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RARE EVENTS, TEMPORAL DEPENDENCE,
AND THE EXTREMAL INDEX
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Abstract

Classical extreme value theory for stationary sequences of random variables can to a large
extent be paraphrased as the study of exceedances over a high threshold. A special role
within the description of the temporal dependence between such exceedances is played by
the extremal index. Parts of this theory can be generalized not only to random variables
on an arbitrary state space hitting certain failure sets, but even to a triangular array of
rare events on an abstract probability space. In the case of M4 (maxima of multivariate
moving maxima) processes, the arguments take a simple and direct form.
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1. Introduction

Many applied sciences require the handling of events with low probability but large,
often disastrous impact. Of particular interest is the way in which such rare events interact:
an unusually stormy day at a particular site might be followed by another one at the same or a
neighboring site, while a large drop in a stock index might trigger similar negative movements
in the next time period for the same or other financial time series. What are the principles
governing these dependencies?

The theory developed in this paper is inspired by a concept from classical extreme value
theory. A stationary sequence of random variables, {Xn}, is said to have extremal index
θ ∈ [0, 1] if, for every τ, 0 < τ < ∞, there exists a sequence of thresholds, {un}, such
that n Pr(X1 > un) → τ and Pr(maxi=1,...,n Xi ≤ un) → exp(−τθ) as n → ∞ (Leadbetter
(1983)). The extremal index θ quantifies the strength of dependence between threshold ex-
ceedances {Xi > un}, with θ = 1 corresponding to asymptotic independence and θ ↓ 0 to an
increasing propensity of large observations to occur in clusters. In the context of multivariate
time series, the extremal index makes its appearance in the asymptotic distribution of the vector
of componentwise maxima (Nandagopalan (1994), Smith andWeissman (1996), Perfekt (1997),
Beirlant et al. (2004, Chapter 10), Zhang and Smith (2004)).

As already hinted at in Nandagopalan (1994), we can in fact start from a stationary process
on an arbitrary state space in which a sequence of failure sets represents ever more extreme
states for the process. The extremal index, which now also depends on the sequence of failure
sets, describes the strength of temporal dependence between failure set hits. An even further
abstraction is possible, to a triangular array of events every row of which satisfies a certain
stationarity condition.
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For a single row of events, the following quantities are of interest: the probability that none
of the events occurs; the probability that the occurrence of an event is not followed in the near
future by another one; the mean number of events that occur given that there occurs at least one;
and, conditionally on the occurrence of an event, the time until the occurrence of the next one.
The relations between these quantities can be described in terms of various inequalities. These
complement the assessment of the accuracy of the compound Poisson approximation for the
empirical point process of exceedances in Barbour et al. (2002). Furthermore, these inequalities
lead to asymptotic results that serve on the one hand to formulate, in the framework of rare
events, known characterizations of the extremal index (Leadbetter (1983), O’Brien (1987),
Ferro and Segers (2003)), and on the other hand to complement various Poisson limit results
for triangular arrays (Hüsler (1993), Hüsler and Schmidt (1996)). Point process results will not
be pursued in this paper, as the dependence restrictions in force will be weaker than those in
the aforementioned papers.

The exposition starts in Section 2 with a discussion of the multivariate extremal index of M4
(maxima of multivariate moving maxima) processes. In this relatively simple example, short
and direct arguments suffice to illustrate the more general theory. By way of an intermediate
step, results for a stationary sequence in an arbitrary state space are formulated, in Section 3.
The highest level of abstraction is reached in Sections 4–6. The set-up and the notation used
are detailed in Section 4. The core of the paper is Section 5, containing asymptotic theory
for dependence within a triangular array of rare events. The theory is based on a meticulous
analysis leading to sharp inequalities, in Section 6. Finally, the appendices contain some
technical arguments. Where not specified explicitly, all limits hold as n → ∞ in the set of
positive integers.

2. Maxima of multivariate moving maxima

M4 processes provide an instructive example of how phenomena in the context of extremes
of univariate stationary processes carry over to a more general setting. For such processes,
direct arguments suffice to reveal the connection between the extremal index and temporal
dependence between exceedances over high multivariate thresholds.

2.1. M4 processes

A d-variate random sequence Xi = (Xi,1, . . . , Xi,d), where i ∈ Z (the set of integers), is
called an M4 process if it admits the representation

Xi,j = max
l≥1

max
p∈Z

al,i−p,jZl,p for i ∈ Z and j = 1, . . . , d; (2.1)

the variables Zl,p, where l = 1, 2, . . . and p ∈ Z, are independent standard Fréchet random
variables, that is,

Pr(Zl,p ≤ x) = exp{−1/x}, 0 < x < ∞,

while the al,k,j are nonnegative numbers such that

∑
l≥1

∑
k∈Z

al,k,j = 1 for j = 1, . . . , d.

Note that the process {Xi : i ∈ Z} is constructed as the maximum of a sequence of multivariate
moving maximum processes, whence the name ‘M4’.
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The M4 process (2.1) is strictly stationary, its marginal distributions being standard Fréchet.
The distribution function, Gm, of the md-variate vector (X1, . . . , Xm) is given by

Gm(x1, . . . , xm) = exp{−Vm(x1, . . . , xm)}, with

Vm(x1, . . . , xm) =
∑
l≥1

∑
p∈Z

max
i=1,...,m

max
j=1,...,d

al,i−p,j

xi,j

,

for x1, . . . , xm ∈ (0, ∞]d . In particular, all finite-dimensional distributions of the process are
simple max-stable, that is, {Gm(tx1, . . . , txm)}t = Gm(x1, . . . , xm) for every t, 0 < t < ∞.
Such a process is called max-stable in the terminology of de Haan (1984).

M4 processes were introduced in Smith and Weissman (1996) to provide examples for the
multivariate extremal index, to be defined below. See Zhang (2002) for applications of M4
processes to the modelling of financial time series.

2.2. Temporal dependence between high-threshold exceedances

An observation Xi is said to exceed the threshold x if Xi �≤ x, that is, if Xi,j > xj for
some j = 1, . . . , d. For M4 processes, we will analyse the temporal dependence between
exceedances over threshold sequences of the form nx that have xj > 0 for every j = 1, . . . , d.

For positive integers n and for x ∈ (0, ∞]d , let

Vn(x) := Vn(x, . . . , x) =
∑
l≥1

∑
p∈Z

max
i=1,...,n

max
j=1,...,d

al,i−p,j

xj

; (2.2)

also let V0 ≡ 0. The following lemma is of great use in the study of the temporal dependence
between extremes of an M4 process.

Lemma 2.1. For x ∈ (0, ∞]d , the functions Vn in (2.2) satisfy

lim
n→∞{Vn(x) − Vn−1(x)} = lim

n→∞ Vn(nx) =
∑
l≥1

max
k∈Z

max
j=1,...,d

al,k,j

xj

=: W(x).

Proof. For l ≥ 1 and k ∈ Z, let bl,k = maxj=1,...,d al,k,j /xj . We have

Vn(x) − Vn−1(x) =
∑
l≥1

∑
p∈Z

(
max

i=1,...,n
bl,i−p − max

i=1,...,n−1
bl,i−p

)
.

Writing λ+ = max(λ, 0) for λ ∈ R, we obtain

Vn(x) − Vn−1(x) =
∑
l≥1

∑
p∈Z

(
bl,n−p − max

i=1,...,n−1
bl,i−p

)
+

=
∑
l≥1

∑
k∈Z

(
bl,k − max

i=1,...,n−1
bl,i+k−n

)
+

=
∑
l≥1

∑
k∈Z

(
bl,k − max

i=1,...,n−1
bl,k−i

)
+.

By the dominated convergence theorem,

lim
n→∞{Vn(x) − Vn−1(x)} =

∑
l≥1

∑
k∈Z

(
bl,k − max

r<k
bl,r

)
+.
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The identity ∑
k∈Z

(
bl,k − max

r<k
bl,r

)
+ = max

k∈Z

bl,k

yields limn→∞{Vn(x) − Vn−1(x)} = W(x). Furthermore,

Vn(nx) = 1

n
Vn(x) = 1

n

n∑
k=1

{Vk(x) − Vk−1(x)}.

