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A New Method for High-Degree Spline
Interpolation: Proof of Continuity for
Piecewise Polynomials

A. Pepin, S. S. Beauchemin, S. Léger, and N. Beaudoin

Abstract. Eòective and accurate high-degree spline interpolation is still a challenging task in today’s
applications. Higher degree spline interpolation is not so commonly used, because it requires the
knowledge of higher order derivatives at the nodes of a function on a given mesh.

In this article, our goal is to demonstrate the continuity of the piecewise polynomials and their
derivatives at the connecting points, obtained with a method initially developed by Beaudoin (1998,
2003) andBeauchemin (2003). his newmethod, involving the discrete Fourier transform (DFT/FFT),
leads to higher degree spline interpolation for equally spaced data on an interval [0, T]. To do this,
we analyze the singularities that may occur when solving the system of equations that enables the
construction of splines of any degree. We also note an important diòerence between the odd-degree
splines and even-degree splines. hese results prove that Beaudoin and Beauchemin’s method leads to
spline interpolation of any degree and that this new method could eventually be used to improve the
accuracy of spline interpolation in traditional problems.

1 Introduction

Spline interpolation is now widely used in industry and research. It has proved to be
a very eõcient tool, particularly for data interpolation or curve smoothing applica-
tions. It is typically preferred to polynomial interpolation, as it avoids the problem
of Runge’s phenomenon where oscillations occur at the edges of the interval when
using higher degree polynomials. Cubic spline interpolation, which is the most pop-
ular type of spline used in practice due to its accuracy and low computational cost,
has been investigated in [1,5]. A more general approach for higher odd-degree spline
interpolation was analyzed in [1].

In [2,3], a newmethod to obtain, from a discrete function, an accurate approxima-
tion of the continuous Fourier transform was developed. It was also mentioned that
this method led to polynomial splines of any odd degree. his statement was based
on many observations, and no formal proof was provided. he goal of this paper is
therefore to formally demonstrate that the piecewise continuous polynomials deûned
in [2, 3] form a spline function for both odd degree and even degree polynomials. By
assuming that θ is the degree of spline polynomials obtained via the numerical Fourier
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transform, we show that the derivatives of the resulting piecewise polynomials up to
order θ − 1 are continuous at every internal node.

Several authors [7, 11, 14, 15] mentioned that the discrete Fourier transform (DFT)
is far from being adequate to act in place of the Fourier transform. One of the advan-
tages of using the approach proposed by Beaudoin andBeauchemin in [2,3] to numer-
ically compute the Fourier transform of a digitized function is that it performs better
than the classical DFT for both smooth and rough functions, all the while providing
additional information not obtainable with the DFT. Other than giving polynomial
splines, it also yields accurate numerical derivatives and numerical integration. he
other advantage of themethod is that the resulting polynomial splines can be obtained
easily for higher degrees, something that becomesmore diõcult when using the stan-
dard approach to calculate splines. More accurate results can therefore be obtained
when desired without signiûcantly increasing the computational cost. In fact, the nu-
merical accuracy of the method increases muchmore rapidly than the computational
cost [3].

his contribution is organized as follows. Section 2 gives a brief summary of
Beaudoin and Beauchemin’s method and includes numerical examples to support
their conclusion that their method leads to spline interpolation. Section 3 states im-
portant properties needed to show under what conditions we are able to build piece-
wise polynomials of even and odd degrees, while Section 4 is devoted to the formal
proof of continuity of the resulting interpolation functions, thus proving that they are
indeed spline functions. Let us note that one-dimensional functions are considered
herein.

2 Mathematical Background

Let t0 , t1 , . . . , tN be N + 1 equidistant interpolation nodes on an interval [0, T], T > 0,
such that t j = j∆t for j = 0, 1, . . . ,N with ∆t = T/N . Knowing the values of an un-
known continuous and indeûnitely derivable real-valued function g at these nodes
only, and denoting them by g(t j) = g j , the goal is to approximate g on the interval
[0, T] by constructing an interpolation polynomial of degree θ, denoted as gθ . he
approximation of order θ of the ℓ-th derivative of g at node t j is denoted g(ℓ)j ,θ . Note
that g j ,θ is independent of the approximation order, since it corresponds to the func-
tion g evaluated at the interpolation node t j .

