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Abstract

Optimality conditions and duality results are obtained for a class of cone constrained continuous
programming problems having terms with arbitrary norms in the objective and constraint functions.
The proofs are based on a Fritz John theorem for constrained optimization in abstract spaces. Duality
results for a fractional analogue of such continuous programming problems are indicated and a
nondifferentiable mathematical programming duality result, not explicitly reported in the literature, is
deduced as a special case.

1980 Mathematics subject classification (Amer. Math. Soc): 90 C 48, 90 C 30.

1. Introduction

A detailed study of the duality aspects of a class of constrained variational
problems has been presented by Mond and Hanson [22]. Recently a number of
duality theorems for different forms of continuous programming or control
problems have appeared in the literature, notably by Rockafellar [28, 29, 30],
Abrham and Buie [1, 2, 3], Reiland [25], Reiland and Hanson [26] and other
references cited in these papers.

The present authors in [6] studied duality aspects of a nondifferentiable
analogue of the problem treated in [22], the nondifferentiability entering due to
the square root of a quadratic form appearing in the integrand of the objective
functional. In this paper, optimality conditions and duality results for a more
general class of continuous programming problems are given. These continuous
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[2] Continuous programming containing arbitrary norms 29

programming problems are cone constrained and contain terms with arbitrary
norms of linear functions in the objective and constraint functions. The dual
problem considered is a modified Wolfe dual rather than a Lagrangian or
conjugate convex dual considered by some other authors.

Here the problem is expressed very directly as a mathematical programming
problem in function spaces and then a Fritz John theorem [15] for constrained
optimization is applied. This approach readily leads to duality and converse
duality. In this context it is remarked that optimal control results of Clarke [8, 9]
could be used, instead of the Fritz John theorem of [15], leading to similar
formulas under somewhat different hypothesis. However, nontrivial questions of
representing subdifferentials arise with either approach. Also the present ap-
proach could allow some weakening of the convexing hypothesis along the lines
of Weir, Hanson and Mond [33] and Bector, Chandra and Husain [5] but this is,
however, not pursued here.

The results of this paper also give duals to the (static) mathematical program-
ming problems of Fletcher and Watson [18] (and some of its variants), which have
not been reported in the literature explicitly. As a special case of this, we get the
duality results of Mond [2], Mond and Schechter [23] and Watson [32].

Finally, a continuous fractional programming problem containing arbitrary
norms is also considered and duality results are presented. These duality results
generalize some results of Abrham and Buie [2] for the differentiable case and
give a dynamic analogue of certain nondifferentiable fractional programming
problems considered by Mond [20]. They also give duality results to the fractional
analogues of problems considered by Watson [32], Fletcher and Watson [18],
which have not been studied explicitly in the literature.

2. Notations and statement of the problems

Let / = [a, b] be a real interval; let / : / X R" X R" -» R and g: I X R" X R"
-» Rm be continuously differentiable functions. In order to consider

/ ( / , x(t), x(t)), where x: I -» R" is differentiable with derivative x, denote the
partial derivatives of/by

(1) fnfl =
3/

The partial derivatives of g are similarly written, using matrices with m rows
instead of one. Let R+= [0, oo); let R"+ be the nonnegative orthant of R". Let
C(I, Rm) denote the space of continuous functions <£:/-» R", with the uniform
norm; let C+(/, Rm) denote the cone of non-negative functions in C(I, Rm). Let X
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denote the space of piecewise smooth functions x: I -* R", with the norm
11* 11 = 11* I loo + Halloo' where the differentiation operation D is given by

(2) y = Dx**x(t) = a + f y(s) ds,
*a

and x(a) = a, x(b) = /? are given boundary values. (Thus D = d/dt except at
discontinuities.) Denote by V the space of piecewise smooth functions X: / -» Rm

(written as column vectors). Superscript T denotes matrix transpose.
For each t e / , let P(t) and Qj(t) (j = 1,2,...,m) be p X m and q X n

matrices respectively, with P() and Qj(-) continuous on /. The norms || • Ĥ  and
|| • ||B(y) are arbitrary norms in their appropriate spaces; || • \\*A denotes the dual
norm to || • H .̂ The generalized Cauchy inequality (Fletcher and Watson [18])
states that xTu < \\x\\ \\u\\*. Following the notation in [14], 112.(0^(011 B. s n a u

denote the vector whose jth component is \\Qj(t)x(t)\\B^y By convention, let
w(^t)Tq(t) d e n o t e the mat r ix whosey'th row is Wj(t)TQj(t), forj = 1,2,...,m.

