PRESIDENT: I. R. King
VICE-PRESIDENT: S. van den Bergh
ORGANIZING COMMITTEE: K. A. Barkhatova, S.C.B. Gascoigne, G. Larsson-Leander, C. A. Murray, J. Ruprecht

1. INTRODUCTION

This triennium has been quiet but industrious. Information and understanding about star clusters and associations have advanced in a quantitative way, on a broad front that encompasses all their aspects. The tabulations given below refer to many of the well-known objects, for which improved data are now available, plus an impressive number of objects that heretofore have been little more than catalogue entries. Clusters and associations have always been the source, the stage, and the touchstone for the investigation of star birth, stellar evolution, populations, and galactic structure, and the data of the 1976 report of Commission 37 will figure in the scientific advances reported in 1979 by several other IAU Commissions.
Two trends are worthy of note. One is common to all of observational astronomy: the increase of telescope power -- in the total number of effective telescopes, in the number of large telescopes, and in the effectiveness of their utilization. Particularly in the southern sky, we are in the midst of a period of rapid advance.

The second trend that I would single out is the broadening of the concept of stellar populations to include a range of abundance parameters. For the globular clusters this ghost has been knocking at the door for more than a decade; and we can now hope that studies currently under way will show us, as clusters have done again and again in the past, what physical variables control the bewildering array of differences that we see between - and sometimes within - the HR diagrams of individual clusters. For open clusters the new parameters are really a new dimension: along with age, we must give direct consideration to chemical abundance factors, so that 'solar' abundances are only a norm against which each individual cluster is to be measured. Of particular interest is the use of open clusters, both in the Milky Way and in the Magellanic Clouds, to delineate the apparent abundance differences that are being found within and between galaxies.

Also noteworthy are the discovery of X-ray sources in globular clusters, the advance in the understanding of dynamics, particularly with regard to the cores of clusters, and the appearance of several important catalogues or compilations of data. These will be discussed in the individual sections below.

This report has been assembled by the President of the Commission, but other members have made important contributions. The discussion of stellar associations was prepared by Dr. Larsson-Leander, the discussion of globular clusters by Dr. White, the summary of astrometric work by Dr. van Altena, and the discussion of dynamics by Dr. Wielen. I am especially grateful to them, to Drs. Barkhatova and Kuz'mina, who collected information for the USSR, and also to the dozens of astronomers who responded to my request for information about their current work.

As usual, an important part of the report consists of the tables of associations, open clusters, globular clusters, and other galaxies (with respect to work on their clusters), which list recent and current work in each object. For these I have relied primarily on responses to my inquiry but have also attempted to supplement the tabulations by reference to Astronomy and

Astrophysics Abstracts (AAA). In accordance with IAU procedure, published work is referred to, wherever possible, by its $A A A$ number.

Non-AAA references that occur in the text are numbered and collected at the end. Those that occur only within the tables are lettered within each table and appear at the end of that table.

If a name appears without a reference, this means that the work is not yet published. In that case the author's location is given in parentheses.
Contrary to the practice of the previous report, which listed objects in the order in which they appear in the Catalogue of Star Clusters and Associations (04.153 .051), the listing here is by standard designation - NGC, IC, followed by other types of nomenclature in an order that 1 hope will be obvious.

2. SYMPOSIA AND COLLOQUIA

The following conferences dealt with topics of interest to the Commission:
(1) IAU Symposium 69, 'Dynamics of Stellar Systems,' Besançon, France, September 1974. The Symposium was cosponsored by Commissions 37 and 33 ; the proceedings were published by Reidel in 1975, in the regular IAU series.
(2) IAU Colloquium 33, 'Observational Parameters and Dynamical Evolution of Multiple Stars,' Oaxtepec, Mexico, October 1975. The proceedings, which included papers on associations, small clusters, and binary stars in clusters, will be published in the Revista Mexicana de A stronomia y A strofisica.
(3) Conference on 'Multicolor Photometry and the Theoretical HR Diagram,' Albany, USA, October 1974 (13.012.008).
(4) Royal Greenwich Observatory Tercentenary Symposium, 'The Milky Way and the Local Group.' Herstmonceux, England, July 1975. The proceedings will appear as an RGO publication.

3. CATAlogues and collections ol data

The Catalogue of Star Clusters and Associations (04.153 .051) is now being maintained by Balázs, Ruprecht, and White. It is hoped that copies of the First Supplement to the Second Edition will be available for distribution at the time of the General Assembly. Work on a third edition is in progress.
Kukarkin published The Globular Star Clusters (12.003.082), which collects data of all types for 129 globular clusters and reduces them to homogeneous tabulations. Sawyer Hogg published A Third Catalogue of Variable Stars in Globular Clusters Comprising 2119 Entries (10.120.005). Alcaino published his Atlas of Galactic Globular Clusters with Colour Magnitude Diagrams, which gives color-magnitude arrays, tables of individual magnitudes, and finding charts for 42 globulars for which photoelectrically calibrated B and V can be derived. White is keeping up his bibliography of $\mathrm{c}-\mathrm{m}$ diagrams for globular clusters (last published as 03.154.014) and can make the list available as requested. Philip is preparing a set of computergenerated $\mathrm{c}-\mathrm{m}$ and 2 -color diagrams, for all globulars for which $U B V$ data were available in December 1975.
Mermilliod has collected, for 200 open clusters, a catalogue of UBV magnitudes and MK classifications of more than 10,000 stars. These will be published as an Astron. Astrophys. Supplement, and the catalogue will remain available on magnetic tape at the Centre de Données Stellaires at Strasbourg. A valuable adjunct is a set of cross-identification tables for the various systems of numbering and nomenclature of individual stars. Mermilliod plans to keep his catalogue current and to issue an up-date every year or so.
Weaver reports that the Trumpler velocities of individual stars in open clusters are ready for publication, for which he hopes to secure financial support.

4. ASSOCIATIONS

Stellar associations are generally connected with gas and dust clouds, out of which the stars have formed; and the stellar and interstellar ingredients interact in a complicated way. Associations are studied by a variety of techniques, and combined observations in optical, infrared, and radio wavelengths have proved particularly rewarding.

Individual studies are listed in Table 1 (p.125), but several areas and aspects are worthy of special note. Expanding gas shells in associations were studied by Sancisi et al. (12.131.075, 12.152.009). The kinematics of the young stars in associations continue to be of great interest. Garmany's study of Cep OB3 shows that the two subgroups of the association are separating from each other in longitude. Expansions continue to be controversial, however. Steffey (10.152 .009) questioned published evidence for rapid expansions of OB associations in general. On the other hand, Strand (09.031 .002) rejected the arguments forwarded by Vasilevskis (06.132 .003) that the expansion found for Ori OBld should be due to instrumental effects. Clearly, many more studies of internal motions in associations are necessary, both to separate non-member stars and to obtain a more convincing picture of the kinematical patterns, and hence more accurate kinematical ages.

The problem of circumstellar obscuration of OB stars was critically examined by Bohannan (1), who rejects Reddish's conclusion that obscuration is correlated with luminosity. Of 15 groups carefully examined, only one, Cyg OB2, was found to retain an indication of the effect. The higher reddening for the most luminous stars in this association may be due to their being situated in the densest parts of the dust cloud.

T associations received considerable attention. Grasdalen et al. (13.152.002) found Chamaeleon T to be at 115 pc , which makes it the nearest dark cloud. They suggest that it is intermediate in character between a normal T association and an OB association. For the ratio of visual to selective absorption, they find $R=5.5$, a value similar to that of several other regions with high content of gas and dust. Gieseking studied Cyg T1 extensively and found that its associated dust cloud is 300 to 500 pc from us. The young stellar group around T CrA , also seems to be a T association (Knacke et al., 09.152.002). Glass and Penston (2) studied infrared colors in the region and confirmed that the 6 known infrared excesses are due to circumstellar shells. In addition, several additional stars behind the dust cloud appear to have a visual absorption of about 8 magnitudes.

Considerable interest has been given during recent years to R associations, i.e., stellar associations connected with reflection nebulae. Van den Bergh and Herbst (3) identified 20 new R associations in the southern Milky Way, and Herbst (4-7) studied them in detail. These objects appear to be useful for study of the local spiral structure.

Observations of stellar associations are closely related to problems of their birth out of compressed interstellar clouds, rich in dust and molecules, and to problems of pre-main-sequence evolution. Reviews in this area have been given by Wynn-Williams (8), Mezger and Wink (9), and Strom et al. (10). A formation mechanism was suggested by Mouschovias (11.151.048); it involves a magnetic Rayleigh-Taylor instability initiated by the passage of a galactic shock. Sancisi (12.152 .009) attempted to explain the gas and dust shells in some associations by supposing that they are old supernova shells.
The stellar-ring controversy appears to be ebbing. Isserstedt (11.113.010, 11) defended the original concept, whereas it was opposed by Baars (12.141.026), Hahn and Haupt (12), Kolesnik et al. (10.152.001), Lindemann and Burki (13), Vidal and Bern (10.152.007), and Voroshilov et al. (12.152.002). Uranova (10.152.003,004) listed 88 new rings, but in a later study (12.152 .010) she was unable to confirm the reality of these or of Isserstedt's rings.

5. OPEN CLUSTERS

In every sense of the word, open clusters are the broadest concern of the Commission. They are the most numerous class in our catalogue, and their number is still increasing at a considerable rate. They show the full range of ages, and it now appears that the range in their chemical abundance is also becoming an important question. Dynamically, their time scales are
such that a proper study of them must consider all of the processes that are relevant anywhere in stellar dynamics, and their star numbers span the range from small to large values of $\log N$.
Table 2 (p.126) lists work carried on since the last Commission report. (There may be some small overlap with the previous report, especially where work was not yet published 3 years ago.) There are entries for 280 objects. It is impressive that about half the entries include contributions by Moffat, Vogt, and FitzGerald (Bochum). The number of clusters studied by Clariá and Osborn is also noteworthy.
An exciting development has been the discovery of metal deficiencies in some of the older open clusters. McClure, Forrester, and Gibson (11.153.023) found that NGC 2420 has an age of 3×10^{9} years and $[\mathrm{Fe} / \mathrm{H}]=-0.5$ with respect to the Hyades. Hawarden (13a) finds for NGC 2243 an age of 5×10^{9} years and a similar metal deficiency. Both clusters are in the anticenter hemisphere and far from the galactic plane. Hawarden (14) has also given a list of old clusters, and we may hope that more of these will soon be investigated for abundance properties.
On the other hand, it now appears that the anomalous line strengths in the giant stars of M 67 and NGC 188 are not due to abnormal metal abundances (11.153.001, 015, 024).
At the lower end of the age range, clusters serve both as calibrators of luminosities of cepheids and supergiant stars and as tracers of spiral structure. For the latter problem two studies were made by Vogt and Moffat ($09.155 .015,13.155 .029$), and a finding list was published by Sanduleak (11.153.010). Searches have been made for cepheids, by Moffat and his collaborators and by Hagen-Harris and van den Bergh. It is distressing to note one disagreement, however: Hagen-Harris reports, 'We confirm the membership of TW Nor in Lynga 6,' whereas Moffat and Vogt (13.153.018) report this group as 'no cluster'.
The discovery of new clusters continues, especially in the southern hemisphere. Van den Bergh and Hagen, in a uniform survey of the southern Milky Way (13.153.001), listed 63 new clusters. Lodén (09.153 .016) gave a list of 44 suspected clusters. The work of Moffat and Vogt included 14 newly discovered clusters (listed in Table 2 as Bochum 1-14). On the other hand, Table 2 contains about 15 reports that a supposed cluster does not exist.
Also worthy of mention are studies of HI in young clusters by Tovmassian et al. (11.153.003-007) and of dark matter in clusters by Wallenquist (13.153.032), and a catalogue of magnitudes in 14 young clusters by Moffat and Vogt (12.153.038).

