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NONEXISTENCE OF A CIRCULANT EXPANDER FAMILY
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Abstract

The expansion constant of a simple graph G of order n is defined as

h(G)= min
0<|S|≤n/2

|E(S, S)|

|S|

where E(S, S) denotes the set of edges in G between the vertex subset S and its complement S. An
expander family is a sequence {Gi } of d-regular graphs of increasing order such that h(Gi ) > ε for some
fixed ε > 0. Existence of such families is known in the literature, but explicit construction is nontrivial. A
folklore theorem states that there is no expander family of circulant graphs only. In this note, we provide
an elementary proof of this fact by first estimating the second largest eigenvalue of a circulant graph, and
then employing Cheeger’s inequalities

d − λ2(G)

2
≤ h(G)≤

√
2d(d − λ2(G))

where G is a d-regular graph and λ2(G) denotes the second largest eigenvalue of G. Moreover, the
associated equality cases are discussed.
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1. Circulant graphs

Let G be a simple graph and let V (G) denote its vertex set. Then G is said to have
order n if |V (G)| = n. The spectrum Sp(G) of G is the collection of eigenvalues
of the adjacency matrix A(G) of G. Since A(G) is a real symmetric matrix,
all its eigenvalues are real and they are denoted by λ1(G)≥ λ2(G)≥ · · · ≥ λn(G).
Furthermore, G is d-regular if every vertex has degree d .

DEFINITION 1.1. A graph is circulant if it has a circulant adjacency matrix.

Circulant graphs are special regular graphs whose spectra can be computed
explicitly in terms of their symbols.
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DEFINITION 1.2. A subset S of {1, 2, . . . , n − 1} is called a symbol of a circulant
graph G of order n if A(G)=

∑
r∈S Zr , where Z is the n × n matrix
0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

.
If S is a symbol of a d-regular circulant graph of order n, then |S| = d and r ∈ S if
and only if n − r ∈ S. Note that the characteristic polynomial of Z is xn

− 1 and so its
eigenvalues are 1, ω, ω2, . . . , ωn−1 where ω = e2π i/n and i=

√
−1. For 1≤ k ≤ n,∑

r∈S

ωrk
=

∑
r∈S

ω(n−r)k
=

∑
r∈S

ω−rk

and so ∑
r∈S

ωrk
=

∑
r∈S

cos(2πrk/n).

Hence the spectrum of a circulant graph can be explicitly described by its symbol as
follows.

THEOREM 1.3. Let S be a symbol of a d-regular circulant graph G of order n. Then
the spectrum of G is

Sp(G)=
{∑

r∈S

cos(2πrk/n) : 1≤ k ≤ n
}
.

The next theorem is a special case of Dirichlet’s theorem in the literature
on simultaneous Diophantine approximations [8, Section 8.2]. For the sake of
completeness, we include its proof.

THEOREM 1.4. Given real numbers α1, . . . , αt and a positive integer q, there
exist integers k, x1, . . . , xt such that 1≤ k ≤ q t and |αi k − xi | ≤ 1/q for all i =
1, 2, . . . , t .

PROOF. Consider the q t
+ 1 points

{(uα1 − buα1c, . . . , uαt − buαtc) : 0≤ u ≤ q t
}

in the t-dimensional unit cube [0, 1)t . Partition [0, 1)t into q t disjoint compartments{[
j1
q
,

j1 + 1
q

)
× · · · ×

[
jt
q
,

jt + 1
q

)
: 0≤ j1, . . . , jt ≤ q − 1

}
.

By the pigeonhole principle, there exist two points (uα1 − buα1c, . . . , uαt − buαtc)

and (vα1 − bvα1c, . . . , vαt − bvαtc) lying in the same compartment[
j1
q
,

j1 + 1
q

)
× · · · ×

[
jt
q
,

jt + 1
q

)
.
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Without loss of generality, we may suppose that u > v. Then, for 1≤ i ≤ t ,

|(u − v)αi − (buαic − bvαic)| = |(uαi − buαic)− (vαi − bvαic)| ≤
1
q
.

Hence we can take k = u − v and xi = buαic − bvαic as required. 2

We need the following corollary for our main result in Theorem 1.6.

COROLLARY 1.5. Given positive integers r1, . . . , rt and n, there exist integers k, x1,
. . . , xt such that 1≤ k ≤ n − 1 and |kri/n − xi | ≤ 1/((n − 1)1/t

− 1) for all i .

PROOF. Take αi = ri/n and q = b(n − 1)1/t
c. Then, by Theorem 1.4, there exist

integers k, x1, . . . , xt such that

1≤ k ≤ q t
≤ n − 1

and

|kri/n − xi | = |αi k − xi | ≤ 1/q = 1/b(n − 1)1/t
c ≤ 1/((n − 1)1/t

− 1) for all i.