Since the Cesàro transform of a converging sequence converges to the same limit as the original
sequence, we also have lim Vn(nx) = W(x). This concludes the proof of Lemma 2.1.

For x ∈ (0, ∞]d \ {(∞, . . . ,∞)}, let

θ(x) = W(x)

V1(x)
=

∑
l≥1 maxk∈Z maxj=1,...,d al,k,j /xj∑
l≥1

∑
k∈Z

maxj=1,...,d al,k,j /xj

.

This θ is called the (multivariate) extremal index (function) of the M4 process (2.1). It inherits
all the familiar properties of the extremal index of a univariate stationary process.

Theorem 2.1. Let {Xn} be the M4 process (2.1). For x ∈ (0, ∞]d \ {(∞, . . . , ∞)},
Pr(Xi ≤ nx ∀i = 1, . . . , n) = {Pr(X1 ≤ nx)}nθ(x) + o(1)

→ exp{−W(x)}. (2.3)

If mn is a positive integer sequence such that mn → ∞ and mn = o(n), then

E

[ mn∑
i=1

1(Xi �≤ nx)

∣∣∣∣ ∃i = 1, . . . , mn : Xi �≤ nx

]
→ 1

θ(x)
. (2.4)

If sn is a positive integer sequence such that sn → ∞ and sn/n → λ ∈ [0, ∞], then

Pr(Xi ≤ nx ∀i = 2, . . . , sn | X1 �≤ nx) → θ(x) exp{−λV1(x)θ(x)}. (2.5)

Proof. The proof relies on Lemma 2.1. First,

Pr(Xi ≤ nx ∀i = 1, . . . , n) = exp{−Vn(nx)} → exp{−W(x)}
and

{Pr(X1 ≤ nx)}n = exp{−nV1(nx)} = exp{−V1(x)}.
Second,

E

[ mn∑
i=1

1(Xi �≤ nx)

∣∣∣∣ ∃i = 1, . . . , mn : Xi �≤ nx

]

= mn Pr(X1 �≤ nx)

Pr(∃i = 1, . . . , mn : Xi �≤ nx)

= mn[1 − exp{−V1(nx)}]
1 − exp{−Vmn(nx)}

= n[1 − exp{−(1/n)V1(x)}]
(n/mn)[1 − exp{−(mn/n)Vmn(mnx)}]

→ V1(x)

W(x)
.
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Finally,

Pr(Xi ≤ nx ∀i = 2, . . . , sn | X1 �≤ nx)

= Pr(Xi ≤ nx ∀i = 2, . . . , sn) − Pr(Xi ≤ nx ∀i = 1, . . . , sn)

1 − Pr(X1 ≤ nx)

= exp{−Vsn−1(nx)} − exp{−Vsn(nx)}
1 − exp{−V1(nx)}

= exp{−Vsn(nx)}n[exp{Vsn(nx) − Vsn−1(nx)} − 1]
n[1 − exp{−V1(nx)}]

= exp

{
− sn

n
Vsn(snx)

}
n[exp{(1/n)(Vsn(x) − Vsn−1(x))} − 1]

n[1 − exp{−(1/n)V1(x)}]
→ exp{−λW(x)}W(x)

V1(x)
.

This concludes the proof of Theorem 2.1.

Equation (2.3), due to Smith and Weissman (1996), states that the role played by the extremal
index in the asymptotic distribution of the componentwise sample maximum is exactly the same
as in the original definition for univariate sequences in Leadbetter (1983). Take x such that all
coordinates but its j th are equal to infinity to arrive at the result that the extremal index of the
j th coordinate process, {Xn,j : n ∈ Z}, is equal to θj = ∑

l≥1 maxk∈Z al,k,j .
By (2.4), the expected number of exceedances over a high threshold in a block with at least

one exceedance converges to the reciprocal of the extremal index. For univariate stationary
processes, this characterization is due to Leadbetter (1983).

Finally, (2.5) admits two interpretations. The case sn/n → 0 states that the probability
that the exceedance X1 �≤ nx is followed by a run of sn non-exceedances converges to θ(x), a
property originally discovered by O’Brien (1987). The case sn/n → λ > 0 can be reformulated
as follows, with Tx = min{i ≥ 1 : Xi+1 �≤ x}:

lim
n→∞ Pr({V1(x)/n}Tnx ≥ λ | X1 �≤ nx) = θ(x) exp{−λθ(x)}, λ > 0.

In words, the normalized interarrival time {V1(x)/n}Tnx converges to the mixture distribution
{1 − θ(x)}ε0 + θ(x)Exp(θ(x)), where ε0 is a point mass at 0 and Exp(ν) is an exponential
distribution with mean 1/ν. For univariate sequences, a similar property was exploited by
Ferro and Segers (2003) to construct an estimator for the extremal index; see also Chapter 10
of Beirlant et al. (2004).

3. Variables in general state space

3.1. Setting

Let {Xn : n ≥ 1} be a stationary sequence of random elements of a measurable space (S, S),
and let B ∈ S. Think of the random elements Xn as representing the evolution of some system
or process over time, and of the set B as a failure set for which the events {Xi ∈ B} have small
probability but large repercussions if they occur. The archetypal situation is the one where
the state space S is the real line and the failure set B is the open half-line (u, ∞), the event
{Xi ∈ B} corresponding to the threshold exceedance {Xi > u}. In the example of M4 processes
in Section 2, the state space is R

d and the failure set is of the form {y ∈ R
d : y �≤ x}.
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For B ∈ S and an integer m ≥ 1, consider the following probabilities related to the
occurrence of the events {Xi ∈ B}:

p(B) = Pr(X1 ∈ B),

pm(B) = Pr(∃i = 1, . . . , m : Xi ∈ B),

qm(B) = 1 − pm(B) = Pr(Xi �∈ B ∀i = 1, . . . , m).

To avoid trivialities, assume that 0 < p(B) < 1. We will be interested in the asymptotics
arising from a sequence of failure sets Bn ∈ S such that the probability of a hit tends to 0,
i.e. p(Bn) → 0.

3.2. Quantities of interest

From the above probabilities we can derive a number of quantities, all of which describe
in a different way the dependence between failure set hits {Xi ∈ B}. If these events are
independent, then simply qm(B) = {q1(B)}m. In general, however, qm(B) = {q1(B)}mθ for
some θ = θM

m (B) ≥ 0, or, explicitly,

θM
m (B) = log qm(B)

m log q1(B)
.

If pm(B) is small then θM
m (B) is approximately equal to

θB
m(B) = pm(B)

mp(B)
.

Note that θB
m(B) is equal to the reciprocal of the expected number of hits in the block

X1, . . . , Xm, given that there is at least one hit, i.e.

E

[ m∑
i=1

1(Xi ∈ B)

∣∣∣∣
m⋃

i=1

{Xi ∈ B}
]

= mp(B)

pm(B)
= 1

θB
m

.

The conditional probability that a hit {X1 ∈ B} is followed by a run of nonhits is

θR
m(B) = Pr(Xi �∈ B ∀i = 2, . . . , m | X1 ∈ B) = pm(B) − pm−1(B)

p(B)
.

Conditionally on the process starting with a hit {X1 ∈ B}, the waiting time until the next hit is

TB = min{i ≥ 1 : Xi+1 ∈ B}.
Its distribution is determined by

Pr(TB ≥ m | X1 ∈ B) = θR
m(B).