6. GLOBULAR CLUSTERS

A new area of interest has developed for globular clusters with the discovery in them of X-ray sources (11.142.035, 15, 16, 17,). The X-ray positions are still not accurate enough to allow the sources to be identified, but the error boxes of X-ray sources fall on the clusters NGC 1851, $6440,6441,6624$, and 7078 (M15). It is interesting to note that these are among the clusters of highest central concentration, central density, and escape velocity.
At the same time, radio and infrared searches have set upper limits on the emission of globular clusters in those parts of the spectrum. Kerr and Knapp (08.154.006) examined 12 clusters for $21-\mathrm{cm}$ radiation, and later Knapp, Rose, and Kerr (10.154.022) set more severe limits in 8 clusters. Knapp and Kerr (10.154.001) also examined 16 clusters for OH . Hills and Klein (09.154 .002) failed to find $3.8-\mathrm{cm}$ radiation from ionized gas in 5 clusters. Erkes and Philip (13.154 .007) found no evidence for radio emission at 3 and 6 cm , in 10 clusters examined at both wavelengths, contradicting their earlier positive indication (08.154.005). At 10μ Cohen and Fawley (12.154.009) found a negative result in 8 clusters. A reported 10μ detection in M15 by MacGregor, Phillips, and Selby (10.154.007) remains unconfirmed. At 2.3 and 4.7μ Hansen and Hesser (18) scanned 8 clusters and found no indication of emission by dust. Finally, Smith, Hesser, and Shawl (19) searched 26 clusters for $\mathrm{H} \alpha$ emission, with completely negative results.
All in all, it appears that gas produced by evolving stars is generally lost from globular clusters (Knapp, Rose, and Kerr, 10.154.122; Scott and Rose, 13.154.005; Tayler and Wood, 13.154.014); but the X-ray sources may indicate that high-concentration clusters retain some gas, even though the mechanism responsible for the X-rays is far from clear.

Internal motions are beginning to be observed in globular clusters in appreciable numbers. Illingworth (Stromlo, KPNO) determined velocity dispersions in 10 southern clusters (11.154.011, 20, 21) and has deduced masses from them. Griffin and Gunn (Hale) are observing 7 globulars (and 3 open clusters) with their photoelectric radial-velocity spectrometer. Cudworth (Yerkes) reports that this astrometry will yield an internal velocity dispersion in M15.
In addition to the compilations mentioned in Section 3, several important collections of new data have been published: Peterson (orbital eccentricities of 41 clusters: 11.154.018); Peterson and King (observed radii and structural parameters in 101 clusters: 13.154.016); Lohmann (mean velocities of stars in 58 clusters: 13.154.001); Bingham and Martin (UV-excesses of 38 clusters: 11.154.004); Harris and van den Bergh (integrated UBV magnitudes and colors of 29 clusters: 11.154.007); Zaitseva, Lutyj, and Kukarkin (integrated UBV magnitudes and colors of 26 clusters: 11.154.005); Racine (reddening values for 86 clusters: 09.154.004); Burstein and McDonald (interstellar reddening from integrated UBV colors: 13.154.002); Kukarkin and Kireeva (integrated UBVRI colors and $[\mathrm{Fe} / \mathrm{H}]: 11.154 .010$); Andrews and Evans (integrated spectral types of 17 clusters: 10.154.008); and Knapp and Kerr (H I column densities in the direction of 81 clusters: 12.155.038). In addition, IAU Colloquium 21 (10.012 .006), dedicated to Dr. Helen Sawyer-Hogg, summarizes the present state of affairs regarding variable star research in the clusters.
A great deal of interpretative and theoretical work has been published. Models of horizontal branch (HB) stars have been studied by Peterson (effects of He-flash mixing: 07.065.113), Hartwick and Vanden Berg (effects of CNO abundance variations: 09.154.018), while Elijgenson has made a comparative study of HB stars in the Galaxy, the Magellanic Clouds, and the Sculptor dwarf spheroidal galaxy (11.154.003). General problems concerning cluster He-abundance have been studied by Demarque, Sweigart, and Gross (08.154 .012), and by Hartwick and Vanden Berg (isochrones for metal-rich clusters: 10.154.016). Kukarkin and Kireeva (11.154.019) discuss the use of UBVRI photometry in the determination of the interstellar reddening.
Recent and current work on individual globular clusters is summarized in Table 3 (p. 132).
Some current observational programs are too extensive to be included conveniently in the table. D. H. P. Jones (RGO) has made integrated light measurements of 50 clusters in an intermediate-band photometric system (the system is described in 10.127.055), augmented by a G-band measure. Kron and Gordon (Mt. Stromlo) are using the four 'central' colors of the Stebbins--Whitford six-color system to measure the integrated light from 45 clusters. Chun and Freeman (Mt. Stromlo) have studied 20 clusters for radial variations in surface $U B V$ colors and show that eight clusters exhibit a decrease of ~ 0.1 in $(B-V)$ and ~ 0.2 in $(U-B)$ from the clusters' centers outwards; the remaining 12 clusters appear to have radially uniform colors to within $\pm 0.02-0.03$ mag. Peterson (DTM) is doing star counts in 24 clusters and has determined the limiting radii of 15 clusters for which values were not previously known.

7. CLUSTERS IN OTHER GALAXIES

Since this area overlaps with the concerns of Commission 28, this section will be brief, merely touching on problems covered.

A large amount of work has dealt with clusters and associations in the Magellanic Clouds. Alcaino (22) collected and reproduced c-m diagrams for 30 clusters in the LMC and 6 in the SMC, along with the individual magnitudes and identification charts. He also tabulated basic data for the most conspicuous clusters, 162 in the LMC and 116 in the SMC. The photoelectric magnitude sequences in both Clouds also appear in this publication. New c-m diagrams were given for 96 associations in the LMC by Lucke (12.152.003), and for individual clusters by Hodge and Flower (10.154.015), Tifft and Connolly (10.159.001), and Walker (12.154.008). Penny (Herstmonceux) has studied NGC 1466 electrographically and finds its distance modulus to be 'significantly less than the currently accepted figure for the LMC.' M. Kontizas (Edinburgh) has determined $\mathrm{c}-\mathrm{m}$ diagrams for 20 clusters in the SMC, using plates from the UK $1.2-\mathrm{m}$ Schmidt. With the $4-\mathrm{m}$ CTIO reflector Hesser, Hartwick, and Ugarte (23) have
determined uncalibrated $\mathrm{c}-\mathrm{m}$ arrays for 24 LMC clusters, 18 of which had been thought to be similar to galactic globulars. They report that 'very few . . show features in their instrumental C - M diagrams reminiscent of galactic globular clusters'; they suggest that some clusters identified as red globulars are actually of intermediate age. Cannon and Gascoigne have taken plates of several clusters in both Clouds with the $3.9-\mathrm{m}$ AAT and are working on faint photoelectric sequences.

Hagen and van den Bergh (11.065.097) have compared c-m diagrams for young clusters in the Magellanic Clouds and the Milky Way and suggest that the differences are due largely to lower metal abundances in the Clouds. Heckman (12.154.010) synthesized populations to represent the colors of young 'globular clusters' in the Clouds.

Danziger (09.154.010) made 11 -color observations of the integrated light of 28 clusters in the Magellanic Clouds. Bernard and Bigay (11.153.025) measured 95 clusters in the LMC in UBV. Bernard (13.154.017) observed 35 LMC red globulars in UBV; 24 of them were also measured in $u v b y$. Kron and Gordon are observing about 40 SMC clusters in 4 colors. Borgman, van Duinen, and Koornneef (24) have used the Astronomical Netherlands Satellite to study some associations around 30 Dor in the LMC in the far unltraviolet.
Walborn (09.131 .168) studied the nature of the central object in 30 Dor.
Freeman and Munsuk (09.154 .003) discussed the masses of old globular clusters in the LMC. Freeman and Craft are completing a study of the structure of 9 'blue globular clusters' in the LMC. Andrews and Evans (08.159 .008) determined spectral types and velocities of 15 blue globulars' in the LMC. Illingworth, Oemler, and Freeman are studying the 'red' globulars in the LMC spectrospically, to classify them and to determine their velocities within the Cloud. The distribution of clusters in the SMC was discussed by Hodge (12.153.004), and Hodge and Wright (12.153 .003) catalogued 86 new clusters. An extensive study was carried out by M. Brück (25, 26), on plates of the SMC taken with the U.K. $1.2-\mathrm{m}$ Schmidt. Her survey more than doubles the number of clusters known in her $6 \times 6^{\circ}$ field; the types and the spatial distribution are discussed.

In M31 Sharov listed 25 new globular clusters (09.154 .005), and he also published some finding charts for clusters (10.154.004). Sharov, Lutyj, and Esipov (26a) have prepared a summarizing photoelectric catalogue of the globular clusters of M31. Hartwick and Sargent (11.158.101) used the motions of globulars to estimate the mass of M31. In M87 Ables, Newell, and O'Neil (11.154.029) gave B and V magnitudes for a number of globular clusters, and Harris and Smith (27) studied the distribution of about 4000 globulars. Hodge (11.154.028) did UBV photometry of the 5 known globular clusters in NGC 185; he is also completing a study of clusters and associations in NGC 6822. Finally, Danziger's 11 -color study (09.154 .010) includes 3 globular clusters in the Fornax dwarf spheroidal galaxy.

8. ASTROMETRY

Astrometric research on clusters has been directed primarily towards the determination of membership in selected open clusters during the past few years. In the future there seem to be two areas that deserve attention; first, the confirmation of membership of more cepheid variables in open clusters to improve the zero point of the cepheid luminosity calibration; and second, extremely precise proper-motion studies of a few clusters for the purpose of investigating their internal kinematics. In the first case, great care must be taken to firmly establish the magnitude-dependent position errors, since the cepheid variable is usually by far the brightest star in the cluster.

Astrometric work on clusters in progress at the present time includes the following: New Mexico State University, Sanders has completed membership studies of M67, and is initiating similar studies of NGC 6494 (M23) and NGC 6709. He is also studying M11 in collaboration with MacNamara. University of South Florida, Fallon has derived new proper motions for members of the Orion Nebula Cluster for an investigation of the cluster's dynamics. Yale University Observatory, van Altena is initiating membership studies of NGC 188, NGC 2244 (The Rosette Nebula Cluster), NGC 2506 and $\operatorname{Tr} 37$ (IC 1396), while Hanson is enlarging his
previous study of the distance to the Hyades cluster based on new absolute proper motions with respect to the galaxies. Yerkes Observatory, Cudworth is determining membership for several globular clusters including M15, M92, M3, M5, and M13. The investigation of M15 is complete and that of M92 is just beginning. Stone has completed a membership study for NGC 654.
Astrometric research on clusters published, 1973-1974 (subsequent to the summary 09.112.008):
α Persei: 09.112.012. 11.112.014; Orion: 12.132.050; Pleiades: 09.112.002; NGC 129 : 10.153.005; NGC 457: 09.112.010; NGC 663: 09.112.011; NGC 1039 (M34): 11.112.009; NGC 1664: 09.153.011; NGC 2682 (M67): 11.112.009; NGC 6611 (M16): 11.153.019; NGC 6633: 09.153.003, 11.112.010; NGC 6755: 11.112.011; NGC 6913 (M29): 09.153.004; NGC 7789: 12.153.018; IC 4756: 09.153.019.