This concludes the proof. 2

THEOREM 1.6. Let G be a d-regular circulant graph of order n. Then

λ2(G)≥ d −
2π2d

((n − 1)1/d − 1)2
.

PROOF. Let a symbol of G be {r1, r2, . . . , rd}. By Corollary 1.5, there exist integers
k0, x1, . . . , xd such that 1≤ k0 ≤ n − 1 and |k0ri/n − xi | ≤ 1/((n − 1)1/d − 1). By
Theorem 1.3,

λ2(G)= max
1≤k≤n−1

cos(2πr1k/n)+ · · · + cos(2πrdk/n).

Consequently,

λ2(G) ≥ cos
2πr1k0

n
+ · · · + cos

2πrdk0

n

= cos 2π
(

r1k0

n
− x1

)
+ · · · + cos 2π

(
rdk0

n
− xd

)
≥

(
1−

1
2

4π2
∣∣∣∣r1k0

n
− x1

∣∣∣∣2)+ · · · + (1−
1
2

4π2
∣∣∣∣rdk0

n
− xd

∣∣∣∣2)
= d − 2π2

(∣∣∣∣r1k0

n
− x1

∣∣∣∣2 + · · · + ∣∣∣∣rdk0

n
− xd

∣∣∣∣2)
≥ d −

2π2d

((n − 1)1/d − 1)2
,

where the first equality and second inequality are justified by the fact that the cosine
function has a period of 2π and cos x ≥ 1− 1

2 x2, respectively. 2
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There are better lower bounds of λ2(G) in the literature. For instance, Friedman
et al. [4] used a sphere packing argument to show that

λ2(G)≥ d −
cdd

n4/d

for some absolute constant cd and for any d-regular Cayley graph G on an abelian
group, including circulant graph. However, their proof is more involved and less
elementary.

2. Expansion constant

Throughout this section, let G denote a d-regular graph of order n. First we note that
λ1(G)= d , and that the difference d − λ2(G) between the first two largest eigenvalues
of G is an important quantity. Indeed, d − λ2(G)= 0 if and only if G is disconnected.
Moreover, d − λ2(G) is closely related to the expansion constant of G.

DEFINITION 2.1. The expansion constant of G is defined as

h(G)= min
0<|S|≤n/2

|E(S, S)|

|S|

where E(S, S) denotes the set of edges in G between the vertex subset S and its
complement S.

Note that h(G)≥ 0 and equality holds if and only if G is disconnected. It is not hard
to see that h(Kn)= dn/2e and h(Cn)= 2/bn/2c where Kn is the complete graph of
order n and Cn is the cycle graph of order n. In general, the expansion constant of G is
hard to compute directly [2], but it can be estimated through the following inequalities
due to Cheeger. Although the proof of Cheeger’s inequalities exists in the literature
(see, for instance, [5]), we repeat it here in order to discuss the equality cases.

THEOREM 2.2.
d − λ2(G)

2
≤ h(G)≤

√
2d(d − λ2(G)).

The right equality holds if and only if G is disconnected. The left equality holds if and
only if G is disconnected or G has a vertex set S such that both induced subgraphs GS
and GS are k-regular graphs of same order and λ2(G)= 2k − d.

PROOF. (i) We first prove the right inequality:

h(G)≤
√

2d(d − λ2(G))

or, equivalently, h(G)2/2d ≤ d − λ2(G).
Let g = [g1, . . . , gn]

T be an eigenvector of A = A(G) corresponding to λ2 =

λ2(G). Since g is orthogonal to the column vector of all ones, the gi s are not all
of the same sign. By relabeling, and replacing g by −g if necessary, we can assume
that

g1 ≥ · · · ≥ gr > 0≥ gr+1 ≥ · · · ≥ gn where 1≤ r ≤ n/2.
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Write g = [g+ − g−]T and f = [g+0]T where g+ is a positive vector and g− is a
nonnegative vector. Note that f is a nonzero vector with at least one zero entry, and

f1 ≥ · · · ≥ fr > 0= fr+1 = · · · = fn.