3.3. Long-range dependence

As our notation suggests, the quantities above turn out to be related, provided that the amount
of long-range dependence is not too great. To control this, we impose conditions on a kind of
mixing coefficient measuring the force of dependence, in a sample of size n, between blocks
of variables of size at least l that are separated by a gap of precisely s:

αn,s,l(B) = max
u,v,w

∣∣∣∣Pr

( ⋂
u<i≤v

{Xi �∈ B} ∩
⋂

v<j≤w

{Xj+s �∈ B}
)

− qv−u(B)qw−v(B)

∣∣∣∣.
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Here the maximum ranges over all integers u, v, and w such that u ≥ 0, v ≥ u+l, w ≥ v+l, and
w + s ≤ n, and l and s are positive integers such that 2l + s ≤ n. We write αn,l(B) = αn,l,l(B)

and ᾱn,l(B) = sup{αn,s,l(B) : l ≤ s ≤ n − 2l}, and for a real number x denote by 
x� the
largest integer not larger than x and by �x� the smallest integer not smaller than x.

3.4. Characterization theorem

Let Bn ∈ S be such that 0 < p(Bn) < 1. Theorem 3.1 states the relations between
the quantities θM

m (Bn), θB
m(Bn), and θR

m(Bn). It is an immediate corollary to the theorems in
Section 5 applied to the events Ai,n = {Xi ∈ Bn}.
Theorem 3.1. Assume that there exists an integer sequence ln, 1 ≤ ln ≤ n, such that ln = o(n)

and αn,ln(Bn) → 0.

(i) If mn, ln ≤ mn ≤ n, is an integer sequence such that ln = o(mn) and αn,ln = o[max(mn/n,

pmn(Bn))], then
qn(Bn) = {qmn(Bn)}n/mn + o(1).

In particular, lim inf qn(Bn) ≥ exp{− lim sup np(Bn)}.
(ii) If, additionally, 0 < lim inf np(Bn) ≤ lim sup np(Bn) < ∞, then lim sup θM

n (Bn) ≤ 1 and

lim
n→∞ sup

mn≤i≤j≤n

|θM
i (Bn) − θM

j (Bn)| = 0.

(iii) If, additionally, mn = o(n) then

θM
n (Bn) = θB

mn
(Bn) + o(1) = θR

mn
(Bn) + o(1).

(iv) If, additionally, ᾱλn,ln(Bn) = o(1) for every λ > 0, then, for any sequence θn such that
θn = θM

n (Bn) + o(1),

θR
�x/p(Bn)�(Bn) = Pr(p(Bn)TBn ≥ x | X1 ∈ Bn) = θn exp{−xθn} + o(1)

locally uniformly in x, 0 < x < ∞.

Remark 3.1. The condition that the process {Xn} be stationary can be slightly weakened. It is
sufficient that, for all positive integers m and n, the probabilities Pr(Xi+j ∈ Bn ∀i = 1, . . . , m)

do not depend on j ; see also Definition 4.1 below.

Example 3.1. Without additional assumptions, M4 processes (2.1) satisfy a kind of mixing
condition for rare events that makes Theorem 3.1 applicable to many failure sets other than
those of the form {y ∈ R

d : y �≤ x}. For x ∈ R
d and λ ∈ R, let (in obvious notation)

max(x, λ) = (max(x1, λ), . . . , max(xd, λ)). For −∞ < r ≤ s < ∞ and λ ∈ R, let σ(r, s; λ)

be the σ -field generated by the random vectors {max(Xi, λ) : i ∈ Z ∩ [r, s]}. In this notation,
every M4 process satisfies

max
s=1,...,νn−ln

sup
A∈σ(1,s;nε)

B∈σ(s+ln,νn;nε)

| Pr(A ∩ B) − Pr(A) Pr(B)| → 0 (3.1)

for every ν, 0 < ν < ∞, every positive integer sequence ln = 1, . . . , νn tending to infinity,
and every ε, 0 < ε < ∞. The proof of (3.1) is given in Appendix B. It is even possible to
replace ε by a positive sequence, εn, that tends to 0 sufficiently slowly.
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Note that for a finite set, I , of integers and for u ∈ R
d , the event

⋂
i∈I {Xi ≤ u} is contained

in the σ -field σ(r, s; λ) if I ⊂ Z ∩ [r, s] and uj ≥ λ for every j = 1, . . . , d. In particular,
by (3.1) all M4 processes satisfy the multivariate version of Leadbetter’s D(un) condition for
every multivariate threshold sequence un such that lim inf un,j /n > 0 for every j = 1, . . . , d.

4. Rare events: assumptions and notation

Theorem 3.1 can be formulated completely in terms of the events Ai,n = {Xi ∈ Bn}; no
reference needs to be made to the state space, the failure sets, or the random process. All we
need is a triangular array, {Ai,n : n ≥ 1, 1 ≤ i ≤ n}, of events together with a notion of
stationarity and restrictions on the amount of long-range dependence. The principal aim of this
paper is to develop a theory of temporal dependence between rare events on this abstract level.
In this section, we gather the ingredients that will appear in such a theory. The main results are
stated in Section 5.

4.1. Block stationarity

Throughout, we will work with the following notion of stationarity for a vector of events
A1, . . . , Ar .

Definition 4.1. Events A1, . . . , Ar on a common probability space are called block stationary
if Pr(

⋃m
i=1 Ai+j ) = Pr(

⋃m
i=1 Ai) for m = 1, . . . , r − 1 and j = 1, . . . , r − m.

The probability that at least one of m consecutive events occurs is

pm = Pr

( m⋃
i=1

Ai+j

)
, m = 1, . . . , r, j = 0, . . . , r − m. (4.1)

Thus, the probability that none of m consecutive events occurs is

qm = 1 − pm = Pr

( m⋂
i=1

Ac
i+j

)
, m = 1, . . . , r, j = 0, . . . , r − m. (4.2)

For simplicity, we write p = p1. To avoid trivialities, we henceforth assume that 0 < p < 1.
For positive integers i and j with i + j ≤ r , we have

pi ≤ pi+j ≤ pi + pj and qi+j ≤ qi ≤ qi+j + pj .

Remark 4.1. If r ≥ 4 then the property that events A1, . . . , Ar are block stationary does not
imply that the vector of indicator variables 1(A1), . . . , 1(Ar) is stationary. (See Examples 4.1
and 4.2 for some counterexamples.) For the special case with three events (r = 3), block
stationarity is the same as stationarity of the indicator variables, as kindly pointed out by a
referee.

Example 4.1. Consider the discrete probability space � = {1, 2, . . . , 16} with uniform prob-
abilities, and let

A1 = {1, . . . , 8},
A2 = {1, . . . , 4} ∪ {9, . . . , 12},
A3 = {1, 2} ∪ {5, 6} ∪ {9, 10} ∪ {13, 14},
A4 = {1, 2} ∪ {9, 10} ∪ {3, 7, 11, 15}.
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Then Pr(Ai) = 1
2 for i = 1, . . . , 4, Pr(Ai ∪ Ai+1) = 3

4 for i = 1, 2, 3 and, for i = 1, 2,
Pr(Ai ∪ Ai+1 ∪ Ai+2) = 7

8 . Hence, the events A1, . . . , A4 are block stationary. However,
Pr(A1 ∪ A3) = 3

4 while Pr(A2 ∪ A4) = 5
8 , so the vector of corresponding indicator variables

is not stationary.

Example 4.2. Let Yn, where n ∈ Z, be independent standard Fréchet random variables, i.e.
Pr(Yn ≤ y) = exp{−1/y} for 0 < y < ∞. Furthermore, let ai, i ≥ 0, be nonnega-
tive numbers such that ai ≥ ai+1 for i ≥ 0 and

∑
i≥0 ai = 1. For positive integer n,

let ξn = max{aiYn−i : i ≥ 0}. The moving maximum process {ξn} is stationary and
Pr(maxi=1,...,n ξi ≤ x) = exp{−{(n − 1)a0 + 1}/x} for 0 < x < ∞.

Now let {ξ ′
n} be another such moving maximum process, independent of {ξn} and with

parameters a′
i , i ≥ 0, where again a′

i ≥ a′
i+1 ≥ 0 for i ≥ 0 and

∑
i≥0 a′

i = 1. Define
a new process by intercalating {ξn} and {ξ ′

n} as (X1, X2, X3, X4, . . . ) = (ξ1, ξ
′
1, ξ2, ξ

′
2, . . . ).