9. DYNAMICS OF STAR CLUSTERS

Recent progress in the dynamics of star clusters has been conveniently summarized in review articles, e.g. those of Aarseth (10.151.030, 11.151.020, 28), Aarseth and Lecar (29), Hénon (10.151.026), King (11.151.031, 30), Spitzer (31), and Wielen (11.151.053, 32). The proceedings of IAU Symposium 69 cover most of the important new results. A survey of the recent work of Soviet astronomers on cluster dynamics can be found in a conference report (10.012.034).

The theoretical predictions for the dynamical evolution of a star cluster by various methods are now in quite satisfying agreement ($12.151 .044,32$): The N-body simulations give essentially the same results for the evolution of the spatial structure of an isolated, spherical star cluster as those methods which are based on the classical theory of relaxation by weak two-body encounters (Fokker-Planck equation). Hénon (33) has improved this agreement by considering also the non-dominant terms in the diffusion coefficients. There is, however, still disagreement on the mechanism of escape of stars from clusters $(28,31,32)$. The importance of large energy changes for escape underlines the need for also considering discrete random processes for describing the effect of stellar encounters (e.g.07.151.028, 09.151.015).

All the methods quoted above agree in predicting a 'singular event' at the center of a cluster after a finite time: In N-body simulations, a close binary is formed at the center. In the Monte-Carlo methods and in the fluid-dynamical approach, the central density becomes infinite. The thermodynamic explanation of this effect as a gravothermal catastrophe (e.g. 10.151.025) has been questioned ($09.151 .021,12.151 .033,13.151 .009$). The central 'singularity' occurs after a few relaxation times for clusters with a realistic spectrum of stellar masses. Hence most of the open clusters and globular clusters should have reached this stage. Observational confirmation of some central abnormality in star clusters is highly desirable in order to confirm the theoretical predictions. For the theoretical studies, the central 'singularity' poses problems for a realistic continuation of the evolution after the collapse of the core $(33,34)$, especially if the short lifetimes of the dominating massive stars are taken into account. Closely related to this problem is the question of how much the dynamical evolution of star clusters is affected by the presence of binaries. Shrinking close binaries could act as powerful energy sources for a cluster and could strongly affect the dissolution of clusters. Heggie (12.151.011, 35) has studied the binary problem in great detail, and Hills (36) has attempted to show the effect of binaries on cluster cores.

Among other theoretical investigations of star cluster dynamics in general, the following papers are especially noteworthy: studies of the dynamical stability of spherical clusters (09.151.023, 09.151.047), comparison of simulations with theoretical predictions on the behaviour of the random force in gravitating systems ($09.151 .012,13.151 .017,37$) and on dynamical friction (11.151 .033), application of virial theorem in tensor form ($07.151 .001,38$), correct simulation of field stars in numerical experiments (08.151 .002), evolution of clusters under the effect of external gravitational shocks (10.151.004). The numerical methods of handling the N-body problem for clusters (surveyed in 11.012 .005) have been drastically improved by Ahmad and Cohen's force separation (10.151.084) and by new regularization
techniques (12.042.017-20). The consequence of the inherent instability of the N-body problem for cluster simulations (07.151 .100) is still poorly understood. Interesting work has been done on the behaviour of relativistic star clusters (reviewed by Ipser, 39), although there is as yet still no direct evidence for the existence of relativistic stellar systems. Saslaw (09.151 .017) reviewed the properties of dense stellar systems.

For the application of dynamical theories to actual star clusters, it is necessary to know density distributions, velocity dispersions, total masses, etc., of these stellar systems. Our knowledge of relevant observational data for globular clusters has been dramatically improved by the velocity dispersions and total masses obtained by Illingworth and Freeman (11.154.011, 20, 21), by Griffin's individual radial velocities of cluster members (12.034.004), and by Peterson and King's cluster radii and structural parameters (13.154.016). For open clusters, new faint members of the Hyades (40) and internal radial velocities (13.153.027) represent a major observational progress for cluster dynamics.

A detailed dynamical model of the globular cluster M3 has been constructed by Da Costa and Freeman (preprint). They emphasize the importance of considering the whole spectrum of stellar masses and conclude that M3 is not deficient in low-mass stars. Much effort has been spent in investigating the relation between globular clusters and the surrounding gravitational field: Important studies have been carried out on the tidal effect of the galactic field ($13.151 .011,13.154 .006$), on the effect of a compressive shock for a cluster when penetrating the galactic disk (10.151 .004), and on the variation of the field star density due to the presence of a globular cluster ($10.154 .002,12.151 .029$). Among the dynamical studies of open clusters, the discussion of the Hyades by Pels, Oort, and Pels-Kluyver (40) gave the interesting result that there exists a considerable number of probable members (perhaps escapers) outside the tidal radius and that there is no sign of the expected tidal compression of the cluster in the z-direction.

REFERENCES

1. Bohannan, B.: 1975 , Astron. J. 80,625 .
2. Glass, I. S. and Penston, M. V.: 1975, Monthly Notices Roy. Astron. Soc. 172, 227.
3. van den Bergh, S. and Herbst, W.: 1975, Astron. J. 80, 208.
4. Herbst, W.: 1975, Astron. J. 80, 212.
5. Herbst, W.: 1975, Astron. J. 80, 498.
6. Herbst, W.: 1975 , Astron. J. 80, 503.
7. Herbst, W.: 1975, Astron. J. 80, 683.
8. Wynn-Williams, C. G.: 1974, Mem. Soc. Astron. Ital. 45, 311.
9. Mezger, P. G. and Wink, J. E.: 1974, Mem. Soc. Astron. Ital. 45, 315.
10. Strom, S. E., Strom, K. M. and Grasdalen, G. L.: 1975, Ann. Rev. Astron. Astrophys, 13, 187.
11. Isserstedt, J.: 1975, Vistas Astron. 19, 123.
12. Hahn, G. and Haupt, H. F.: 1975, Astron. Astrophys. 41, 447.
13. Lindemann, E. and Burki, G.: 1975, Astron. Astrophys. 41, 355.

13a. Hawarden, T. G.: 1975, Monthly Notices Roy. Astron. Soc. 173, 801.
14. Hawarden, T. G.: 1975, Monthly Notices Roy. Astron. Soc. 173, 231.
15. Clark, G. W., Markert, T. H. and Li, F. K.: 1975, Astrophys. J. 199, L93.
16. Canizares, C. R. and Neighbours, J. E.: 1975 , Astrophys. J. 199, L97.
17. Vida1, N. V. and Freeman, K. C.: 1975, Astrophys. J. 200, L9.
18. Hansen, O. L. and Hesser, J. E.: 1975, Nature 257, 568.
19. Smith, M. G., Hesser, J. E. and Shawl, S. J.: 1976, Astrophys. J. (in press).
20. Illingworth, G.: 1975, IA U Symp. 69, 151.
21. Illingworth, G.: 1976, Astrophys. J. 204, 73; Illingworth, G. and Illingworth, W.: 1976, Astrophys. J. Suppl. 30, 227.
22. Alcaíno, G.: 1975, Astron. Astrophys. Suppl. 21, 279.
23. Hesser, J. E., Hartwick, F. D. A. and Ugarte, P.: 1976, Astrophys. J. Suppl. (submitted).
24. Borgman, J., van Duinen, R. J. and Koornneef, J.: 1975, Astron. Astrophys. 40, 461.
25. Brück, M. T.: 1975, Observatory 95,85 .
26. Brück, M. T.: 1975 , Monthly Notices Roy. Astron. Soc. 173, 327.
27. Harris, W. E. and Smith, M. G.: 1976, Astrophys. J. (submitted).
28. Aarseth, S. J.: 1975, IA U Symp. 69, 57.
29. Aarseth, S. J. and Lecar, M.: 1975, Ann. Rev. Astron. Astrophys. 13, 1.
30. King, I. R.: 1975, IAU Symp. 69, 99.
31. Spitzer, L.: 1975, IA U Symp. 69, 3.
32. Wielen, R.: 1975, IA U Symp. 69, 119.
33. Hénon, M.: 1975, IAU Symp. 69, 133.
34. Lynden-Bell, D.: 1975, IA U Symp. 69, 27.
35. Heggie, D. C.: 1975, IA U Symp. 69, 73.
36. Hills, J. G.: 1975, Astron. J. 80, 809.
37. Cohen, L.: 1975, IA U Symp. 69, 33.
38. Miller, R. H.: $1975, I A \cup$ Symp. 69, 65.
39. Ipser, J. R.: 1975, IAU Symp. 69, 423.
40. Pels, G., Oort, J. H. and Pels-Kluyver, H. A.: Astron. Astrophys. 43, 423.

Table 1. Associations
(Note: For abbreviations and lettered references, see end of table. For numbered references, see end of report.)

Name	Observer and data	Name	Observer and data
η Car	Walborn (09.152 .001) sp., E, d of indiv. st. in whole complex		Isobe (10.152.008) distr. of st., dust, H II
Car OB2	Clariá (a) UBV β		Steffey (10.152 .009) motions in Ori
Cen OB2	Ardeberg (Lund), Maurice (Marseille)$\mathrm{sp}-\mathrm{ph}$		OBla Moreno (10.152.012) sp-ph
Cep OB2	Aslanov, Akhundova, Ivanova (b) sp-ph		Cannell, Ianna (12.132.050) p.m. Sharpless (12.152.008) rotations
Cep OB3 Cha T			Hesser (CTIO), Warren (Indiana)
	Henize, Mendoza (09. 152.003) sp., em., var.		$u v b y \beta, d, E$, ages Sanders, MacNamara (N. Mex. State)
	Feast, Glass (10.152.005) R Mon object	Ori T2	r.v., sp-ph for masses Zakirov (d) search for wide binaries
	Grasdalen (13.152.002) UBVHKLN, sp-ph	Per OB1	Dzervitis, Spulgis (Latvia) BVR of red super-G
CMa OB1	Clariá (12.155.043, 13.152 .001) sp., $U B V \beta, E, d$, relation to dust and cl .	Per OB2	Sancisi (12.131.075) H I, OH maps, expansion
CMa R1	Clariá (13.152.001) related to CMa OB1	Pup OB2 Sco OB1	Havlen (12.152 .005) d of st. Sivan (11.155.044) $\mathrm{H} \alpha$ survey, r.v.
Crat	Knacke et al. (09.152.002) $B V H K L N Q, \mathrm{sp}$. Glass, Penston (2) $J H K L$ for E		Walborn (e) sp., CNO abund. Laval, Sivan (Marseille) motions, st. form.
	Marraco (La Plata, CTIO) UBVRI, polarimetry, sp.	Sco OB2	Peterson, Shipman (09.153 .014) He abund.
Cyg OB2	Walborn (09.114.041) sp., d		Sancisi (12.152.009) expansion in HI
	$\begin{aligned} & \text { Voelcker, Elsasser (09.152.010, } \\ & 10.113 .085 \text {) i-r } \end{aligned}$	Tau T1	Uzbek cts.
	Voelcker (12.152.007, c) i-r, E	Tau T2	Zakirov (d) search for wide binaries
Cyg T1	Gieseking (11.152.003,12.152.011) $U B V, \mathrm{c}-\mathrm{m}, d$, em. st., var. st.	Tau T3	Dragomiretskaya (12.114.069) sp., mags. of var.
Lac OB1	Peterson, Shipman (09.153.014) He abund.		Zakirov (d) search for wide binaries Shevchenko, Slutskij (f) cts., mags., absorption
Nor OB1	Muzzio, Forte (La Plata, CTIO)$U B V \beta$		Uzbek cts.
		Vel OB1	Denoyelle (Uccle) r.v. of st.,
		IC 274	expansion, doubtful ass'n Kolesnik (07.152 .001) d of a ring
Ori OB1	Strand (09.031.002) expansion of Ori OBld	IS 58	Voroshilov, Kolesnik, Uranova (12.152.002) $B V$, sp., no real group

Abbreviations: $d=$ distance, $E=$ color excess or reddening, em. $=$ emission, $\mathrm{i}-\mathrm{r}=$ infrared, p.m. $=$ proper motion, r.v. $=$ radial velocity, $\mathrm{sp} .=$ spectrum, $\mathrm{sp}-\mathrm{ph}=$ spectrophotometry, st. $=$ stars, var. $=$ variable.