Let S c Rm be a convex cone, with nonempty interior. For the definitions of
•S-convex functions and 5*-nearly convex functions, we shall refer to [13, 15]. If K
is a convex cone, its dual cone K* is the set of continuous linear functionals
mapping K into R+.

The primal and dual problems discussed are the following:

(3) ( P ) : Minimize <*>(*) = j [f(t, x(t), i(t)) + \\P(t)x(t)\\A] dt

(4) subject to x(a) = a, x(b) = ft,

(5) g(t,x(t),x(t))+\\QXt)x(t)\\B<= -S,

( D ) : M a x i m i z e ^(u, z,X,w)

( 6 ) =j[[f(t,u{t),u(t)) + u{t)TP(t)z(t)

+ X(t)T[g(t, u(t), «(/)) + w.(t)TQ.(t)u(t)]\ dt

(7) subject to u(a) = 0, u(b) = 0,

Mt, u(t), «(/)) + z{t)TP{t) + X(t)T[gl(t, u(t), «(/)) + W.{t)TQ{t)}

(8) - D[f2(t, 1/(0, 6(0) + H0Tg2(', u(t), u(t))] = 0,

(9) | | z ( 0 | | 5 < l , h ( 0 | | ? O ) < l (j=l,2,...,m),\(t)eS*(teI).

In the following theorems, it will further be assumed that G(x)(t)'.=
g(t, x(t), x(t)) + \\Qit)x(t)\\B is an 5*-nearly convex function of x e X, as
defined in [15]. If, in particular, S = R™, then G is the sum of a (Frechet)
differentiable function of x and an S-convex function of x, hence G is 5*-nearly
convex as required.
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If P() = 0 and each Qj{-) = 0, then (P) and (D) reduce to the pair of
variational problems considered by Mond and Hanson [22]. IfQj(-) = 0 and
|| • ||^ is the L2-norm, the results of [6] are obtained with B(t) = P{t)TP(t).
However, the present method of proving converse duality differs from that of [6].
The present method assumes a solvability hypothesis, rather than using the Fritz
John conditions, and thus does not require second order derivatives o f / a n d g, as
[6] required.

It is convenient, as in [13, 6], to shift the origin in X to make the boundary
conditions x(a) = 0 = x(b); this is assumed in the proof; the original problem is
recovered by a shift of origin.

3. Conditions necessary or sufficient for optimaliry

THEOREM 1 (F. John conditions). //(P) attains a local minimum at x = x0 e X,
then there exist Lagrange multipliers T e R + and piecewise smooth X: I -* S*, z:
I -» R^, wy. I -» Rqj (j = 1,2,.. . ,m), with T and\ not both zero, such that

+ X(t)T[gl(t, xo(t), *„(/)) + ™.(t)TQ.

(10) - D[rf2(t, xo(t), *„(/)) + X(t)Tg2(t, xo(t), xo(t))] = 0;

(11) X(t)T[g(t, xo(t), xo(t)) + w.(t)TQ.(t)x0(t)] = 0;

(12) \\z(t)h<U I M O | | S ( J O « 1 (7 = l ,2 , . . . ,m) ;

(13) xo(t)
TP(t)z(t)=\\P(t)xo(t)\\A;

(14) xo(t)
TQJ(t)wJ(t)=\\QJ(t)xQ(t)\\B(j) (j=l,2,...,m);

holds for all t e / , where w(t) = {wj(t):j = l,2,...,m}.
Conversely, if (10) to (14) hold with r = 1 and xo(-) feasible for (P), and if

f(t,-,- ) is convex andg(t,-,- ) + \\Q.(-)x(-)\\B is S-convex for each t e / , then x0

minimizes (P).