If a0 = a′
0 but ai �= a′

i for some i ≥ 1, then the process {Xn} is nonstationary. Nevertheless,
the distribution of max{Xi+j : i = 1, . . . , m} does not depend on j : for each real x, the events
Ai = {Xi > x} are block stationary.

4.2. Quantities of interest

Let A1, . . . , Ar be a row of block stationary events. Recall pm and qm from (4.1) and (4.2).
If the events are independent, then simply qm = qm

1 for all integer m, 1 ≤ m ≤ r . In general,
however, qm = qmθ

1 for some θ = θM
m ≥ 0, or, explicitly,

θM
m = log(qm)

m log(q1)
, m = 1, . . . , r. (4.3)

Ifpm is small then−log(qm) and−log(q1) are approximately equal topm andp, respectively.
Substituting these approximations into (4.3) yields

θB
m = pm

mp
, m = 1, . . . , r.

Note that 0 < θB
m ≤ 1. The interpretation is that 1/θB

m = mp/pm is equal to the ex-
pected number of events that occur in a block of size m, given that there occurs at least one,
i.e. E[∑m

i=1 1(Ai) | ⋃m
i=1 Ai] = 1/θB

m.
Conditionally on an event occurring, the probability that it is followed by a run of non-

occurring events is

θR
m = Pr

( m⋂
i=2

Ac
i

∣∣∣∣ A1

)
= pm − pm−1

p
, m = 1, . . . , r,

where p0 := 0. By symmetry, θR
m is also equal to the probability that an extreme event is not

preceded by another one for a certain time, i.e. θR
m = Pr(

⋂m−1
i=1 Ac

i | Am).
Finally, if the first event actually occurs, written ω ∈ A1, then the time to wait until the next

event occurs is
T (ω) = min{j ≥ 1 : ω ∈ Aj+1}.

(The minimum of the empty set is set to infinity, by convention.) The distribution of the
interarrival time T can be expressed as

Pr(T ≥ t | A1) = θR
t , t = 1, . . . , r. (4.4)
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The quantities θM
m , θB

m, and θR
m are ordered in the following way.

Lemma 4.1. For integer m, 1 ≤ m ≤ r , we have θR
m ≤ θB

m ≤ θM
m ≤ θB

m/qm.

Proof. Since θR
i is decreasing in i, we have

pm =
m∑

i=1

(pi − pi−1) =
m∑

i=1

pθR
i ≥ mpθR

m,

whence θR
m ≤ θB

m.
Next, the function x �→ −x−1 log(1 − x) = ∫ 1

0 (1 − xy)−1 dy is increasing in x < 1. Since
pm ≥ p, we have −p−1

m log(qm) ≥ −p−1 log(q1) and, thus, log(qm)/ log(q1) ≥ pm/p,
whence θM

m ≥ θB
m.

Finally, as x ≤ −log(1 − x) ≤ x/(1 − x) for 0 ≤ x < 1, we have −log(qm) ≤ pm/qm and
−log(q1) ≥ p, whence θM

m ≤ (pm/qm)/(mp) = θB
m/qm, completing the proof.

4.3. Weak long-range dependence

The amount of long-range dependence will be controlled by putting bounds on the coeffi-
cients

αs,l := max
v=l,...,r−s−l

max
u=0,...,v−l

w=v+l,...,r−s

∣∣∣∣Pr

( ⋂
u<i≤v

Ac
i ∩

⋂
v<j≤w

Ac
j+s

)
− qv−uqw−v

∣∣∣∣, (4.5)

for s = 0, . . . , r − 2 and l = 1, . . . , 
(r − s)/2�. The coefficient αs,l describes the force of
dependence between two blocks of length at least l that are separated by a gap of size precisely s.
We write αl = αl,l and ᾱl = max{αs,l : s = l, . . . , r − 2l}.

The coefficients αs,l were introduced by O’Brien (1987) in the classical setting of threshold
exceedances Ai,n = {Xi > un} in a stationary sequence {Xn}. More commonly used in
this situation is Leadbetter’s (1974) D(un) condition, which, in our notation, is based on the
coefficients

αD
s := max

j=1,...,r−s−1
max
I,J

∣∣∣∣Pr

( ⋂
i∈I∪J

Ac
i

)
− Pr

(⋂
i∈I

Ac
i

)
Pr

(⋂
i∈J

Ac
i

)∣∣∣∣, s = 0, . . . , r − 2,

the maximum being over all non-empty subsets I ⊂ {1, . . . , j} and J ⊂ {j + s + 1, . . . , r}.
Clearly max{αt,l : t = s, . . . , r − 2l} ≤ αD

s for s = 0, . . . , r − 2, meaning that depen-
dence restrictions based on the αs,l are milder than the corresponding ones based on the αD

s .
This improvement is useful, for example, for certain periodic Markov chains (O’Brien (1987)).

Observe that αD
s is in turn smaller than

α�
s := max

j=1,...,r−s−1
max
E,F

|Pr(E ∩ F) − Pr(E) Pr(F )|, s = 0, . . . , r − 2,

the maximum being over all E ∈ σ(A1, . . . , Aj ) and F ∈ σ(Aj+s+1, . . . , Ar). Bounds on α�
s

are typically needed to establish the convergence of empirical point processes of exceedances
to a compound Poisson process (Hsing et al. (1988), Barbour et al. (2002), Novak (2002)).
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4.4. Triangular array of rare events

The set-up for asymptotic results will be a triangular array of Ai,n events, n = 1, 2, . . . , i =
1, . . . , rn, for which every row A1,n, . . . , Arn,n consists of block stationary events on a common
probability space (which may vary with n). The probabilities of interest are

pm,n = Pr

( m⋃
i=1

Ai+j,n

)
, m = 1, . . . , rn, j = 0, . . . , rn − m,

together with qm,n = 1 − pm,n and pn = p1,n. The mixing coefficient (4.5) for the nth row
is αs,l,n, and we write αl,n = αl,l,n and ᾱl,n = max{αs,l,n : s = l, . . . , rn − 2l}. Assume that
0 < pn < 1 for all n, and for m = 1, . . . , rn let

θM
m,n = log(qm,n)

m log(q1,n)
, θB

m,n = pm,n

mpn

, and θR
m,n = pm,n − pm−1,n

pn

, (4.6)

where p0,n := 0. The distribution of the interarrival time between the first event and the next
one is

Pr(Tn ≥ t | A1,n) = θR
t,n, t = 1, . . . , rn. (4.7)

Finally, all asymptotic statements are to be understood as to hold n → ∞.

5. Main results

The case of M4 processes in Section 2 suggests that properties of the extremal index
of a univariate stationary sequence carry over to more general contexts. In this section,
proper reformulations will be shown to remain true in the general setting of a triangular array
A1,n, . . . , Arn,n, n ≥ 1, of row-wise block stationary events of the type discussed in
Section 4.4. The proofs of the results of this section depend on the results of Section 6 and are
deferred to Appendix A.

5.1. Big and small blocks

For independent and identically distributed random variables {Xn}, the distribution of the
sample maximum Mn = max(X1, . . . , Xn) is given by Pr(Mn ≤ x) = {Pr(X1 ≤ x)}n. If the
sequence is stationary, certain mixing conditions still guarantee that Pr(Mr ≤ x) is close to
{Pr(Ms ≤ x)}r/s , provided that r and s are large enough. As a consequence, for such sequences
the only nondegenerate weak limits of affinely normalized sample maxima are the extreme value
distributions (Leadbetter (1974)). The argument can be extended to the multivariate case (Hsing
(1989), Hüsler (1990)). Thus, in the general setting a natural question to ask is how closely the
probability, qrn,n, of there being no extreme event in a row is approximated by the probability,
q

rn/sn
sn,n , of there being no extreme event in rn/sn independent smaller blocks of size sn.