References for Table I: (a) Clariá, J. J. 1976, Astron, J. 81, 155. (b) Aslanov, I. A., Akhundova, G.V., Ivanova, N. L. 1973, Shemacha Astron. Tsirk., No. 32-33, 10. (c) Voelcker, K. 1975, Astron. Astrophys. Suppl. 22, 1. (d) Zakirov, M. M. 1975, 'Study of Extremely Young Star Groups,' Tashkent. (e) Walborn, N. 1976, Astrophys. J. 204 (in press). (f) Shevchenko, V. S., Slutskij, V. E. 1975, 'Study of Extremely Young Star Groups,' Tashkent.

Table 2. Individual Open Clusters

(Note: For key to abbreviations and lettered references, see end of table. For numbered references, see end of report.)

NGC	Observer and data	NGC	Observer and data
129	Frolov (10.153.006) p.m., ceph.mem., d, age	1662	Vasilevskij (08.153.012) [$\mathrm{Fe} / \mathrm{H}]$ for gK
	Clariá, Osborn (Mérida) DDO of RG		Clariá, Osborn (Mérida) DDO of RG
	Pulkovo p.m., color for mem.	1664	Kerridge, Nelson, Mesrobian
188	Pagel (11.153.015) CN strength		(09.153.011) p.m., mem.
	Maeder (11.153.017) compar. w. theory		Alksnis, Alksne, Daube (10.113.016) C st.
	McClure (12.153.030) abund. range		Clariá, Osborn (Mérida) DDO of RG
	Danilov (12.153.034) mass, lifetime Osborn (Mérida) $T_{\mathrm{e}}, \boldsymbol{g}$, masses of RG	1778	Barbon, Hassan (09.153.015) UBV, d, E, age, sp.
	Barry (S. Calif.), Schoolman (Lockheed) sp-ph		Joshi, Sagar, Pandey (13.153.028) $U B V, d, E$, age
	van Altena (Yale) p.m. for mem.	1817	W. Harris, G. H. Harris (Yale) faint
	r.v. of indiv. st.	1893	Kholopov (07.003.154) var. st.
	Mano, Simoda (Tokyo) faint c-m		Cuffey (09.153.035, 10.153.012)
	Saio, Shibata, Simoda (Tokyo) age		$U B V$ c-m, d, var. E
225	Clariá, Osborn (Mérida) DDO of RG	1960	Vasilevskij (a) sp. of RG, [Fe/H]
457	Latypov (09.112.010) p.m.	2099	Vasilevskij (a) sp. of RG, [Fe/H]
	Lang (10.153.030) st. distr.		Baldone Obs. (Latvia) Schmidt survey
	Baldone Obs. (Latvia) Schmidt survey	2129	Kuznetsov (08.114 .067) sp. to 15^{m} Baldone Obs. (Latvia) Schmidt survey
559	Vasilevskij (a) sp. of $\mathrm{RG},[\mathrm{Fe} / \mathrm{H}]$		Abastumani $B V, \mathrm{sp}$.
581	Steppe (11.153.008) $R G U, d, E$, age	2158	Walker (Lick) spectracon $B V$
	Clariá, Osborn (Mérida) DDO of RG	2168 (M35)	Vidal (09.153.040) UBV c-m, age, l.f.
654	Samson (13.153.013) mass, interstellar mat.		Salukvadze (Abastumani?) $U B V$, str. Clariá, Osborn (Mérida) DDO of RG
659	Steppe (11.153.008) RGU, d, E, age	2169	Sagar (b) UBV, d, E, age, mem.
663	Latypov (09.112.011) p.m.	2175	Tovmassian, Shahbazian (11.153.004)
752	Chekanikhina (09.153.027) 1.f.		amt. of HI
	Maeder (11.153.017) compar. w. theory	2186	Moffat, Vogt (13.153.016) UBV β, c-m, d, E, diam.
	Clariá, Osborn (Mérida) DDO of RG	2204	Hawarden (c) $U B V \mathrm{c}-\mathrm{m}, d, E$, age
869	Cohen, Gaustad (10.113.116) i-r excess in M super-G	2232	$3 \times 10^{9} \mathrm{yr},\|\mathrm{z}\|=1250 \mathrm{pc}$ Clariá (10.153.022) photometry
884	Cohen, Gaustad (10.113.116) i-I excess in M super-G	2243	Levato, Malaroda (12.153 .006) MK, d Hawarden (13) $U B V \mathrm{c}-\mathrm{m}, d, E$, age
1027	Clariá, Osborn (Mérida) DDO of RG		$5 \times 10^{9} \mathrm{yr},\|\mathrm{z}\|=1100 \mathrm{pc}$
1039 (M39)	Latypov (11.112.009) p.m.		van den Bergh (Toronto) old
	Ryadtchenko (12.153.029) B mags.	2244	Ogura, Ishida (Japan) c-m, d
1245	Urals Obs. c-m, str., 1.f.		van Altena (Yale) p.m. for mem.
1502	Clariá, Osborn (Mérida) DDO of RG	2251	Vasilevskij (a) sp. of RG, [Fe / H]
1545	Clariá, Osborn (Mérida) DDO of RG	2252	Vasilevskij (a) sp. of RG, [Fe / H]

Table 2. (Continued)

NGC	Observer and data	NGC	Observer and data	
2264	Pe	2467	Darsa, Hidajat (10.153.017) d, E	
	abund.	2477	Cannon (06.065 .068) compar. of RG w. theory Lohmann (10.153.014) distr. of faint st. Hartwick, Hesser (12.153.010) BV c-m, $u v b y \beta, g$, Am st., rotations	
	Tovmassian, Shahbazian (11.153.004)			
	amt. of H I			
	Koch, Perry (11.153.013) variables			
	Badalyan, Erastova (09.122.130) mags.			
	Mendoza (Mexico) UBVRI α + narrowband		d, E, diam., U Gem mem.? Darsa, Hidajat (10.153.017) d, E	
	Barry (S. Calif.), Schoolman (Lockheed) sp-ph, r.v.	2483	Darsa, Hidajat (10.153.017) d, E FitzGerald, Moffat (13.153.023) UBV, sp., not a real cl.	
	MacNamara (N. Mex. State) sp-ph, masses	$\begin{aligned} & 2506 \\ & 2516 \end{aligned}$	van Altena (Yale) p.m. for mem.	
2269	Moffat, Vogt (13.153.016) $U B V \beta$, c-m, d, E, diam.		$U B V R I \beta, d, E, \text { age }$	
2281	Vasilevskij (08.153.012) [$\mathrm{Fe} / \mathrm{H}]$ for gK		relation to Plei, grp. Snowden (12.153.035) uvby β, var. E	
2287	Poppel, Vieira (10.153.023) H I study	2527	age, Ap st. Lindoff (09.153.005) UBV, d, E	
	Eggan (11.153.009) u u by $\beta, U B V$,	2539	Naini Tal Obs. UBV	
	relation to Plei. grp.	2548	Naini Tal Obs. UBV	
	Clariá, Osborn (Mérida) DDO of RG	2571	Clariá (Mérida) $U B V \beta, \mathrm{DDO}$ of RG	
2301	Clariá, Osborn (Mérida) DDO of RG	$\begin{gathered} 2632 \text { (Prae- } \\ \text { sepe) } \end{gathered}$	Maeder (11.153.017) compar. w. theory Moshkalev (d) $B V$ for 8 new mem. Clariá, Osborn (Mérida) DDO of RG Hartwick, Hesser (10.153.003) BV c-m, uvbyß, d, E, age, C st.	
2302	Moffat, Vogt (13.153.016) UBV $\mathcal{C}, \mathrm{c}-\mathrm{m}$,			
2323	Clariá, Osborn (Mérida) DDO of RG			
2335	$\begin{aligned} & \text { Clariá (09.153.007, } 13.152 .001 \text {) UBV, } \\ & d, E \text {, age, not rel. to CMa OB1 } \end{aligned}$			
2343	Clariá (13.152.001) not rel. to CMa OBl	2660		
2345	Moffat (11.153.021) UBV c-m, d, var. E	2669	Clariá, Osborn (Mérida) DDO of RG	
2353	```Tovmassian, Shahbazian (11.153.004) amt. of H I```	2682 (M67)	Janes (09.153.017, 11.153.024) DDO, d, E, CN-abund.	
	Claria (13.152.001) nucleus of CMa OB1 Maeder (11 153.017) compar w theory		Latypov (11.112.009) p.m.	
2360			Osborn (12.114.016) T_{e}, g, masses of RG	
	Osborn (Mérida) T_{e}, g, masses of RG		```Barry, Cromwell (11.153.001) sp., normal abund. Pagel (11.153.015) CN strength Maeder (11.153.017) compar. w. theory```	
2362	Tovmassian, Shahbazian (11.153.004) amt. of H I			
	Clariá (Mérida) H ${ }^{\text {a }}$			
2383	Clariá, Osborn (Mérida) DDO of RG		Barry (S. Calif.), Schoolman (Lockheed) sp-ph, g, d	
2414	```Moffat, FitzGerald (Bochum) mags., sp. of OB st.```			
2420	$\begin{aligned} & \text { McClure, Forrester, Gibson (11.153.023) } \\ & U B V, \text { DDO, age } 3 \times 10^{9} y,[\mathrm{Fe} / \mathrm{H}]= \\ & -0.5 \end{aligned}$		Sanders (N. Mex. State) p.m., 649 probable mem. Griffin (Cambridge), Gunn (Hale) r.v. of indiv. st.	
	Keenan, Innanen (11.155.024) galactic		Pulkovo p.m.	
		2972	Clariá, Osborn (Mérida) DDO of RG	
	Hawarden (13a) age, d	3053	Clariá, Osborn (Mérida) DDO of RG	
	Osborn (c) $T_{\mathrm{e}} \mathrm{g}$, masses of RG Saluk vadze (Abastumani?) UBV, str.	3105	Moffat, FitzGerald (11.153.020) UBV c-m. d, E, possible ceph.	
2421	Moffat, Vogt (13.153.016) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam.	3114	Levato, Malaroda (e) MK, Ap st. W. Harris (Yale) UBV c-m, DDO	
2422	Dworetsky (13.153.005) MK, r.v., rotation, binaries	3255	Moffat, Vogt (13.153.017) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, diam., doubtful cl.	
2439	White (13.153.007) UBV c-m, d, age, super-G	3293	Tovmassian, Shahbazian, Nersessian (11.153.005) amt. of H I	
2451	W. Harris (Yale) $U B V \mathrm{c}-\mathrm{m}, \mathrm{DDO}$		W. Harris (Yale) $U B V \mathrm{c}-\mathrm{m}$, DDO	
2453	Darsa, Hidajat (10.153.017) d, E Moffat. FitzGerald (12.153.007) UBV $\mathrm{c}-\mathrm{m}, d, E$	3324	Moffat, Vogt (13.153.017) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam. Clariá (Mérida) UBV β	