Partition A =
[ B X

X T C

]
where B is an r × r matrix. Let L = d I − A where I is the

n × n identity matrix. To prove the right inequality, it suffices to show two auxiliary
inequalities. The first is f TL f/ f T f ≤ d − λ2. To this end, we note that Ag = λ2g
gives λ2g+ = Bg+ − Xg− ≤ Bg+ because X and g− are nonnegative. Hence

λ2 f T f = λ2gT
+g+ ≤ gT

+Bg+ = f T A f

which is equivalent to f TL f/ f T f ≤ d − λ2.
The second is h(G)2/2d ≤ f TL f/ f T f . To prove this we consider

B f =
∑

(x<y)∈E(G)

| f 2
x − f 2

y |

=

∑
(x<y)∈E(G)

( f 2
x − f 2

y ) because the fi s are decreasing

=

∑
(x<y)∈E(G)

y−1∑
i=x

( f 2
i − f 2

i+1) (telescopic sum)

= |{(x < y) : x ≤ 1, y ≥ 2}|( f 2
1 − f 2

2 )

+ |{(x < y) : x ≤ 2, y ≥ 3}|( f 2
2 − f 2

3 )+ · · ·

= |E([1], [1])|( f 2
1 − f 2

2 )+ |E([2], [2])|( f 2
2 − f 2

3 )+ · · ·

+ |E([n − 1], [n − 1])|( f 2
n−1 − f 2

n )

where [i] = {1, 2, . . . , i} and [i] = {i + 1, . . . n}

=

n−1∑
i=1

|E([i], [i])|( f 2
i − f 2

i+1)

=

r∑
i=1

|E([i], [i])|( f 2
i − f 2

i+1) because fr+1 = · · · = fn = 0

≥

r∑
i=1

ih(G)( f 2
i − f 2

i+1) by definition of h(G), r ≤ n/2

= h(G)( f 2
1 + · · · + f 2

r )

= h(G)( f 2
1 + · · · + f 2

n ) because fr+1 = · · · = fn = 0

= h(G)( f T f ).
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On the other hand,

B f =
∑

(x<y)∈E(G)

| f 2
x − f 2

y |

=

∑
(x<y)∈E(G)

| fx + fy || fx − fy |

≤

( ∑
(x<y)∈E(G)

| fx + fy |
2
)1/2( ∑

(x<y)∈E(G)

| fx − fy |
2
)1/2

by Cauchy–Schwarz

≤

( ∑
(x<y)∈E(G)

2( f 2
x + f 2

y )

)1/2( ∑
(x<y)∈E(G)

| fx − fy |
2
)1/2

because (a + b)2 ≤ 2(a2
+ b2)

= (2d( f T f ))1/2
( ∑
(x<y)∈E(G)

| fx − fy |
2
)1/2

because G is d-regular

=

√
2d( f T f )( f TL f ).

Hence

h(G)( f T f )≤ B f ≤

√
2d( f T f )( f T L f ),

which is equivalent to h(G)2/2d ≤ f T L f/ f T f .
(ii) We next address the right equality, h(G)2/2d = d − λ2(G). If G is

disconnected then h(G)= d − λ2(G)= 0, hence the right equality holds. On the other
hand, if G is connected and the right equality holds then h(G)2/2d = f T L f/ f T f .
From the proof above, it follows that B f =

√
2d( f T L f )( f T f ). Hence, ( fx + fy)

2
=

2( f 2
x + f 2

y ); that is, fx = fy for all (x < y) ∈ E(G). Thus f is a constant vector
because G is a connected graph. This is impossible since f is a nonzero vector with
at least one zero entry.

(iii) We now prove the left inequality, λ2 ≥ d − 2h(G). Let S0 ⊆ V (G) such
that h(G)= |E(S0, S0)|/|S0| and |S0| ≤ n/2. Relabel G with vertex set S0 first and
then S0, and partition A(G) as

[ B X
X T C

]
accordingly. Let

f0 = |S0|

[
eS0

0

]
− |S0|

[
0

eS0

]
,

where eS0 and eS0
are the column vectors with all ones of lengths |S0| and |S0|,

respectively. Note that f0 is orthogonal to e=
[eS0

eS0

]
and f T

0 f0 = n|S0||S0|. Moreover,
using the regularity of G,

eT
S0

BeS0 = d|S0| − |E(S0, S0)|, eT
S0

CeS0
= d|S0| − |E(S0, S0)|,

and
eT

S0
XeS0
= eT

S0
X T eS0 = |E(S0, S0)|.
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Hence f T
0 A f0 = |S0||S0|dn − |E(S0, S0)|n2. Consequently,

λ2 = max
f⊥e

f T A f

f T f

≥
f T
0 A f0

f T
0 f0

because f0 ⊥ e

=
|S0||S0|dn − |E(S0, S0)|n2

n|S0||S0|

= d −
n

|S0|

|E(S0, S0)|

|S0|

= d −
n

|S0|
h(G) by the choice of S0

≥ d − 2h(G) by the choice of S0.