Theorem 5.1. Assume that there exists an integer sequence ln, 1 ≤ ln ≤ rn, such that ln =
o(rn) and αln,n = o(1). For every integer sequence sn, ln ≤ sn ≤ rn, such that ln = o(sn) and
αln,n = o{max(sn/rn, psn,n)}, we have

qrn,n = q
rn/sn
sn,n + o(1).

Theorem 5.1 applies to any integer sequence sn with ln ≤ sn ≤ rn and lim inf sn/rn > 0, and
even to some with sn = o(rn), for instance where sn is the integer part of max((lnrn)

1/2, α
1/2
ln,nrn).
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5.2. Extremal index

For univariate stationary sequences, the extremal index, whenever it exists, is defined
through the relation Pr(Mn ≤ un) = {Pr(X1 ≤ un)}nθ + o(1) for threshold sequences un

such that 0 < lim inf n Pr(X1 > un) ≤ lim sup n Pr(X1 > un) < ∞. The extremal index
typically arises as the reciprocal of the limit of the expected number of exceedances in a cluster
(Leadbetter (1983)), and also as the limit probability that an exceedance is followed by a run
of non-exceedances (O’Brien (1987)). These characterizations carry over to the general set-up
of a triangular array of rare events. Recall the quantities θM

m,n, θB
m,n, and θR

m,n from (4.6).

Theorem 5.2. Assume that there exists an integer sequence ln, 1 ≤ ln ≤ rn, such that ln =
o(rn) and αln,n = o(1).

(i) If τ = lim sup rnpn < ∞ then lim inf qrn,n ≥ exp{−τ } and lim sup θM
rn,n ≤ 1.

(ii) If, moreover, lim inf rnpn > 0 then for every integer sequence mn, ln ≤ mn ≤ rn, such that
ln = o(mn) and αln,n = o(mn/rn), we have

lim
n→∞ sup

mn≤i≤j≤rn

|θM
i,n − θM

j,n| = 0.

If pmn,n = o(1) then θM
mn,n ∼ θB

mn,n, by Lemma 4.1. The following theorem relates θM
mn,n

and θB
mn,n to θR

mn,n.

Theorem 5.3. Assume that there exists an integer sequence ln, 1 ≤ ln ≤ rn, such that ln =
o(rn) and αln,n = o(1).

(i) For every integer sequence mn, ln ≤ mn ≤ (rn − ln)/2, such that ln = o(mn), pmn,n = o(1),
and αln,n = o(mnpn), we have θR

mn,n = θB
mn,n + o(1) = θM

mn,n + o(1).

(ii) If, moreover, αln,n = o(pmn,n) then θR
mn,n ∼ θB

mn,n ∼ θM
mn,n.

By definition, qrn,n = q
rnθn

1,n with θn = θM
rn,n. The following theorem states conditions

guaranteeing qrn,n = q
rnθn

1,n + o(1) to hold for other choices of θn.

Theorem 5.4. Assume that there exists an integer sequence ln, 1 ≤ ln ≤ rn, such that ln =
o(rn) and αln,n = o(1).

(i) For every integer sequence mn, ln ≤ mn ≤ rn, such that ln = o(mn), mn = o(rn), and
αln,n = o{max(mn/rn, pmn,n)}, we have

qrn,n = q
rnθn

1,n + o(1) = exp(−rnpnθn) + o(1)

for θn ∈ {θM
mn,n, θ

B
mn,n}.

(ii) If, moreover, pmn,n → 0 then (5.1) remains true with θn = θR
mn,n.

Remark 5.1. Without the extra condition pmn,n → 0, part (ii) of Theorem 5.4 is not true.
Consider, for example, independent events with pn → 0, rn ∼ p−3

n , and mn ∼ p−2
n : on the

one hand qrn,n = (1 − pn)
rn → 0, while on the other hand

rnθ
R
mn,n = p−3

n (1 − pn)
mn−1 = p−3

n exp{−p−1
n (1 + o(1))} → 0.

The condition pmn,n → 0 is implied by each one of the following: (i) mnpn → 0,
(ii) lim supn→∞ rnpn < ∞, (iii) lim infn→∞ qrn,n > 0. Regarding (i), just observe that
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pmn,n ≤ mnpn. Since mn = o(rn), (ii) implies (i), and since qrn,n = (1 − pmn,n)
rn/mn + o(1),

by Theorem 5.1, condition (iii) is also sufficient.

5.3. Interarrival times

Next we focus on the interarrival time, Tn, between the occurrence of the event A1,n and the
occurrence of the first subsequent event, conditionally on A1,n (see (4.7)). Since the probability
of a single event is pn, the average interarrival time should be 1/pn, regardless of the dependence
structure. Under certain conditions, the standardized interarrival time pnTn converges weakly
to a nondegenerate limit. Recall that

ᾱl,n = max{αs,l,n : s = l, . . . , rn − 2l},

with αs,l,n as in (4.5) for the row A1,n, . . . , Arn,n.

Theorem 5.5. If 0 < lim inf rnpn ≤ lim sup rnpn < ∞ and there exists an integer sequence
ln, 1 ≤ ln ≤ rn, such that ln = o(rn) and ᾱln,n = o(1), then, for every sequence θn such that
θn = θM

rn,n + o(1),

Pr(pnTn ≥ x | A1,n) = θn exp{−xθn} + o(1) (5.1)

locally uniformly in x, 0 < x < lim inf rnpn.

By (5.1), the normalized interarrival time pnTn is approximately distributed according to the
mixture distribution (1 − θn)ε0 + θnExp(θn). The point mass at 0, ε0, describes the interarrival
times between events within a cluster, while the exponential part describes the interarrival times
between different clusters. This interpretation is in accordance with the compound Poisson limit
(established under stronger mixing conditions) for the empirical point process of occurrence
times of exceedances over a high threshold in a univariate stationary sequence (Hsing et al.
(1988)). It was exploited by Ferro and Segers (2003) in the construction of an estimator for the
extremal index.

6. Finite-sample inequalities

The key to the asymptotic results of Section 5 is a collection of sharp inequalities that apply
in the setting of a single row, A1, . . . , Ar , of block stationary events. Throughout this section,
we employ the notation of Sections 4.1, 4.2, and 4.3.

6.1. Big and small blocks

The first lemma exploits an idea of Loynes (1965): a large block can be broken into
approximately independent smaller blocks by removing an asymptotically negligible number
of events from between the smaller blocks and using the appropriate mixing coefficients.
By convention, the sum over the empty set is equal to 0 and the product over the empty
set is equal to 1.

Lemma 6.1. For integer a1, b1, . . . , ak, bk ∈ {0, . . . , r} such that there exists a positive integer
l satisfying bi − ai ≥ l for all i = 1, . . . , k and ai+1 − bi = l for all i = 1, . . . , k − 1, we have

−(αl + pl)

k∑
i=2

k∏
j=i+1

qbj −aj
≤ qbk−a1 −

k∏
i=1

qbi−ai
≤ αl

k∑
i=2

k∏
j=i+1

qbj −aj
.
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Proof. We proceed by induction on k. For k = 1, there is nothing to prove, so consider
k ≥ 2. We have

qbk−a1 = Pr

( bk⋂
i=a1+1

Ac
i

)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

≤ Pr

( bk−1⋂
i=a1+1

Ac
i ∩

bk⋂
i=ak+1

Ac
i

)
,

≥ Pr

( bk−1⋂
i=a1+1

Ac
i ∩

bk⋂
i=ak+1

Ac
i

)
− Pr

( ak⋃
i=bk−1+1

Ai

)
.

Moreover, ∣∣∣∣Pr

( bk−1⋂
i=a1+1

Ac
i ∩

bk⋂
i=ak+1

Ac
i

)
− qbk−1−a1qbk−ak

∣∣∣∣ ≤ αl.

Combining these, we find that

qbk−1−a1qbk−ak
− αl − pl ≤ qbk−a1 ≤ qbk−1−a1qbk−ak

+ αl.

Applying the induction hypothesis on qbk−1−a1 completes the proof.