Table 2. (Continued)

NGC	Observer and data	NGC	Observer and data
3572	Moffat, $\operatorname{Vog} t(13.153 .017) U B V \beta, c-m$, d, E, diam.		Tovmassian, Shahbazian, Nersessian (11.153.005) amt. of H I
	Clariá (f) nucleus of Car OB2	6231	Tovmassian, Nersessian, Shahbazian
3590	Moffat, Vogt (13.153.017) UBV β, $\mathrm{c}-\mathrm{m}$, d, E, diam. Clariá (f) UBV		(11.153 .006) amt. of H 1 Walborn (h) sp. N-deficient
3603	Walborn (09.131 .168) central trapezium, WR st.		Laval (Marseille) nucleus of Sco OB1, r.v.
3680	Moffat (12.131.525) UBV, d, E Maeder (11.153.017) compar. w. theory	6242	Moffat, Vogt (09.153.031) UBV $B, \mathrm{c}-\mathrm{m}$, d, E, diam.
	Hawarden (13a) $E, \delta(U-B)$ Osborn (Mérida) T_{e}, g, masses of RG	6249	Moffat, Vogt (09.153.031) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam.
3766	Winnenburg (09.153.009) $U B V \mathrm{c}-\mathrm{m}, d$, E, age, diam.	6250	Moffat, Vogt (13.153.018) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam.
4337	Moffat, Vogt (09.153.031) faint, diam.	6259	Hawarden (12.153.028), 13.153.901)
4439	Moffat, Vogt (09.153.031) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam.	6281	$U B V, \mathrm{c}-\mathrm{m}, d, E, \text { age }$ Feinstein, Forte (11.153.053) UBV, c-m,
4463	Moffat, Vogt (09.153.031) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam.	6322	d, E, age, X-ray source Moffat, Vogt (13.153.018) UBV $\beta, c-m$,
4755	W. Harris (Yale) $U B V \mathrm{c}-\mathrm{m}, \mathrm{DDO}$		d, E, diam.
4815	Moffat Vogt (09.153.031) UBVß, probably no cl.	6383	Tovmassian, Nersessian, Shahbazian (11.153 .006) amt. of H I
5168	Moffat, Vogt (09.153.031) UBV β, c-m, d, E, diam.	6396	Moffat, Vogt (13.153.018) UBV β, $c-m$, d, E, diam.
5281	Moffat, Vogt (09.153.031) UBV β, c-m, d, E, diam.	6405 (M6)	```Vleeming (12.153.001) UBV,c-m, d,E, age```
5460	Clariá (09.153.022) UBV		G. H. Harris (Yale) MK, r.v., mem., irr.
5606	Moffat, Vogt (09.153.031) UBV β, c-m, d, E, diam.	6475 (M7)	var. BM Sco Conti, Hensberge, van den Heuvel,
5617	Moffat, Vogt (13.153.018) UBV $\gamma, \mathrm{c}-\mathrm{m}$, d, E, diam.		Stickland (12.153.008) blue stragglers Abt (13.153.030) sp., Ap, Am, binaries
	Lohmann (g) l.f., str.	6494 (M23)	Sanders (N. Mex. State) p.m. for mem.
5662	Moffat, Vogt (09.153.031) UBVB, c-m, d, E, diam.	6514 (M20)	Tovmassian, Nersessian, Shahbazian (11.153 .006) amt. of H I
5822	Bozkurt (13.153.004) UBV, c-m, d, E, diam.		```Ogura, Ishida (Japan) UBV, c-m, d, E, age```
6005	Moffat, Vogt (13.153.018) UBV \mathcal{B}, doubtful cl.	$\begin{aligned} & 6523 \text { (M8) } \\ & 6530 \end{aligned}$	Naini Tal Obs. UBV Parsatharathy (13.153 .029) sp.
6031	Moffat, Vogt (13.153.018) UBV $V, \mathrm{c}-\mathrm{m}$, d, E, diam.	6531	Tovmassian, Nersessian, Shahbazian (11.153 .006) amt. of H I
6067	Dzigashvili (08.151.052) orbit W. Harris (Yale) UBV c-m, DDO	6604	Tovmassian, Nersessian (11.153.007) amt. of H I
6167	Tovmassian, Shahbazian, Nersessian (11.153.005) amt. of H I		$\begin{aligned} & \text { Moffat, Vogt }(13.153 .018) U B V \beta, \mathrm{c}-\mathrm{m}, \\ & d, E \text {, diam. } \end{aligned}$
	Moffat, Vogt (13.153.018) $U B V \beta, \mathrm{c}-\mathrm{m}$, d, E, diam.	6611 (M16)	```Tovmassian, Nersessian (11.153.007) amt. of H I```
6169	Moffat, Vogt (09.153.031) UBVß, no cl.		Kamp (11.153.019) p.m. for mem., B-V,
6178	Moffat, Vogt (09.153.031) UBVB, c-m, d, E, diam.	6618 (M17)	$\begin{aligned} & E, d, \text { age } \\ & \text { Ogura, Ishida (Japan) } U B V, \text { c-m } \end{aligned}$
6192	Handschel (11.153.032) UBV	6633	Vasilevskij (08.153.012) [Fe/H] for gK
6193	Moffat, Vogt (09.153.031) UBV $\overline{\text { C }}$ c-m, d, E, diam.		Sanders (09.153 .003) p.m. for mem. Latypov (11.112.010) p.m.
	Tovmassian, Shahbazian, Nersessian (11.153 .005) amt. of H I	6649	```Talbert (13.153.021) UBV, minimum d, ceph. V367 Sct```
	Herbst (12.153.013) UBV, sp., c-m, d, E		van den Bergh, Madore (Toronto) ceph.
6200	Tovmassian, Shahbazian, Nersessian (11.153.005) amt. of H I	6705 (M11)	V. Harris, G. H. Harris (Yale) UBV,
6204	Moffat, Vogt (09.153.031) UBVB, c-m, d, E, diam.		uvby β, DDO, sp., faint c-m

Table 2. (Continued)

NGC	Observer and data	NGC	Observer and data
	Sanders, MacNamara (N. Mex. State) p.m., mem., vel. disp. Griffin (Cambridge), Gunn (Hale) r.v. of indiv. st.	7762 7788	Clariá, Osborn (Mérida) DDO of RG Zacharova (08.153.030) UBV, 1.f. Urals Obs. c-m, 1.f., str. Pulkovo p.m., colors for mem.
6709	Clariá, Osborn (Mérida) DDO of RG Sanders (N. Mex. State) p.m., mem.	7789	Alksnis, Alksne, Daube (10.113.016) C st.
$\begin{aligned} & 6755 \\ & 6811 \end{aligned}$	Latypov (11.112.011) p.m. Vasilevskij (a) sp. of RG, [Fe/H] Urals Obs. c-m, str., 1.f.		Koroleva (12.153.018) corona, blue stragglers, p.m. Artyukhina, Kholopov (13.153.025) st.
6819	Auner (11.153.002) UBV, c-m, d, E, MS gap, cts.		distr. Pendl (13.153.031) blue stragglers
6823	Tovmassian, Nersessian (11.153.007) amt. of H I	779	Pulkovo p.m., colors for mem. Pulkovo p.m., colors for mem.
6834	Voroshilov, Kalandadze, Kuznetsov (08.131.123) $B V, E$, st. distr. Abastumani $B V$, sp.	IC 348 IC 1369	Strom, Strom, Carrasco (12.153.033) $U B V H K L, E$, age, st. form. Hassan (08.153.008) $U B V, d$, age, mem.
6866	Koroleva (08.153 .008) str. of corona Pulkova p.m., color for mem.	IC 1396	Vasilevskij (a) sp. of RG, $[\mathrm{Fe} / \mathrm{H}]$ van Altena (Yale) p.m.
6871	Bogdanovic, Straizis (08.113 .049) UPXYZVS	$\begin{aligned} & \text { IC } 1795 \\ & \text { IC } 2157 \end{aligned}$	Ogura, Ishida (Japan) $U B V \mathrm{c}-\mathrm{m}$ Grubissisch (10.153.001) $R G U \mathrm{c}-\mathrm{m}, d$
	Crawford, Barnes, Warren (11.153.002) $u v b y \beta, d, E$, Cyg X-1 more distant	IC 2581	$\begin{aligned} & \text { Turner }(10.153 .007) \text { var. } E \\ & \text { Moffat }(11.153 .011) E \end{aligned}$
	Alksnis, Bogdanovic $(12.113 .015,016)$ multicolor, sp.	$\begin{aligned} & \text { IC } 2602 \\ & \text { IC } 4651 \end{aligned}$	Levato (13.153 .002) rotations Hawarden (13a) $E, \delta(U-B)$
6883	Alksnis, Alksne, Daube (10.113.016) C st.	IC 4665	Ferrer, Jaschek (09.153.028) inclinations of binaries
6913 (M29)	Raznik (07.113.013, 13.153.012) time changes of E, pecularities of st. Sanders (09.153 .004) p.m. for mem. Bakos (09.153.029) light var. of st.	IC 4756 IC 4996	Vasilevskij (08.153 .012) [$\mathrm{Fe} / \mathrm{H}]$ for gK Herzog, Sanders, Seggewiss (13.153.006) p.m. for mem., $U B V, d, E$, blue stragglers, super-G Clariá, Osborn (Mérida) DDO of RG
6940	Clariá, Osborn (Mérida) DDO of RG	IC 5146	Samson (13.153.014) gas, dust
7031	Hassan, Barbon (10.153.004) UBV , d, E, age, mem.	Coma	Sedyakina (06.122 .149) new flare st. Barry (S. Calif.), Schoolman (Lockheed)
7039	Hassan (09.153.008) $U B V, d$, age, mem.		sp-ph
7062	Hassan (09.153.008) UBV, d, age, mem.	Hyades	Sedyakina (06.122.149) new flare st.
7067	Hassan (09.153.008) UBV, d, age, mem.		Golay (10.153.009) UBVB ${ }_{1} B_{2} V_{1} G, d$
7082	Hassan (09.153.008) UBV, d, age, mem.		Upgren, Kerridge, Mesrobian
7092 (M39)	Abt, Sanders (10.153.019) sp., r.v., rotations, binaries		(10.153.010) d from $p x$. van Altena (11.153.014) review of d
$\begin{aligned} & 7127 \\ & 7128 \end{aligned}$	Uranova, Tsarevskij (13.152.003) UBV Alksnis (10.123 .003) var. st.		Robinson, Kraft (11.153.030) var. of dK , dM
7142	Pendl (09.153.037)		Clube (11.153.034) convergent
7160	Vasilevskij (a) sp. of RG, $[\mathrm{Fe} / \mathrm{H}]$		Conti, Hensberge, van den Heuvel,
7209	Clariá, Osborn (Mérida) DDO of RG		Stickland (12.153.008) blue stragglers
7243	Hill, Fisher, Allison (11.153.012) H $\gamma \mathrm{EW}$,		Upgren (12.153.025) d from R-I Hanson (13.153.019) p.m., mem., d
	Pulkovo p.m.		Corbin, Smith, Carpenter (13.153.020) d
7419	Daube (06.114 .128) new C vars. Alsknis, Alksne, Daube (10.113.016)		Barry (S. Calif.), Schoolman (Lockheed) sp-ph
	C st. Handschel (11.153.032) UBV		MacNamara (N. Mex. State), Klemola, Harlan, Wirtanen (Lick) px.
	Fawley, Cohen (12.153.026) sp., r.v., sp-ph, far i-r of M st.		Hanson (Yale) new p.m. Moscow p.m., color for men
7654	Voroshilov, Kalandadze, Kuznetsov (08.131.124) E, st. distr. Abastumani $B V$, sp.	α Per	Sedyakina (06.122 .149) flare st. Artyukhina (07.153.015) str. Dieckvoss (09.112.012) p.m.