PROOF. The problem (P) may be expressed as (EP):

(15) Minimize $ (x) = F(x) + J(x) subject to G(x) e -K,

in which

(16) F(x) =ff(t, x(t), x(t)) dt, J(x) = f \\P(t)x(t)\\Adt,
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G: X^> C(/,Rm)isgivenby(W G / , x G X)

G(x)(t) = g(t,x(t),x(t))+\\Q.(t)x(t)\\B.,

and the convex cone « = { j e C(/,Rm): (Vf e 7)^(0 e S } . From [15, Theo-
rem 3], the Fritz John necessary conditions for (EP) to attain a local minimum at
x = xQ are the existence of Lagrange multipliers T G R+ and p G K*, not both
zero, satisfying
(18) 0G T aO(x 0 ) + a(PG)(x0); 0 = pG(x0).

The cited theorem requires certain convex sets to be weak * compact; this holds
for (P). Here 3(pG)(x0) denotes a subgradient for nearly convex functions (see
[15]).

Since f(t, •, • ) is continuously differentiable, F'(x0) *s given ([13], page 16) by
(19)

(Vo G X)F'(xo)v = f [fx{t, xo{t), xo(t))v(t) +f2{t, xo(t), xo(t))v(t)} dt.
Ji

Assume now, subject to later validation, that p & K* can be represented by a
measurable function X: I -» S* satisfying

(20) (Vf G C(/,Rm)) pS = f X(0 T f (0 dt.
Ji

Let £(t, x) = ||g.(0*(0llfl.» for x G X, t G /. Then

(21) pt(-,x)= (\(t)T£(t,x)dt.

Denote by 9C the Clarke generahzed subgradient [7] with respect to x. Then

(22) dc(\(t)
TZ(t,x))c E 3 c (X y (Oi( '^) ) by [7, Proposition 8]

7 - 1

7 - 1

= L|M')M\(0)9cU;(',*))
7 - 1

using the representation [7] of 9 C ( ) as the convex hull of limit points of gradients
at smooth points near x; L denotes here algebraic sum of sets. From Watson [32],
since £j{t, •) is convex,

(23) dctj(t,x) = Hj(t,x) = {wj(t)TQj(t): Wj(t) G R, \\wj(t)\\%(J)*zl,
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From [10], it follows that q e 3(p£)(-, x) if and only if there exists a measurable
function 17: / -> RmX" such that

(W G / ) ! , ( / ) e 9c£(f, x(t)); (Vi> <=X)qv= f \(t)T
V(t)v(t) dt.

Jr
Here, from (22) and (23), T ; (0 = w(0T(?.(0- Therefore
(24)

d(PG)(x0)v:= {6v: 0 <E d(PG)(x0)}

c /" X(Or[gi(/, *0(0, *0(t))v(t) + g2(t, xo(t), xo(t))v(t)

+ (W.(t)TQ.(t))v(t)]dt.

Using (18), (19) and (24), necessary conditions for a minimum of (P) at x0 are
that T > 0 and X(-) and w ( ) exist, satisfying conditions of (23), and also z:
/ -» R" satisfying the similar conditions ||z(?)ll^ < 1, z(t)TP{t)x0(t) =
\\P{t)xo(t)\\A such that, for each o e l ,

f [M(t)v(t) + N(t)i)(t)] dt = O;
Ji

(25) JT X(0T[g(?, *o(O, *o(O) + lle.(O^o(OL.] dt = 0,

where

M(t) = rfl(t,xo{t),xo(t))+z(t)TP(t)

+A(0r[gl(/, xo(t), *0(0) + w.(0re.(0];

(26) JV(/) = T/2(*, xo(r), *0(r)) + X(/) rg2(/ , JCO(O. *O(O) -

Integrating the first part of (25) by parts, and using the boundary condition
v(a) = v(b) = 0, leads to J,[N(t) - H(t)]v(t) dt = 0, where H is an indefinite
integral of M. This holds whenever v is replaced by a piecewise continuous
function a for which }ra(t) dt = 0. Using [11, page 500, Lemma 2] it follows that
N( •) — H{ •) is constant almost everywhere. (The cited lemma assumes N — H
piecewise continuous, but extends readily to measurable.) Hence, for almost all t,
N(t) is differentiable, and N = M. This proves (10) for almost all t. Also (11)
follows from the second part of (18), with (14).