A useful special case of Lemma 6.1 is when the sizes, bi − ai , of the smaller blocks are all
the same.

Lemma 6.2. For integer l and m, 1 ≤ l ≤ m ≤ r , and k, 1 ≤ k ≤ 
(r + l)/(m + l)�, we have

qr ≤ qk
m + αl

max(m/r, pm)
. (6.1)

If, additionally, 2l + m ≤ r then, for k = �(r + l)/(m + l)�,

qr ≥ qk
m − αl + pl

max(m/r, pm)
. (6.2)

Proof. Let k = 1, . . . , 
(r + l)/(m + l)� and set ai = (i − 1)(m + l) and bi = ai + m for
i = 1, . . . , k. The integers a1, b1, . . . , ak, bk satisfy the conditions of Lemma 6.1; in particular,
bk = km + (k − 1)l ≤ r . Hence,

−(αl + pl)

k∑
i=2

qk−i
m ≤ qkm+(k−1)l − qk

m ≤ αl

k∑
i=2

qk−i
m .

Now,
∑k

i=2 qk−i
m = (1 − qk−1

m )/(1 − qm) and, furthermore, for x, 0 < x < 1, and a ≥
1 or a = 0, we have 1 − xa ≤ min(a(1 − x), 1) by the mean value theorem, and thus
(1 − xa)/(1 − x) ≤ min{a, 1/(1 − x)}. Hence, for k = 1, . . . , 
(r + l)/(m + l)�,

−(αl + pl) min(k − 1, 1/pm) ≤ qkm+(k−1)l − qk
m ≤ αl min(k − 1, 1/pm). (6.3)

Since qr ≤ qkm+(k−1)l , we obtain (6.1).
Next, suppose that 2l + m ≤ r . Applying Lemma 6.1 with a1 = 0, b1 = m, a2 = m + l,

and b2 = r yields
qr ≥ qmqr−m−l − (αl + pl).
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Let k = �(r + l)/(m + l)�. Since r − m − l ≤ (k − 1)(m + l) − l ≤ r , by the first inequality
of (6.3), we have

qr−m−l ≥ q(k−1)(m+l)−l ≥ qk−1
m − (αl + pl) min(k − 2, 1/pm).

Combining the previous two displays gives

qr ≥ qk
m − (αl + pl){qm min(k − 2, 1/pm) + 1} ≥ qk

m − (αl + pl) min(k − 1, 1/pm),

from which we obtain (6.2). This completes the proof of the lemma.

Lemma 6.2 leads to inequalities involving qr − q
r/m
m when m is small compared to r .

Lemma 6.3. For positive integer m, l ≤ m ≤ r , we have

qr ≤ q
r/m
m + αl

max(m/r, pm)
+ l

m
+ m

r
. (6.4)

If, additionally, 2l + m ≤ r then

qr ≥ q
r/m
m − αl + pl

max(m/r, pm)
− l

m
− m

r
. (6.5)

Proof. By the mean value theorem,

|xa − xb| ≤ max(1 − a/b, 1 − b/a), 0 ≤ x ≤ 1, a > 0, b > 0. (6.6)

Let k = 
(r + l)/(m + l)�. Since (r − m)/(m + l) ≤ k ≤ r/m, we have

qk
m − q

r/m
m ≤ 1 − mk/r ≤ l/m + m/r.

Combining this with (6.1) yields (6.4).
Next, suppose that 2l + m ≤ r . Let k = �(r + l)/(m + l)�. By (6.6), we have

|qk
m − q

r/m
m | ≤ max(1 − mk/r, 1 − r/(mk)).

Since r/(m + l) ≤ k < r/m + 1, we have 1 − mk/r ≤ l/m and 1 − r/(mk) ≤ m/r ,
whence max(1 − mk/r, 1 − r/(mk)) ≤ l/m + m/r . Combining this with (6.2) yields (6.5).
This completes the proof of the lemma.

6.2. The extremal index

The quantities θM
m = log(qm)/{m log(q1)} of (4.3) are approximately constant over a wide

range of m.

Lemma 6.4. For integer l and m, 1 ≤ l ≤ m ≤ r , such that 2l + m ≤ r , and with τ = rp and
ε = (r/m)αl + (1 + τ)l/m + m/r , we have

|θM
r − θM

m | ≤ ε

τ(exp{−τ } − (τ/2)(m/r) − ε)+
.
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Proof. By Lemma 6.3, |qr − q
r/m
m | ≤ ε. Also, qr = exp{r log(q1)θ

M
r } and q

r/m
m =

exp{r log(q1)θ
M
m } and, by the mean value theorem,

r|log(q1)| |θM
r − θM

m | min(qr , q
r/m
m ) ≤ ε.

Since qr ≥ q
r/m
m − ε and |log(q1)| ≥ p, we have

|θM
r − θM

m | ≤ ε

τ(q
r/m
m − ε)+

.

As exp{−ax} − (1 − x)a ≤ x/2 for 0 ≤ x ≤ 1 and a ≥ 1, we have q
r/m
m = (1 − pm)r/m ≥

exp{−(r/m)pm} − pm/2. Applying the inequality pm ≤ mp completes the proof.

In Lemma 4.1 we have already seen that θR
m ≤ θB

m. Here is a converse inequality.

Lemma 6.5. For integer l and m, 1 ≤ l ≤ m ≤ r , such that 2m + l ≤ r , we have

θR
m ≥ θB

m − p2
m

mp
− αl + pl

mp
. (6.7)

Proof. We have

pm = Pr

( m⋃
i=1

Ai ∩
2m+l⋂

i=m+1

Ac
i

)
+ Pr

( m⋃
i=1

Ai ∩
2m+l⋃

i=m+1

Ai

)
.

On the one hand

Pr

( m⋃
i=1

Ai ∩
2m+l⋂

i=m+1

Ac
i

)
=

m∑
i=1

Pr

(
Ai ∩

2m+l⋂
j=i+1

Ac
j

)
=

m∑
i=1

pθR
2m+l−i+1 ≤ mpθR

m,

while on the other hand

Pr

( m⋃
i=1

Ai ∩
2m+l⋃

i=m+1

Ai

)
≤ Pr

( m⋃
i=1

Ai ∩
2m+l⋃

i=m+l+1

Ai

)
+ pl ≤ p2

m + αl + pl.

Combining the previous three displays yields

mpθR
m ≥ pm − p2

m − αl − pl,

and dividing by mp yields (6.7). This completes the proof of the lemma.

By definition, qr = qrθ
1 with θ = θM

r . The following lemma gives bounds on the error
induced by choosing θ to equal θB

m or θR
m . Note that qrθ

1 ≤ exp{−rpθ} for θ ≥ 0.

Lemma 6.6. For integer l and m, 1 ≤ l ≤ m ≤ r , and θm ∈ {θB
m, θR

m}, we have

qr ≤ q
rθm

1 + αl

max(m/r, pm)
+ l

m
+ m

r
. (6.8)

If, additionally, 2l + m ≤ r then

qr ≥ exp{−rpθB
m} − αl + pl

max(m/r, pm)
− l

m
− 2

m

r
. (6.9)
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If, additionally, 2m + l ≤ r then

qr ≥ exp{−rpθR
m} − 3

αl + pl

max(m/r, pm)
− l

m
− 2

m

r
− 2pm. (6.10)

Proof. Note that 1 − ax ≤ (1 − x)a for 0 ≤ x ≤ 1 and a ≥ 1. As mθB
m = pm/p ≥ 1,

we have
q

r/m
m = (1 − pm)r/m = (1 − mθB

mp)r/m ≤ (1 − p)rθ
B
m.