Table 2. (Continued)

Name	Observer and data	Name	Observer and data
	Zakharova, Svechnikov (09.153.042) st. formation, age	Bo 6	Moffat, Vogt (13.153.016) UBV β, c-m, d, E, diam.; new cl.
	Artyukhina, Kalinina (11.112.014) p.m., mem.	Bo 7	Moffat, Vogt (13.153.016) UBV β, c-m, d, E, diam.; new cl., WR st.
	Crawford, Barnes (11.153.029) uvbyß, var. E, d	Bo 8	Moffat, Vogt (13.153.017) UBV β, c-m, d, E, diam.; new cl.
Pleiades	```Ambartsumyan et al. (06.122.094, 08.122.142, 09.122.136, 10.122.030, 11.122.020) flare st. Mirzoyan, Mnatsakyan (06.122.130) distr. of flare st.```	Bo	Moffat, Vogt (13.153.017) suspected new cl., but no cl.
		Bo 10	Moffat, Vogt (13.153.017) UBV
			c-m, d, E, diam.; new cl. Moffat, $\operatorname{Vogt}(13.153 .017)$
			E, diam.; new cl.
	Kholopov (11.122.006) distr. of flare st. B. F. Jones (09.112 .002) p.m., mem.	Bo	Moffat, Vogt (13.153.017) UBVB, c-m, d, E, diam.; new cl.
	Erastova (09.122.131) flare st. van Altena, B. F. Jones (09.153.018) absolute p.m.	Bo 1	Moffat, Vogt (13.153.018) UBV β, c-m, d, E, diam.; new cl.
	Vykhrestyuk, Karetnikov (10.153.020) sp-ph	Bo 14	Moffat, Vogt (13.153.018) $U B V \beta$, $\mathrm{c}-\mathrm{m}, d, E$, diam.; new cl.
	Robinson, Kraft (11.153.030) var of dK, dM	Bo 15	FitzGerald, Hurkens, Moffat (1) $U B V, \mathrm{c}-\mathrm{m}, \mathrm{sp} ., d, E, \mathrm{OB}$ st.
	Conti, Hensberge, van den Heuvel, Stickland (12.153.008) blue stragglers	Cr 96	Moffat, Vogt (13.153.016) UBV β, $c-\mathrm{m}, d, E$, diam.
	Artyukhina, Kholopov (13.153.024) distr.	Cr 107	Isserstedt, Schmidt-Kaler (09.153.033) UBV, sp., pa
		Cr 121	Clariá, Osborn (Mérida) DDO of RC
UMa	Wielen (Heidelberg) dynamics	Cr 132	Clariá (Mérida) UBV β, p.m.
Ba 10	Moffat, Vogt (09.153.039) UBV, c-m, d, E, diam., super-G?	$\begin{aligned} & \mathrm{Cr} 1355 \\ & \mathrm{Cr} 140 \end{aligned}$	Clariá (Mérida) UBV β, p.m. Clariá Osborn (Mérida) UBV uubyß,
Ba 12	Hassan (13.153.022) UBV, c-m, d, E		DDO, p.m.
Ba 13	Hassan (13.153.022) $U B V, \mathrm{c}-\mathrm{m}, d, E$Hassan (13.153.022) UBV, c , $, d, E$	Cr 228	Walborn (09.152.001)
Ba 14			Feinstein, Marraco, Forte (j) UBV
Ba 15	Hassan (13.153.022) UBV, c-m, d, E		Clariá (Mêrida) UBV
Be 4	Sanduleak (11.153.010) has OB st.		Moffat (Bochum) $U B V$
e 7	Sanduleak (11.153.010) has OB st.		Thé (Amsterdam) 5 -color
Be 59	Sanduleak (11.153.010) has OB st. Sanduleak (11.153.010) has OB st. Moffat, Vogt (09.153 .039) UBV, c-m, d, E, diam.	Cr 240	Clariá (g) $U B V \beta, \mathrm{OB}$ ass'n related
Be 62			Car OB2?
Be 65		Cr 258	Moffat, Vogt (09.153.031) UBV β, c-m, d, E, diam.
	Sanduleak (11.153.010) has OB st.	Cr 268	Moffat, Vogt (13.153.018) UBV β,
Be 86	Sanduleak (11.153.010) has OB st.		c-m, a, E, diam.
Be 87 Be 90	Sanduleak (11.153.010) has OB st.	Cr 271	Moffat, Vogt (09.153.031) UBV β,
Be 94	Sanduleak (11.153.010) has OB st. Sanduleak (11.153 .010) has OB st.	Cr 307	Moffat, Vogt (13.153.018) no cl
Be 96	Sanduleak (11.153.010) has OB st.	Cr 34	Moffat, Vogt (13.153.018) UBVB,
Be 9	Sanduleak (11.153 .010) has OB st. Moffat, Vogt (13.153.016) UBV β, c-m, d, E, diam.; faint		c-m, d, E, diam.
Biur		$\text { Cr } 367$	Clariá (Mérida) UBV
Bo 1	Moffat, Vogt (13.153.016) UBV $\beta, \mathrm{c}-\mathrm{m}$, d, E, diam.; new cl.	Cz 8	$\begin{aligned} & \text { Moffat, Vogt (09.153.039) UBV, } \\ & \text { c-m, }, E, E \text {, diam. } \end{aligned}$
Bo 2	Moffat, Vogt (13.153.016) UBVB, c-m, d, E, diam.; new cl.	Cz 9	Moffat, Vogt (09.153.039) no cl.
		Cz 10	Moffat, Vogt (09.153.039) no cl.
Bo 3	Moffat, Vogt (13.153.016) UBV β, $\mathrm{c}-\mathrm{m}, ~ d, E$, diam.; new cl.	Cz 11	Moffat, Vogt (09.153 .039) no cl., ㄹ. galaxy Maffei 1
Bo 4	Moffat, Vogt (13.153.016) UBV β, c-m, d, E, diam.; new cl.	Cz 13	Moffat, Vogt (09.153.039) no cl.?
		Dol 25	Moffat, Vogt (13.153.016) $U V B \beta$,
Bo 5	Moffat, Vogt (13.153.016) UBV β, $\mathrm{c}-\mathrm{m}, d, E$, diam.; new cl.	Dol	c-m, d, E, diam.

Table 2. (Continued)
Name

Observer and data
Haf 8
Haf 16
Haf 18

Haf 19
Haf 20
Haf 21
Hogg 9
Hogg 10

Hogg 11
Hogg 12
Hogg 14
Hogg 15

Hogg 16
Hogg 22
King 4
King 22

Lyngå 4
Lyngå 6

Lyngå 14
Mark 6
Mark 38
Mel 66
Pis 1
Pis 4
Pis 11
Pis 12
Pis 17
Pis 18 c-m, d, E, diam. 18 c no cl . $U B V$, r.v., c-m, d $U B V, \mathrm{c}-\mathrm{m}, d, E$ $U B V, \mathrm{c}-\mathrm{m}, d, E$ $\mathrm{c}-\mathrm{m}, d, E$, diam.
Clariá (f) $U B V \beta$ c-m, d, E, diam. c-m, d, E, diam. mem. CTIO) $U B V \beta$ c-m, d, E, diam. c-m, d, E, diam. c-m, d, E, diam. $U B V, \mathrm{c}-\mathrm{m}$
King (Berkeley) cts., str., mass $>4000 \mathrm{~m}_{\odot}$ mem. (Yale) ceph. TW Nor. mem. c-m, d, E, diam. c-m, d, E, diam. stragglers c-m, d, E, diam. c-m, d, E, diam. $\mathrm{c}-\mathrm{m}, d, E$, diam.

Moffat, Vogt (13.153.016) $U B V \beta$,
Darsa, Hidajat (10.153.017) d, E
FitzGerald, Moffat (12.153.005) $U B V$, r.v., c-m, d for Haf 18 ab ;

FitzGerald, Moffat (12.153.005)
FitzGerald, Moffat (12.153.016)
FitzGerald, Moffat (12.153.016)
Moffat, Vogt (13.153.017) no cl.
Moffat, Vogt (13.153.017) UBV β,

Moffat, Vogt (13.153.017) UBV β,
Moffat, Vogt (13.153.017) no cl.
Moffat, Vogt (09.153 .031) UBV β,
Moffat (12.113.002) WR st. possible
Muzzio, Feinstein, Orsatti (LaPlata,
Moffat, Vogt (09.153.031) UBV β,
Moffat, Vogt (09.153 .031) UBVB,
Moffat, Vogt (09.153.039) UBV,
Burkhead, Kalinowski (Indiana)

Moffat, Vogt (13.153.018) no cl. Madore (13.153.009) ceph. TW Nor

Moffat, Vogt (13.153 .018) no cl.
van den Bergh (Toronto), G. H. Harris
Moffat, Vogt (13.153.018) UBV β,
Moffat, Vogt (09.153.039) UBV,
Moffat, Vogt (m) $U B V, \mathrm{c}-\mathrm{m}, \mathrm{sp} ., d, E$ Hawarden (k) c-m, old, rich, blue

Moffat, Vogt (13.153.016) UBV β,
Moffat, Vogt (13.153.016) UBV β,
Moffat, FitzGerald (Bochum) UBV
Moffat, Vogt (13.153.016) no cl.
Moffat, Vogt (13.153.017) UBV β,
Moffat, Vogt (09.153 .031) too faint

Name Observer and data
Pis 20
Pis 21
Pis 24
Rup 18
Rup 32
Rup 34
Rup 44
Rup 55
Rup 67
Rup 79

Rup 97

Rup 98

Rup 107
Rup 108
Rup 118
Rup 119
Rup 127
Rup 166
S289(H II)
Sher 1
Stock 2
Stock 13
Stock 14
Tom 4
Tr 1
$\operatorname{Tr} 2$
Tr 5 Kalinowski, Burkhead, Honeycutt (12.153.024) C st. mem.?