In order to validate the representation of p by a function A( ) , note that the
proof leading to (10) and (11) remains valid, without this assumption, if X(-) is
considered as a Schwartz distribution. However, (10) and (11) is a first order
linear ordinary differential equation system for X( ) , given x0, z and w, and so
possesses a piecewise smooth solution X( ) . Then z and w are also piecewise
smooth, from (10) and (11). Hence N — H is constant for all t.
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34 S. Chandra, B. D. Craven and I. Husain [7]

The sufficient conditions for a minimum follow immediately [13, page 64], since
(P) is then a convex problem.

The local minimum x0 of (P) may be called normal if T = 1, so that the Fritz
John conditions (10) to (14) reduce to Kuhn-Tucker conditions. Sufficient condi-
tions for x0 to be normal are the Slater conditions, either (i) that (P) is a convex
problem and, for some J e l , G ( £ ) e - int S, or (ii) that, for some q e X, the
directional derivative of G at x0 in direction q satisfies G'(x0; q) e - int S. The
proof of (i) is standard; for (ii), if T = 0 then 0 # p e S*, hence pG'(x0; q) < 0,
contradicting pG'(x0; q) = 0 from (18).

4. Duality and converse duality

Using (15), problem (P) is equivalently written as the problem (EP):
Minimize 4>(x) subject to G(x) e -K

Since g(t, x(t)) + \\Q.(t)x(t)\\B has been assumed to be an 5*-nearly convex
function of x e X, G is f̂ "-nearly convex. Assume now that G is /T-convex; this
follows if S = R+ and each component gt(t, x(t)) is a convex function of x.
Then, using (18), the problem (D) is equivalently written as the problem (ED):

(27) Maximize $(«) + pG(u) subject top e K*,0 e 3(4> + pG)(u).

Here ^(u, z, \ ,w) = $(«) + pG(u) = L(u, p), and 3L(u, p) means dL(-, p) at
u.

THEOREM 2 (Duality). Let f be convex, and let G be K-convex. If x is feasible for
(P) and(u, z, X, w) is feasible for (D), then

(28) * ( J C ) > * ( I I , Z , X , W ) .

/ / equality holds in (28), f/ie/i x optimizes (P) an</ (M, Z, X, w) optimizes (D). / / 3c
minimizes (P) am/ T = 1, tfje/i f/iere ex/sf (z, X, w) such that (3c, z, X, w) maximizes

PROOF. The proof of (28) is immediate, since (P) is a convex problem. Theorem
1 gives (z, X, iv) with the stated properties.

Here, as with a differentiable problem, T = 1 holds under a suitable constraint
qualification, such as Slater's.

For proving converse duality, the following solvability hypothesis will be
assumed (with (M, p) denoting the optimum for (ED)).

(H): Whenever p + d e K* with | |J | | sufficiently small, there exists a solution
u = u + 0(d) to 0 G 3(4> + (p + d)G)(u) for which 0(0) = 0 and 0 ( ) is con-
tinuous.
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T H E O R E M 3 (Converse Duality). Let f be convex, and let G be K-convex. If(u, p)

maximizes (ED) and (it) holds then u minimizes (EP), and$(u) — L(u, p) .

P R O O F . Since (« , p ) maximizes (ED), we have

[*(« + 0(d)) - ( p + d)G(u + 6(d))] - [*(«) + pG(u)] < 0,
i.e.,
(29) [L(u + 0{d), p) - L(u, p) + dG(u + 8(d))] < 0.

But 0 G dL(u, p) is a constraint in (ED) and hence, by definition of subgradi-
ent, L(u + 6(d), p) - L(u, p) > 0. Therefore by (29), dG(u + 6(d)) < 0. This
inequality also holds with d replaced by ad for 0 < a < 1. Now letting a J.0, we
get 6(ad) -* 0 and then using the fact that 0 < a < 1, we obtain dG(u) < 0.
Thus d e K* and G(u) e -K.

N o w setting d = -\p~, we observe that p + ad e # * for 0 < a < 1. Hence

- \pG(u) < 0, i.e., pG(w) > 0. But pG(t i ) < 0 as G(u) G -ATand p G K*. There-

fore p G ( u ) = 0 and consequently $ ( M ) = L(u, p) . The result then follows by

Theorem 2.