Since θB
m ≥ θR

m , by Lemma 4.1, we also have q
r/m
m ≤ (1 − p)rθ

R
m . In combination with (6.4),

this yields (6.8).
To prove (6.9) we start from (6.5). We need to find suitable lower bounds for q

r/m
m . For 0 ≤

x ≤ 1 and a ≥ 1, we have

0 ≤ exp{−ax} − (1 − x)a

≤ (exp{−x} − (1 − x))a exp{−(a − 1)x}

≤ x2

2
a exp{1 − ax}

= 1

a

exp{1}
2

(ax)2 exp{−ax}

≤ 1

a
,

since supy≥0 y2 exp{−y} = 4 exp{−2}. Hence,

q
r/m
m = (1 − pm)r/m ≥ exp{−(r/m)pm} − m

r
= exp{−rpθB

m} − m

r
, (6.11)

which, in combination with (6.5), yields (6.9).
Finally, we will apply Lemma 6.5 to the difference between θB

m and θR
m , to convert the lower

bound for qr in terms of θB
m into a lower bound in terms of θR

m . Since exp{z} = exp{z/2}2 ≥
(1 + z/2)2 for z ≥ 0, for 0 ≤ x ≤ y we have

0 ≤ exp{−x} − exp(−y)

=
∫ y

x

exp{−z} dz

≤
∫ y

x

(1 + z/2)−2 dz

≤ y − x

1 + y/2
.

Hence, by (6.7) we have

exp{−rpθR
m} − exp{−rpθB

m} ≤ rp(θB
m − θR

m)

1 + rpθB
m/2

≤ rp{p2
m/(mp) + (αl + pl)/(mp)}

1 + (r/m)pm/2

= (r/m)p2
m + (αl + pl)/(m/r)

1 + (r/m)pm/2
.
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If, on the one hand, m/r ≥ pm then

exp{−rpθR
m} − exp{−rpθB

m} ≤ pm + αl + pl

m/r
,

while if, on the other hand, m/r < pm then

exp{−rpθR
m} − exp{−rpθB

m} ≤ 2

(
pm + αl + pl

pm

)
.

Thus,

exp{−rpθR
m} − exp{−rpθB

m} ≤ 2

(
pm + αl + pl

max(m/r, pm)

)
.

Combining this with (6.11) yields

q
r/m
m ≥ exp{−rpθR

m} − m

r
− 2pm − 2

αl + pl

max(m/r, pm)
.

In turn, this inequality, in combination with (6.5), yields (6.10). The proof of the lemma is thus
complete.

6.3. Interarrival times

Conditionally on A1, the distribution of the time, T , until the next event is

Pr(T ≥ s | A1) = Pr

( s⋂
i=2

Ac
i

∣∣∣∣ A1

)
= θR

s , s = 1, . . . , r

(see (4.4)). We break up the block
⋂s

i=2 Ac
i into an initial smaller block,

⋂m
i=2 Ac

i , and
a subsequent larger block,

⋂s
i=m+1 Ac

i . The next lemma demonstrates how to control the
dependence between A1 and the initial block, on the one hand, and the subsequent block, on
the other. Recall that ᾱl = max{αs,l : s = l, . . . , r − 2l}, with αs,l as in (4.5).

Lemma 6.7. For integer l and m, 1 ≤ l ≤ m ≤ r , such that 2m + l ≤ r , and for integer s,
m + l ≤ s ≤ r − m, we have

−αl + pl

mp
≤ θR

s − θB
mqs ≤ 2

ᾱl

mp
+ pm + pl.

Proof. For integer t, m + 1 ≤ t ≤ r , we have

Pr

( m⋃
i=1

Ai ∩
t⋂

i=m+1

Ac
i

)
=

m∑
k=1

Pr

(
Ak ∩

t⋂
i=k+1

Ac
i

)
=

m∑
k=1

pθR
t−k+1,

implying that

mpθR
t ≤ Pr

( m⋃
i=1

Ai ∩
t⋂

i=m+1

Ac
i

)
≤ mpθR

t−m.

Hence, for integer s, m + 1 ≤ s ≤ r − m, we have

Pr

( m⋃
i=1

Ai ∩
s+m⋂

i=m+1

Ac
i

)
≤ mpθR

s ≤ Pr

( m⋃
i=1

Ai ∩
s⋂

i=m+1

Ac
i

)
.
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Now,

0 ≤ Pr

( m⋃
i=1

Ai ∩
s⋂

i=m+1

Ac
i

)
− Pr

( m⋃
i=1

Ai ∩
s+m⋂

i=m+1

Ac
i

)

≤ Pr

( m⋃
i=1

Ai ∩
s+m⋃

i=s+1

Ai

)

≤ p2
m + αs−m,l.

Moreover,

0 ≤ Pr

( m⋃
i=1

Ai ∩
s+m⋂

i=m+l+1

Ac
i

)
− Pr

( m⋃
i=1

Ai ∩
s+m⋂

i=m+1

Ac
i

)

≤ Pr

( m+l⋃
i=m+1

Ai

)

= pl

and, if s ≥ m + l, ∣∣∣∣Pr

( m⋃
i=1

Ai ∩
s+m⋂

i=m+l+1

Ac
i

)
− pmqs−l

∣∣∣∣≤ αl.

Combining the four previous displays yields

pmqs−l − αl − pl ≤ mpθR
s ≤ pmqs−l + αl + p2

m + αs−m,l,

or, dividing by mp,

θB
mqs−l − αl + pl

mp
≤ θR

s ≤ θB
mqs−l + αl + αs−m,l

mp
+ pm,

as pm ≤ mp. That qs ≤ qs−l ≤ qs + pl then concludes the proof.

Appendix A. Proofs for Section 5

Recall the setting of a triangular array of events, as discussed in Section 4.4. The probability,
pln,n, of the blocks that are cut away is dealt with in the next lemma.

Lemma A.1. Let ln and mn, 1 ≤ ln ≤ mn ≤ rn, be integers with ln = o(mn).

(i) Let 0 < λn → 0. If pmn,n = O(λn) and αln,n = o(λn), then pln,n = o(λn).

(ii) If 0 < pmn,n → 0 and αln,n = o(pmn,n), then pln,n = o(pmn,n).

Proof. (i) Let k be a positive integer. If n is large enough that (2k + 1)ln ≤ mn, then by
(6.1), with the choices l = ln, m = ln, and r = (2k + 1)ln, we have

1 − pmn,n ≤ 1 − p(2k+1)ln,n

≤ (1 − pln,n)
k + (2k + 1)αln,n

≤ exp(−pln,nk) + (2k + 1)αln,n.
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If n is also large enough that pmn,n + (2k + 1)αln,n < 1, then, as −log(1 − x) ≤ x/(1 − x) for
x < 1, we have

pln,n ≤ −1

k
log(1 − pmn,n − (2k + 1)αln,n)

≤ 1

k

pmn,n + (2k + 1)αln,n

1 − pmn,n − (2k + 1)αln,n

.

Hence, lim sup pln,n/λn ≤ k−1 lim sup pmn,n/λn. Letting k → ∞ shows that pln,n/λn → 0.

(ii) To prove this part, simply take λn = pmn,n in part (i).

Proof of Theorem 5.1. Without loss of generality, we can restrict n to a subsequence along
which sn/rn converges to some limit λ ∈ [0, 1].

Suppose first that λ = 0. By the first inequality of Lemma 6.3, qrn,n ≤ q
rn/sn
sn,n + o(1).

Now consider a further subsequence along which µn := (rn/sn)psn,n converges to some limit
µ ∈ [0, ∞]. If µ = ∞ then q

rn/sn
sn,n = {1 − (sn/rn)µn}rn/sn → 0 and, hence, qrn,n → 0 along

this subsequence. If µ < ∞ then, again along the second subsequence, psn,n = O(sn/rn)

and, thus, by assumption, αln,n = o(psn,n). By the second inequality of Lemma 6.3 and by
Lemma A.1(ii), it follows from this that also qrn,n ≥ q

rn/sn
sn,n + o(1).