Kalinowski, Burkhead (Indiana) $U B V \mathrm{c}-\mathrm{m}$

Table 2. (Continued)

Name	Observer and data	Name	Observer and data
Tr 9	Darsa, Hidajat (10.153.017) d, E Clariá, Osborn (Mérida) DDO of RG		Forte (La Plate, CTIO) UBV
			Thé (Amsterdam) 5 -color
Tr 10	Levato, Malaroda (13.153.010) MK types, d	Tr 18	Moffat, Vogt (13.153.017) UBV β, c-m, d, E, diam.
Tr 14	Walborn (09.152 .001) sp., d, beyond Tr 16	Tr 21	Moffat, Vogt (09.153.031) UBV β, c-m, d, E, diam.
	Feinstein, Marraco, Muzzio (10.153.013) UBVRI, H $\alpha \beta \gamma$ Forte (La Plata, CTIO) UBV	Tr 27	Moffat, FitzGerald (Bochum) UBV, MK, var. E, WR st.
			Thé (Amsterdam) 5-color
	Thé (Amsterdam) 5-color	Tr 37	Garrison, Kormendy (12.153.012)
Tr 15	```Walborn (09.152.001) 1 sp., d, beyond Tr 16```		$U B V, \mathrm{MK}, d$, nucleus of Cep OB2 Racine (12.153.014) UBV, E
	Feinstein, Forte (La Plata, CTIO) UBV	West 2	Moffat, Vogt (13.153.017) UBV β, $\mathrm{c}-\mathrm{m}, d, E$, diam.
	Thé (Amsterdam) 5-color	LMC fgd	Philip (09.153.013) $u v b y \beta, \mathrm{c}-\mathrm{m}, d$
Tr 16	```Walborn (09.152.001) sp., }d\mathrm{ , assoc. with \eta Car Feinstein, Marraco, Muzzio (10.153.013) UBVRI, H }\alpha\beta```	Anon	Moffat (Bochum) pec. st. found by Klare, Neckel (11.121.075) is in a cl.

Abbreviations: amt. = amount, c-m = color-magnitude array, cts. $=$ star counts, $d=$ distance,$E=$ color excess or reddening, $E W=$ equivalent width, fgd = foreground, $g=$ surface gravity, grp. = group, i-r = infrared, l.f. = luminosity function, mem. $=$ membership, p.m. $=$ proper motion, $\mathbf{p x} .=$ parallax, $R G=$ red giants, r.v. $=$ radial velocity, $\mathrm{sp}-\mathrm{ph}=$ spectrophotometry, st. $=$ stars, str. $=$ structure, super $-\mathrm{G}=$ supergiants, $T_{\mathrm{e}}=$ effective temperature, var. = variable.

References for Table 2: (a) Vasilevskij, A. E. 1972, Bull. Abastumani Obs. No. 43. 29. (b) Sagar, R. 1975, Astrophys. Space Sci. (in press). (c) Obsorn, W. 1975, Monthly Notices Roy. Astron. Soc. 172, 631. (d) Moshkalev, V. G. 1973, Soob. Sternberg Inst. No. 182, 21. (e) Levato, H. and Malaroda, S. 1975 , Astron. J. 80, 807. (f) Clariá, J. J. 1976, Astron. J. 81, 155. (g) Lohmann, W. 1975, Astrophys. Space Sci. (in press). (h) Walborn, N. 1976, Astrophys. J. 204 (in press). (i) Coyne, G. V. 1976, in Proc. Second European IAU Meeting (in press). (j) Feinstein, A., Marraco, H. G., and Forte, J. C. 1976, Astron. Astrophys. Suppl. (in press). (k) Hawarden, T. G. 1976, Monthly Notices Roy. Astron. Soc. (in press). (1) FitzGerald, M. P., Hurkens, R. and Moffat, A. F. J. 1976, Astron. Astrophys. 46, 287. (m) Moffat, A. F. J., and Vogt, N. 1975, Astron. Astrophys. 41, 413.

Table 3. Individual Globular Clusters

(Note: See also major data lists referred to in the text. Papers dealing solely with variable stars have been omitted. For key to abbreviations and lettered references, see end of table. For numbered references, see end of report.)

NGC	Observer and data	NGC	Observer and data
104 (47 Tuc)	Eggen (07.113.007) UBVRI of RG		Crawford, Snowden (a) foreground
	Glass, Feast (10.113.030) JHKL of		reddening
	RG		Bell, Dickens (b) indiv. sp., enhanced
	Menzies (10.113.031) UBV c-m		N
	D.H.P. Jones (10.122 .055) i-b of RR		Illing worth (20,21) surf. br., cts., d,
	Lyr		E, diam., vel. disp., M/L
	McClure, Osborn (11.114.102) DDO		Lee (Stromio) BV c-m, l.f.
	Evans (11.154.013) VI, $I<13$, sp.		Cannon (Edinburgh) faint
	Cannon (11.154.017) UBV		photometry
	Cathey (12.154.019) UBVR of RG,		Hartwick (Victoria), Hesser (CTIO)
	Hartwick, Hesser (12.154.023) UBV		Osborn (Mérida) $T_{\mathrm{e}}, g,[\mathrm{Fe} / \mathrm{H}]$

Table 3. (Continued)

NGC	Observer and data	NGC	Observer and data
	Hesser (CTIO) $u v b y \beta$ of blue st., reddening		Rodgers (07.114.016) T_{e}, g, He-abund. of BHB
288	Cannon (11.154.017) UBV		Dickens (08.114.045) $\mathrm{C}^{12} / \mathrm{C}^{13}$ from
	Alcaíno (c) $B V \mathrm{c}-\mathrm{m}$		CH st.
362	Eggen (07.113.007) UBVRI of RG		Dickens, Feast, Evans (08.122.044)
	McClure, Norris (12.154.013) DDO of RG		red vars.
			Bell, Dickens (09.114.070) $\mathrm{C}^{12} / \mathrm{C}^{13}$
	Illingworth (20,21) surf. br., cts., d, E, diam., vel. disp., M / L		from CH st.
	W. Harris (Yale) $U B V \mathrm{c}-\mathrm{m}$		Glass, Feast (10.113.030) JHKL of
	Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$		RG
	Philip (Albany) $u v b y$ of BHB		D.H.P. Jones (10.122 .055) i-b of RR
1851	Clark, Markert, Li (15) X-ray source		Lyr
	Vidal, Freeman (16) blue st. as possible X-ray source		Naumova, Ogorodnikov (10.154.002) extremely high mass
	M. Liller (d) RR Lyr's normal		Bell, Dickens (11.064.005)
	Illingworth (20, 21) surf. br., cts.,		CNO-abund of CH st.
	d, E, diam., vel. disp., M/L		Schmidt, van den Bergh (11.154.006)
	Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$		spread in [Fe / H]
	Cannon (Edinburgh), Stobie (Stromlo) BV c-m		$\begin{aligned} & \text { Cannon, Kontizas }(11.154 .014) B V \\ & \text { c-m } \end{aligned}$
1904 (M79)	W. Harris, Stetson (Yale) BV c-m Alcaíno (ESO) BV c-m		Norris (12.154.017) [Fe/H],
			$T_{\mathrm{e}}, \mathrm{g}$ of uv-bright st.
2298	Alcaíno (11.154.001) UBV c-m		Poveda, Allen (13.154.006) mass,
2419	```Racine, W. Harris (13.154.004) BV c-m, \(d, E\), orbit Kinman (KPNO) faint seq. for \(\mathrm{c}-\mathrm{m}\), cts.```		tidal radius
			Sturch (h) $E,[\mathrm{Fe} / \mathrm{H}]$ from RR Lyr
			Lee (Stromlo) BV c-m, l.f.
			Butler (Maryland) [Fe / H] from RR
2808	W. Harris (12.154.012, e) BV c-m; more current $B V$		Lyr sp. Hartwick (Victoria), Hesser (CTIO)
	Illingworth (20, 21) surf. br., cts., d,		DDO of RG
	E, diam., vel. disp., M / L		Bessell, Norris (Stromlo) abundance
3201	Philip (08.154.003) $u v b y$ of HB		Freeman, Rodgers (Stromlo) Ca-abund
	White (13.154.012) DDO of RG;	5272 (M 3)	from RR Lyr sp.
	more current DDO of RG, AGB, DDO seq. $B V \mathrm{c}-\mathrm{m}, 1 . \mathrm{f}$.		Philip ($07.154 .007,13.154 .013$) $u v b y$ of HB
	White, Mosley, Furenlid, White (f) mem. from obj. prism sp.		Osborn ($07.154 .030,10.154 .018$) DDO of RG
	Lee (Stromlo) BV c-m, 1.f.		Kuzmin et al. (09.154.008,
	Alcaíno (ESO) BV c-m		10.154.021) surf. br.
4147	$\begin{aligned} & \operatorname{Zinn}(12.122 .069) \mathrm{sp} ., T_{\mathrm{e}} \text { of } \\ & \text { uv-bright st. } \end{aligned}$		Faber (09.158.027) integr. 10-color Zinn (12.122.069) T_{e} of uv-bright st.
4572	Hartwick, Hesser (10.154.023) UBV c-m Alcaino (11.154.002) UBV c-m		Butler (g) E ($B-V$)
			White (Steward) DDO of RG, AGB, BHB
4590 (M68)	W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$		Griffin (Cambridge), Gunn (Hale)
	Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$		r.v. of indiv. st.
	Terzan, Rutilly (Lyon) R seq. to 16.5		Cudworth (Yerkes) p.m.
5024 (M53)	Philip (07.154.007) $u b v y$ of HB		Wilson (Yale), King (Berkeley) I.f.
	Zinn (12.122.069) sp., T_{e} of uv-br. st.		Simoda, Fukuoka (Tokyo) l.f.
	Faber (09.158.027) integr. 10-color		Toyama, Nishimura, Kaneko (Tokyo)
	Butler (g) E ($B \cdot V$)		1.f., color, distr.
	Pulkovo $B V$, p.m.		Pulkovo BV, p.m.
5053	Walker (Lick) spectracon $B V \mathrm{c}-\mathrm{m}$, $V<21$		Da Costa, Freeman (Stromlo) dynam. model, mass f'n
5139 (ω Cen)) Eggen (07.113.007) UBVRI of RG		

Table 3. (Continued)

