis 2017) or machine-learning methods (Fernex et al. 2021). Given
the small magnitude of the uncertainty we used in the ensemble forecasting, this means
that for these specific large-scale configurations, predictive models still have room for
improvement. By contrast, extreme events of similar structure and magnitude that emerge
from other patterns are impossible to forecast in the same horizon regardless of the model,
because even massive ensembles of NSE solutions produce the null forecast.

Our approach considers the full complexity of the chaotic attractor, meaning that for the
same initial uncertainty, the forecast distributions computed here cannot be improved by
any method. This was possible due to the simplicity of the Kolmogorov flow, for which
the Navier–Stokes equations could be solved accurately millions of times at a moderate
computational cost, obviating the need for approximate indicators of predictability (Aurell
et al. 1997; Ziehmann et al. 2000). With the available computing power, this approach
can be applied to simple atmospheric circulation models to study the predictability
of extreme events, for instance, those that emerge from Rossby waves (Boers et al.
2019; Kornhuber et al. 2020). Other examples of extreme events in turbulence to which
massive ensemble forecasting could be applied are the relaminarisation of transitional
flows (Hof et al. 2006), bursting in near-wall turbulence (Encinar & Jiménez 2020),
cavitation inception in small-scale turbulence (Bappy et al. 2022) or inertial drop breakup
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(Vela-Martín & Avila 2022). The control of turbulent flows in general, and of extreme
events in particular, is another application in which massive ensemble forecasting could be
used to optimally select target states, or to devise efficient actuators under measurement
and actuation uncertainty (Bewley, Moin & Temam 2001). Beyond this applied scope,
ensemble forecasting could also constitute an important tool to characterise fundamental
aspects of turbulence, such as complexity (Grassberger 1986) or causal relations in a
temporal frame (Lozano-Durán, Bae & Encinar 2020).

In conclusion, similar extreme events can be caused by different processes and hence
exhibit disparate predictability. Extended to atmospheric sciences, our results would imply
that seemingly similar extreme weather events may originate from different circulation
patterns, which determine their predictability limit. Hence, constructing and assessing the
skill of predictive models, particularly those based on data-driven approaches, requires
an exhaustive characterisation of all possible formation routes to extreme events. This
is an extremely challenging problem which demands further developments in turbulence
modelling, computational methods for fluid dynamics and general circulation models, and
rare-event sampling algorithms (Mohamad & Sapsis 2018; Gomé, Tuckerman & Barkley
2022; Rolland 2022).
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Appendix A. Dependence of the ensemble forecasts on the initial perturbation

In this appendix, we show the effect of changing the structure and magnitude of the
perturbations used to generate the initial conditions of the ensembles. In the first case,
modifying the structure of the perturbation does not change the evolution of the probability
distributions of Ωi,p. To show this, we compare the ensembles generated by perturbing the
vorticity field with ensembles produced by perturbing the velocity field using the same
noise,

ui,p(x, t0) = ui(x, t0) + φ(x), (A1)

vi,p(x, t0) = vi(x, t0) + φ(x), (A2)

where u and v are the components of the velocity vector field, u = {u, v}. After calculating
ωi,p from ui,p, the variance of the perturbation in the vorticity field is scaled to σ 2 =
0.01f0. Although this perturbation has a very different structure compared with (2.5), it
does not modify the evolution of Ωp,i. To test this, we computed the KLD between Pi(t)
(obtained by perturbing the vorticity field, as in the paper) and P∗

i (t) (calculated with the
ensembles perturbed on the velocity field) in 16 base trajectories, including two of the base
trajectories selected for the conditional analysis of predictable and unpredictable extreme
events. The difference between the two distributions is very small, Di(Pi(t) | P∗

i (t)) ≈
Di(P∗

i (t) | Pi(t)) ∼ 10−3. This similarity is illustrated in figure 5(a–d), in which Pi and
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Figure 5. Forecast probability distribution of a single base flow, Pi(t), for ensembles with perturbations in the
vorticity and velocity fields. Time corresponds to t =: (a) 4.4; (b) 5.4; (c) 6.5; (d) 8.8.

P∗
i generated from a single base flow are plotted together at different times. The collapse

is very good and the slight differences are due to the finite number of samples.
The magnitude of the perturbation naturally affects the predictability horizon but in

a weak way. We produced ensembles of initial perturbations with σ 2 = 0.001f0 and
compared it with the ensembles analysed in the paper (σ 2 = 0.01f0). To characterise error
growth, we consider the space-averaged enstrophy of the difference between the perturbed
trajectories and the base flows, and average it over base flows and perturbed trajectories,


Ω = 1
NiNp

∑

i,p

〈(ωi,p − ωi)
2〉, (A3)

where the averages are taken over Ni = 128 independent base flows and Np = 128
perturbations. In figure 6, we show the logarithm of 
Ω as a function of time for the two
values of σ 2. Initially, there is a sharp decay of 
Ω due to viscosity, which damps the high
frequencies of the perturbations very fast. This regime lasts approximately until t = 0.25.
After this, the range of exponential growth begins, which is visible as a straight line with
slope 1 (due to the normalisation of time with the Lyapunov exponent). The saturation
of the exponential growth starts at t ≈ 1.5 for σ 2 = 0.01f0 and at t = 4 for σ 2 = 0.001f0,
and corresponds to the beginning of the nonlinear predictability regime. As expected,
reducing the initial uncertainty increases predictability. This, however, only affects the
initial exponential regime. Considering that 
Ω ∝ exp t in Lyapunov-time units, the effect
of reducing the perturbation by 10 is equivalent to a temporal offset of log 10 ≈ 2.3. This
is corroborated by the good collapse in figure 6 between the evolution of the perturbations
for σ 2 = 0.01f0 and for σ 2 = 0.001f0 when the latter is time-shifted towards the past by 2.3
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Figure 6. Temporal evolution of the logarithm of 
Ω for different magnitudes of the initial perturbations,
σ 2 = 0.01f0 and σ 2 = 0.001f0. The dash-dotted curve corresponds to the data for σ 2 = 0.001f0, but shifted
towards the past by log 10 = 2.3 Lyapunov times. The dotted line has slope 1. The 1/2 factor is used for
consistency with the definition of Lyapunov exponent.

Lyapunov times. Thus, due to the small magnitude of σ 2, further reducing the uncertainty
only adds to the short-time predictability range.
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