5. Related problems

As in [22] and [6], these duality results can be extended to the corresponding
problem (PI), omitting the boundary conditions x(a) + a, x(b) = /?, and (Dl)
with "natural boundary values". Thus (Dl) is the problem (D) together with the
additional boundary conditions

(30) f2(t, x(t), x(t)) - X(t)Tg2(t, x(t), x(t)) = 0,
whenever / = a and t = b. The boundary conditions (30) are similar to "natural
boundary conditions" in the calculus of variations [12].

6. Certain static cases

If (PI) and (Dl) are independent of t, then they reduce to the following
nondifferentiable mathematical programming problems:

Primal (P2): Minimize/(x) + \\Px\\A subject to g(x) + \\Q. x\\Be -S.

Maximize/(x) + xTPz + \T(g(x) + WTQJC) subject to

Dual(T>2): vf(x) + zTP + \T[vg(x) + wfQ.] =0, \\z\\l < 1, X e S*,

Nl5o-)«i 0 = 1,2,...,™).
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Here, it is noted that the primal-dual pair (P2)-(D2) has not been explicitly
reported in the literature. In case Qj = 0 for all j and S = R+, (P2) and (D2)
reduce to the primal-dual pair studied by Watson [32] which, in turn, includes the
problems of Mond [21] and Mond and Schechter [23] as special cases. The pair
(P2)-(D2) could also be considered as an extension of Schechter [31] with regard
to the converse duality, because in [31], it is given for differentiable constraints
only. Also by taking m = 1, S = R+, g(x) = -8, (S > 0) (P2) reduces to the
problem of Fletcher and Watson [18], who give optimality conditions only and do
not discuss duality.

7. A fractional analogue

Taking h: I X R" X R" -> R, similar to/ , and E(t) an (n X /) matrix with £(•)
continuous for each t e /, the following fractional analogue of problem (P) is
considered.

Mmimize MC *).*)) + ||P(/)x(Qp1] *
, , l°b[h(t,x(t),x{t))-\\E{t)x{t)\\A2\dt

Primal (FP):
subject to x(a) = a, x(b) = /3

g(t,x(t),*{t)) +\\Q.(t)x(t)\\Be -S,

where over the feasible region of (FP), the denominator of the objective function
is strictly positive and the numerator is non-negative. Also/(/ ,- ,- ) and -h(t,-,- )
are convex functions for each t e / and g(t,-,- ) + ||<2.(0(')llf).is S-convex. Other
symbols have the same meanings as in Section 2.

Using an abstract version of Dinkelbach's [17] result, given by Craven and
Mond [16], and following techniques similar to Bector, Chandra and Gulati [4]
and Jagannathan [19], the following dual problem (FD) is constructed:

Maximize u
Dual (FD): , . , , , . osubject to u{a) = a, u{b) = p,

[fx{t, « z(t)TP(t) - ixhx{t, u(t), U(t))

+ \(t)T{gl(t,u(t),u{t)) + W.(t)TQ.(t)}

-D[f2(t, M(0, «(0) - Ph2{t, u(t), U(t)) + X(t)Tg2(t, u(t), «(/))] = 0,

, U(t)) ~ nHt, u(t), u(t)) + u{t)TP{t)z(t)

-pu(t)TE(t)o(t) +\(t)T{g(t, u(t), «(/)) + w.(t)TQ.(t)u(t))} dt = 0,
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\\z{t)\\*Ai < 1, \\o(t)\\*2 < 1,

< 1 (j =l,2,...,m),

lS*{t<=l), (L>0.

The duality results between (FP) and (FD) follow essentially on the lines of
Theorems 2 and 3 and certain obvious modifications, similar to [4] and [19]. Also
for P(t) = 0, Q/t) = 0, E(t) = 0 for all / e /, (FP) and (FD) reduce to certain
differentiable fractional continuous programs of [2].

If (FP) and (FD) are independent of t, a fractional analogue of (P2) together
with its dual will be obtained. Such fractional problems have not been explicitly
studied in the fractional programming literature. As a very special case, if Qj = 0
for all j , || • Ĥ  and || • ||^ are L2-norms and 5 = R™, the fractional problem
studied by Mond [20] is derived.
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