NGC	Observer and data	NGC	Observer and data
5286	Alcaíno (12.154.003) UBV c-m		Cudworth (Yerkes) p.m.
	W. Harris (e) UBV c-m		Griffin (Cambridge), Gunn (Hale) r.v.
5466	Zinn (12.122.069) T_{e} of uv-bright st.		of indiv. st.
5694	W. Harris (e), $B V \mathrm{c}-\mathrm{m}$, more current UBV		Toyama, Nishimura, Kaneko (Tokyo) l.f., color, distr.
58245897	W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$		Wilson (Yale), King (Berkeley) 1.f.
	Eggen (07.113.007) UBVRI of RG	6229	Grasdalen (12.154.011) integr. $J H K$
5904 (M5)	Eggen (07.113.007) UBVRI of RG	6254 (M10)	Osborn (07.154.030, 10.154.018)
	Simoda, Tanikawa (07.154.027) 1.f.		DDO of RG
	Osborn (07.154.030, 10.154.018)		Faber (09.158.027) integr. 10-color
	DDO of RG		Zinn (12.122.069) T_{e} of uv-bright st.
	Kuzmin et al. (09.154.008,		W. Harris (e) UBV c-m
	10.154.021) surf. br. Faber (09.158 .027) integr. 10 -color		Griffin (Cambridge), Gunn (Hale) r.v. of indiv. st.
	Rusev (11.113.007) i-r of RG	6256	Terzan, Leliėvre (10.153 .024) new
	Philip (13.154.013) $u v b y$ of HB		globular?
	Butler (g) E ($B-V$)		Bernard (Lyon) UBV seq.
	Cudworth (Yerkes) p.m.	6266	Illingworth (20,21) surf. br., cts., d,
	Griffin (Cambridge), Gunn (Hale) r.v. of indiv. st.		E, diam., vel. disp., M / L W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$
	Toyama, Nishimura, Kaneko (Tokyo)		Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$
	1.f., color, distr.		White (Steward) $U B V \mathrm{c}-\mathrm{m}$, 1.f.
5927	Menzies (12.154.015) $U B V \mathrm{c}-\mathrm{m}$	6273	W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$
	Alcaíno (ESO) $B V \mathrm{~cm}$	6284	Grasdalen (12.154.011) integr. $J H K$
	White (Steward) UBV c-m, 1.f., DDO of RG	6304	Hesser, Hartwick (j) BV c-m, d, E, also current $u v b y \beta$, DDO
5986	Harris (e) UBV c-m		Bernard (Lyon) UBV seq.
	Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$	6325	W. Harris (e) $U B V$ c-m
	White (Steward) BV c-m, 1.f.	6341 (M92)	Eggen (07.113.007) UBVRI of RG
6093 (M80)	W. Harris, Racine (11.154.015) BV		Philip (07.154.007) uvby of HB
	$\mathrm{c}-\mathrm{m}$		Faulkner (07.154.019) He abund.
	Grasdalen (12.154.011) integr. JHK		Osborn (07.154.030, 10.154.018)
	Illingworth (20,21) surf. br., cts., d,		DDO of RG
	E, diam., vel. disp., M/L		Hogner et al. (08.154.007)
6101	Alcaíno (12.154.003) UBV c-m		equidensity curves
	White (Steward) $U B V$ c-m, l.f., DDO of RG		Zinn (09.114.148) G-band of RG Kuzmin et al. (09.154.008,
6121 (M4)	Eggen (07.113.007) UBVRI of RG		10.154.021) surf. br.
	Philip (07.154.007, 09.154.014,		Faber (09.158 .027) integr. 10-color
	13.154.013) uvby of HB Moshkalev (11.154.008) BV c-m		Böhm-Vitense (10.154.003) T_{e}, g
	Moshkalev (11.154.008)		Rusev (11.113.007) i-r of RG
	Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$		Zinn (12.122.069) T_{e} of uv-bright st.
6205 (M13)	Simoda, Tanikawa (07.154.002) 1.f.		Kadla (12.154.018) UBV, uv-excess
	$\begin{aligned} & \text { Philip }(07.154 .007,12.154 .005 \\ & 13.154 .013) \text { uvby of } \mathrm{HB} \end{aligned}$		Cathey (12.154.019) UBVR of RG, AGB, sub-G
	$\begin{aligned} & \text { Osborn }(07.154 .030,10.154 .018) \\ & \text { DDO of RG } \end{aligned}$		Butler (g, k) $E(B-V), \mathrm{C}$ and N abund. in sub-G, AGB
	Kuzmin et al. (09.154.008,		van den Bergh (1) 1.f. to $V=23.2$
	10.154.021) surf. br.		Cudworth (Yerkes) p.m.
	Faber (09.158.027) integr. 10-color		Griffin (Cambridge), Gunn (Hale) r.v.
	Rusev (11.113.007, i) i-r of RG, sp. search for TiO		of indiv. st.
	Auer, Norris (12.114.109) He abund.		and distr. for 25,000 st., $\mathrm{B}<23.3$
	Zinn (12.122.069) T_{e} of uv-bright st.		Fukuoka, Simoda (Tokyo) 1.f.
	Cathey (12.154.019) $U B V R$ of RG, AGB, sub-G		Toyama, Nishimura, Kaneko (Tokyo) l.f., color, distr.
	Butler (g) E (B-V)		Takikawa, Simoda (Tokyo) c-m

Table 3. (Continued)

NGC	Observer and data	NGC	Observer and data
	Pulkovo BV, p.m. Wilson (Yale), King (Berkeley) l.f.		```Griffin (Cambridge), Gunn (Hale) r.v. of indiv. st.```
6342	Grasdalen (12.154.011) integr. JHK		White (Steward) DDO of RG, AGB,
6352	Hesser (CTIO), Hartwick (Victoria)		BHB, sp. of RG
	DDO of RG		Hesser (CTIO) and Hartwick
	Hesser (CTIO) $u v b y \beta, B V \mathrm{c}-\mathrm{m}$ to MS		(Victoria) $u \nu b y \beta$, DDO
6356	Faber (09.158.027) integr. 10 -color		Philip (Albany) $u v b y$ of BHB
	Walker (Lick) spectracon $B V \mathrm{c}-\mathrm{m}$, $V<21$	6681	Grasdalen (12.154.011) integr. JHK W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$
6366	Walker (Lick) spectracon $B V \mathrm{c}-\mathrm{m}$, $V<21$	$\begin{aligned} & 6712 \\ & 6715 \end{aligned}$	Butler (g) E ($B-V$) Grasdalen (12.154.011) integr. JHK
6388	Illingworth, Freeman (11.154.011) mass		Illingworth (20, 21) surf. br., cts., d, E, diam., vel. disp., M / L
	Scott, Rose (13.154.005) H II detectable?	6723	W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$ Menzies (12.113.001) UBV c-m
	$\begin{aligned} & \text { Illingworth }(20,21) \text { surf. br., cts., } d \text {, } \\ & E \text {, diam., vel. disp., } M / L \end{aligned}$	6752	Eggen (07.113.007, 08.154.014) UBVRI of RG, AGB, sub-G
	White (Steward) $U B V$ c-m, l.f., DDO of RG		Cannon, Stobie $(09.154,016)$ UBV Wesselink (12.154 .001) $B V \mathrm{c}-\mathrm{m}$
6397	Cannon (11.154.017) UBV		Cannon (Edinburgh), Lee (Stromlo)
	Mallia (13.154.003, 13.154.018)		$B V \mathrm{c}-\mathrm{m}, 1 . \mathrm{f}$.
	AGB, mem. from r.v.	6779(M56)	Faber (09.158.027) integr. 10-color
	van den Bergh (Toronto) J-plate seq. $\text { to } 24^{\mathrm{m}}$	6809 (M55)	Philip (13.154.013) $u v b y$ of BHB W. Harris (e) $U B V \mathrm{c}-\mathrm{m}$
	Alcaíno (ESO) BV c-m		Lee (Stromlo) BV c-m, 1.f.
	Stock, Clariá (Mérida) r.v. pec. st.		Alcaíno (ESO) BV c-m
6402 (M14)	Mironov (10.154.017) c-m		Trimble (Irvine) search for W UMa st.
	Smith Kogon, Wehlau, Demers (11.154.012) $B V \mathrm{c}-\mathrm{m}, d, E$	6838 (M71)	Cuffey (09.153.035) UBV standards Rusev (11.113.007) i-r of RG
6440	Grasdalen (12.154.011) integr. JHK		Butler (g) E ($B-V$)
	Markert et al. (in press) X-ray source		Walker (Lick) spectracon $B V \mathrm{c}$-m
6441	Giacconi et al. (11.142.035) X-ray source	6864 (M75)	Philip (Albany) $u v b y, b y \mathrm{c}-\mathrm{m}$ Grasdalen (12.154.011) integr. JHK
	Clark, Markert, Li (15) X-ray source		W. Harris (e) $U B V$ c-m
	Hesser, Hartwick (m) $B V \mathrm{c}-\mathrm{m}, d, E$		Illingworth (20, 21) surf. br., cts.,
	Illingworth (20, 21) surf. br., cts., d, E, diam., vel. disp., M / L	6934	d, E, diam., vel. disp., M / L Racine, Harris (09.154.009) BV c-m
	Hesser (CTIO), Hartwick (Victoria) $u v b y \beta$, DDO		Mironov (11.154 .030) c-m Grasdalen (12.154.011) integr. $J H K$
6517	W. Harris (e) UBV c-m		Terzan, Rutily (Lyon) R seq.
6522	Grasdalen (12.154.011) integr. $J H K$	7006	Hartwick, McClure (08.154.002)
6528	Grasdalen (12.154.011) integr. JHK		DDO, N abund.
6553	Hartwick (13.154.008) BV c-m		Grasdalen (12.154.011) integr. K
6624	Canizares, Neighbours (16), variable X-ray source M. Liller, W. Liller (Harvard) BV c-m	7078 (M15)	Demarque, Mengel, Sweigert (07.154.013) explanation of gaps in $\mathrm{c}-\mathrm{m}$
	N. Bahcall (Princeton) central light distr.		Faber (09.158.027) integr. 10-color Böhm-Vitense (10.154.003) $T^{g} g$
6638	Bernard (Lyon) UBV seq.		MacGregor, Phillips, Selby
6652	Grasdalen (12.154.011) integr. JHK		(10.154.007) tentative 10μ
6656 (M22)	Eggen (07.113.007) UBVRI of RG		detection
	Butler et al. $(09.122 .008)[\mathrm{Fe} / \mathrm{H}]$ from RR Lyr		Zinn (12.122.069) T_{e} of uv-bright st. Caloi, Panaggia (12.154.016) nature
	Evans (13.154.015) BVI of RG, AGB		of possible 10μ source
	Butler (g) E ($B-V$)		Castellani, Martini, Petitti
	Lee (Stromlo) $B V \mathrm{c}-\mathrm{m}, 1 . \mathrm{f}$.		(13.154.011) i-r for mem.
	Alcaíno (ESO) $B V \mathrm{c}-\mathrm{m}$		Giacconi et al. (11.142.035) X-ray source

Table 3. (Continued)
$\left.\begin{array}{llll}\text { NGC } & \text { Observer and data } & \text { NGC } & \text { Observer and data } \\ & \text { Clark, Markert, Li (15) X-ray source }\end{array}\right)$

Abbreviations: $\mathrm{AGB}=$ asymptotic giant branch, $\mathrm{BHB}=$ blue horizontal branch, c-m $=$ color-magnitude array, cts. $=$ star counts, $d=$ distance,$E=$ color excess or reddening, $g=$ surface gravity, i-b $=$ intermediate band, l.f. $=$ luminosity function, mem. $=$ membership, p.m. $=$ proper motion, $\mathrm{RG}=$ red giants, $\mathrm{r} . \mathrm{v} .=$ radial velocity , sp. $=$ spectra, st. $=$ stars, sub-G $=$ subgiants, $T_{\mathrm{e}}=$ effective temperature.

References for Table 3: (a) Crawford, D. L. and Snowden, M. S. 1975, Publ. Astron. Soc. Pacific 87, 561. (b) Bell, R. A. and Dickens, R. J. 1975, Bull. Amer. Astron. Soc. 7, 535. (c) Alcaíno, G. 1975, Astron. Astrophys. Suppl. 21, 288. (d) Liller, M. H. 1975, Astrophys. J. 201, L125. (e) Harris, W. 1976, Astrophys. J. Suppl. (in press). (f) White, R. E., Jr., Mosley, D. R., Furenlid, I., and White, R. E. III. 1975, Publ. Astron. Soc. Pacific 87, 551. (g) Butler, D. 1975, Publ. Astron. Soc. Pacific 87, 559. (h) Sturch, C. 1976, Astron. Astrophys. (in press). (i) Rusev, R. M. 1974, Astron. Tsirk., No. 841 . (j) Hesser, J. E. and Hartwick, F. D. A. 1976, Astrophys. J. 203, 113. (k) Butler, D., Carbon, D., and Kraft, R. P. 1975, Bull. Amer. Astron. Soc. 7, 239. (1) van den Bergh, S. 1976, Astrophys. J. (in press). (m) Hesser, J. E. and Hartwick, F. D. A. 1976, Astrophys. J. 203, 97. (n) Demers, S. and Kunkel, W. E. 1976, Astrophys. J. (in press).
I. R. KING

President of the Commission