(iv) We conclude with the left equality, 1
2 (d − λ2(G))= h(G). If G is disconnected

then λ2(G)= d and h(G)= 0, hence 1
2 (d − λ2(G))= h(G). If the d-regular graph G

has a vertex subset |S| = n/2 such that GS and GS are both k-regular and 2k − d =
λ2(G), then h(G)= 1

2 (d − λ2(G)). In any case, the left equality holds.
On the other hand, if the left equality holds and G is connected then |S0| = n/2

because h(G) > 0, and f0 is an eigenvector of A corresponding to λ2. It follows that
|S0| = n/2, BeS0 =

1
2 (λ2 + d)eS0 and CeS0

=
1
2 (λ2 + d)eS0

; that is, k = (λ2 + d)/2 is
an integer, and both induced subgraphs GS0 and GS0

are k-regular. 2

There are many graphs achieving the left equality. Here we include a few examples.

EXAMPLE 2.3. Let P be the Petersen graph. Then d = 3, λ2(G)= 1 and h(G)= 1.
Hence the left equality holds. Moreover, take S0 such that GS0 and GS0

are the outer
and inner 5-cycles, respectively, which are 2-regular of order five.

EXAMPLE 2.4. Let G = K2r,2r,...,2r be the 2r(t − 1)-regular complete t-partite graph
with t > 1. Then d = 2r(t − 1), λ2(G)= 0 and h(G)= r(t − 1). Hence the left
equality holds. Moreover, there exists S0 such that GS0 = Kr,r,...,r and GS0

= Kr,r,...,r
are r(t − 1)-regular graphs of order r t .

EXAMPLE 2.5. Let H be an r -regular graph with λ2(H)≤ r − 2. Then G = H × K2
is an (r + 1)-regular graph with d = r + 1, λ2(G)= r − 1 and h(G)= 1. Hence the
left equality holds. Moreover, take S0 such that GS0 = H and GS0

= H are r -regular
graphs of the same order. In particular, starting with H = K2 and repeating the above
process n − 1 times, we obtain G = Qn , the hypercube, achieving the left equality.

EXAMPLE 2.6. Let G1 and G2 be the two nonisomorphic 3-regular graphs of order
six. Let G be the graph obtained by connecting the vertices of G1 and G2 by six
independent edges, so that G is a 4-regular graph of order 12. Now λ2(G)= 2
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and h(G)= 1. Hence the left equality holds. Moreover, take S0 such that GS0 = G1
and GS0

= G2 are 3-regular graphs of order six.

It would be nice to find a characterization of the left equality without referring to
the eigenvalue of the graph.

3. Nonexistence

In this section, we provide a proof for the folklore theorem that there is no expander
family of circulant graphs only. First we give the definition of an expander family.

DEFINITION 3.1. A family {Gi } of d-regular graphs is an expander family if
|V (Gi )| →∞ and h(Gi ) > ε for some ε > 0.

If {Gi } is an expander family then Gi is connected for all i because h(Gi ) > 0 and
d ≥ 3; otherwise we have d = 2 then Gi = Cni and so

h(Gi )= h(Cni )=
2
b

ni
2 c
→ 0,

a contradiction. Expander families share many of the properties of random regular
graphs, and their applications are discussed in [5]. The existence of expander families
is known, and Pinsker [7] was the first to show the existence of expander families by a
probabilistic method. The explicit construction of an expander family is nontrivial
when d and ε are prescribed. Maglius [6] was the first to construct an expander
family. Cheeger’s inequalities are of great help in studying expander families. Upper
bounds for λ2(G) give lower bounds for d − λ2(G), and so provide a tool to construct
expander families. On the other hand, lower bounds of λ2(G) give upper bounds of
d − λ2(G), and so provide a tool to show the nonexistence of an expander family.

THEOREM 3.2. There is no circulant expander family.

PROOF. Suppose that there is a d-regular circulant expander family {Gi }; that is,
there is an ε > 0 such that h(Gi ) > ε for all i . Now, by Theorem 1.6, d − λ2(Gi )≤

2π2d/((ni − 1)1/d − 1)2. Consequently, by the right inequality in Theorem 2.2,

h(Gi )≤
√

2d(d − λ2(Gi ))≤

√
4π2d2

((ni − 1)1/d − 1)2
=

2πd

(ni − 1)1/d − 1

where ni = |V (Gi )|. Since ni →∞, we have h(Gi )→ 0, which is a contradiction. 2

Friedman et al. [4] proved a stronger result that there is no expander family of
d-regular Cayley graphs on abelian groups. Cioaba [3] provided yet another proof of
this stronger result. Nonetheless our proof seems to be simpler and more elementary.
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