If instead λ > 0 then choose a positive integer sequence mn, ln ≤ mn ≤ sn, such that
ln = o(mn), mn = o(sn), and αln,n = o(mn/sn); for instance, take mn to equal the integer part of
max((lnsn)

1/2, α
1/2
ln,nsn). From the arguments in the λ = 0 case, we have qrn,n = q

rn/mn
mn,n + o(1)

and qsn,n = q
sn/mn
mn,n + o(1). As rn/sn ∼ 1/λ, we also have

q
rn/sn
sn,n = q

1/λ
sn,n + o(1) = q

(sn/mn)(1/λ)
mn,n + o(1) = q

rn/mn
mn,n + o(1).

Proof of Theorem 5.2. (i) Let mn, ln ≤ mn ≤ rn, be an integer sequence such that ln =
o(mn), mn = o(r n), and αln,n = o(mn/rn); for instance, let mn be the integer part of
max((lnrn)

1/2, α
1/2
ln,nrn). By Theorem 5.1, qrn,n = q

rn/mn
mn,n + o(1). Since rnpn = O(1) and

mn = o(rn), we have pmn,n ≤ mnpn = o(1). Hence,

q
rn/mn
mn,n = exp{−(rn/mn)pmn,n} + o(1) ≥ exp{−rnpn} + o(1).

Without loss of generality, suppose that rnpn → τ ∈ [0, ∞). If τ = 0 then θM
rn,n ≤

1/qrn,n → 1, by Lemma 4.1. If τ > 0 then θM
rn,n = θM

mn,n + o(1), by Lemma 6.4, and θM
mn,n ≤

1/qmn,n → 1, by Lemma 4.1.

(ii) Without loss of generality, suppose that mn = o(rn); otherwise, apply a construction as in
part (i). We have to show that θM

in,n = θM
jn,n + o(1) for all positive integer sequences in and jn

such that mn ≤ in ≤ jn ≤ rn. By restricting to a subsequence, if necessary, we can assume
that in/rn → λ and jn/rn → µ for some λ and µ, 0 ≤ λ ≤ µ ≤ 1. If λ = 0 or µ = 0, then by
Lemma 6.4 we have θM

in,n = θM
rn,n + o(1). If instead λ > 0 or µ > 0, then by Lemma 6.4 we

have θM
in,n = θM

mn,n + o(1). Moreover, as θM
mn,n = θM

rn,n + o(1), we obtain θM
in,n = θM

jn,n + o(1)

in all cases. The proof of the theorem is thus complete.

Proof of Theorem 5.3. (i) From Lemmas 4.1 and 6.5, we have

θB
mn,n − p2

mn,n

mnpn

− αln,n + pln,n

mnpn

≤ θR
mn,n ≤ θB

mn,n.

Since pmn,n ≤ mnpn and pln,n ≤ lnpn, the conditions imply that θR
mn,n = θB

mn,n + o(1).
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(ii) From the above display, we have

θB
mn,n

(
1 − pmn,n − αln,n + pln,n

pmn,n

)
≤ θR

mn,n ≤ θB
mn,n.

As pln,n = o(pmn,n) by Lemma A.1(ii), in fact θR
mn,n ∼ θB

mn,n. Moreover, by Lemma 4.1,
θB
mn,n ≤ θM

mn,n ≤ θB
mn,n/qmn,n ∼ θB

mn,n.

Proof of Theorem 5.4. From (6.8),

qrn,n ≤ q
rnθn

1,n + o(1) ≤ exp{−rnpnθn} + o(1),

for θn ∈ {θB
mn,n, θ

R
mn,n}. Without loss of generality, fix a subsequence along which pmn,n

converges to some p ∈ [0, 1].
For p > 0, since θB

mn,n ≤ θM
mn,n (see Lemma 4.1), we have

exp{−rnpnθ
M
mn,n} ≤ exp{−rnpnθ

B
mn,n} = exp{−(rn/mn)pmn,n} = o(1),

implying that qrn,n, q
rnθn

1,n , and exp{−rnpnθn} are all o(1) for θn ∈ {θB
mn,n, θ

M
mn,n}.

For p = 0, we have pln,n = o{max(mn/rn, pmn,n)} by Lemma A.1(i); hence, from (6.9)
and (6.10),

qrn,n ≥ exp{−rnpnθn} + o(1) ≥ q
rnθn

1,n + o(1)

for θn ∈ {θB
mn,n, θ

R
mn,n}. In combination with the first display of this proof, this yields

qrn,n = exp{−rnpnθn} + o(1) ≥ q
rnθn

1,n + o(1)

for θn ∈ {θB
mn,n, θ

R
mn,n}. As pmn,n → 0 implies that θM

mn,n ∼ θB
mn,n, by Lemma 4.1, the

above display remains valid for θn = θM
mn,n because a

1+εn
n = an + o(1) for any real sequences

an, 0 ≤ an ≤ 1, and εn → 0.

Proof of Theorem 5.5. Let mn, ln ≤ mn ≤ rn, be an integer sequence such that ln = o(mn),
mn = o(rn), and ᾱln,n = o(mn/rn). From Lemma 6.7,

max{|θR
s,n − θB

mn,nqs,n| : s = mn + ln, . . . , rn − mn} → 0.

Hence, for any integer sequence sn, mn+ln ≤ sn ≤ rn−mn, we have θR
sn,n = θB

mn,nqsn,n + o(1).
Also, by Theorem 5.4, qsn,n = exp{−snpnθ

B
mn,n} + o(1). For 0 < x < lim inf rnpn, the

sequence sn = �x/pn� falls in the required range, and we find that

θR�x/pn�,n = θB
mn,n exp{−xθB

mn,n} + o(1)

locally uniformly in x, 0 < x < lim inf rnpn.
Observe that θB

mn,n = θM
mn,n + o(1) = θM

rn,n + o(1) (see Theorems 5.3(i) and 5.2(ii)) and,
for nonnegative θ , θ ′, and x, that |θ exp{−xθ} − θ ′ exp{−xθ ′}| ≤ |θ − θ ′|; this completes the
proof.
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Appendix B. Proof of (3.1)

Fix a positive integer m. For i ∈ Z and j = 1, . . . , d, let

X
(m)
i,j = max

l≥1
max|k|<m

al,k,jZl,i−k,

R
(m)
i,j = max

l≥1
max|k|≥m

al,k,jZl,i−k.

Observe that Xi,j = max(X
(m)
i,j , R

(m)
i,j ).

Let bl,k = maxj=1,...,d al,k,j . For 0 < ε < ∞,

Pr(∃i = 1, . . . , νn, j = 1, . . . , d : R
(m)
i,j > nε)

= Pr(∃i = 1, . . . , νn, j = 1, . . . , d, l ≥ 1, |k| ≥ m : al,k,jZl,i−k > nε)

= Pr(∃i = 1, . . . , νn, l ≥ 1, |k| ≥ m : bl,kZl,i−k > nε)

= Pr
(
∃l ≥ 1, p ∈ Z : max|k|≥m, 1≤k+p≤νn

bl,kZl,p > nε
)

≤ 1

nε

∑
l≥1

∑
p∈Z

max|k|≥m, 1≤k+p≤νn
bl,k.

Replacing the last maximum by a summation and interchanging the summation over p with the
resulting summation over k gives

Pr(∃i = 1, . . . , νn, j = 1, . . . , d : R
(m)
i,j > nε) ≤ ν

ε

∑
l≥1

∑
|k|≥m

bl,k. (B.1)

Now let X
(m)
i = (X

(m)
i,1 , . . . , X

(m)
i,d ). Then

Pr(max(X
(m)
i , nε) = max(Xi, nε) ∀i = 1, . . . , νn)

≥ 1 − Pr(∃i = 1, . . . , νn, j = 1, . . . , d : R
(m)
i,j > nε),

implying that, by (B.1),

Pr(max(X
(mn)
i , nε) = max(Xi, nε) ∀i = 1, . . . , νn) → 1

for every positive integer sequence, mn, tending to infinity. Equation (3.1) now follows from
the fact that the process {X(m)

i : i ∈ Z} is 2m-dependent in the sense that {X(m)
i : i ≤ r − m}

and {X(m)
i : i ≥ r + m} are independent for every integer r .
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