To compute gθ , as well as its derivatives, Beaudoin and Beauchemin [2] developed
a method based on the Fourier transform and the Taylor expansion of the unknown
function g. By using the properties of both of these tools, they obtained the following
equation:

(2.1) −i2π fk I0,kFn ,k +
∞

∑
p=1

(Ip−1,k − i2π fk Ip ,k)Fp+n ,k = bn ,

where fk = k/T , Fℓ ,k is the k-th term of the DFT1 of the sequence g(ℓ)j , where g(ℓ)j
corresponds to the ℓ-th derivative of g at the node t j , bn is deûned in terms of values

1he DFT can be computed with FFT algorithms.
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at the boundaries of the interval as follows:

bn = g(n)N − g(n)0 ,

and where Ip ,k is given by

(2.2) Ip ,k =
1

Γ(p + 1) ∫
∆t

0
τp exp(−i2π fkτ) dτ

for k = 0, 1, . . . ,N − 1, where Γ is the gamma function.
In the particular case where p is a positive integer, we can write the last equation

as

(2.3) Ip ,k =
1
p! ∫

∆t

0
τp exp(−i2π fkτ) dτ

for k = 0, 1, . . . ,N − 1, since Γ(p + 1) = p! ∀ p ∈ N.
It can easily be shown that equation (2.3) is equivalent to

Ip ,k =
⎧⎪⎪
⎨
⎪⎪⎩

1
(p+1)! (∆t)p+1 , if fk = 0,

1
(i2π fk)p+1

− exp(−i2πk/N)∑
p+1
q=1

1
(i2π fk)q

(∆t)p−q+1

(p−q+1)! , if fk ≠ 0,

for all p ∈ N. In the case where p is a negative integer, we have Ip ,k = 0 by equation
(2.2).
By introducing a truncating parameter θ and by expanding equation (2.1) for a

speciûc range of values for n and p, Beaudoin and Beauchemin were then able to
extract a part of the resulting system and show that in order to approximate the DFT
of the derivatives of g up to an order θ at the nodes, the following system needed to
be solved:

(2.4) Mθ
b F

θ
b = B

θ
+ Cθ ,

where Fθ
b is the vector of unknowns deûned by Fℓ ,k ,θ for ℓ = 1, 2, . . . , θ, with

Fℓ ,k ,θ =
N−1

∑
j=0

g(ℓ)j ,θ exp(−i2πk j/N).

hen Fℓ ,k ,θ denotes the k-th term of the DFT of the sequence g(ℓ)j ,θ . It is important
to note that the case ℓ = 0 corresponds to the k-th term of the DFT of the sequence
g j ,θ , which can be computed directly for k = 0, 1, . . . ,N − 1, since the sequence g j ,θ is
entirely known for j = 0, 1, . . . ,N − 1. As for Mθ

b , it is a square matrix of dimension θ
deûned by

(Mθ
b )µ ,ν =

⎧⎪⎪
⎨
⎪⎪⎩

0, if ν − µ + 1 < 0,
Jν−µ+1,k , otherwise,

for µ, ν = 1, 2, . . . , θ, and where

Jp ,k = Ip−1,k − i2π fk Ip ,k ,
which is also equivalent to

Jp ,k =
⎧⎪⎪
⎨
⎪⎪⎩

exp(−i2πk/N) − 1, if p = 0,
(∆t)p

p! exp(−i2πk/N), if p > 0.
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Explicitly, Mθ
b can be written as:

Mθ
b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J1,k J2,k . . . Jθ ,k
J0,k J1,k . . . Jθ−1,k
⋮ ⋮ ⋱ ⋮

0 0 . . . J1,k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

he vector Bθ , which is unknown, is called the boundary conditions vector, while
vector Cθ is deûned by

(Cθ
)µ =

⎧⎪⎪
⎨
⎪⎪⎩

−J0,kF0,k , if µ = 1,
0, if 1 < µ ≤ θ.

To compute Bθ , the reader can refer to [3] where an algorithm is given. We note that
other algorithms could also be used. However, as the values of this vector only in�u-
ence the accuracy of the results and not the continuity of the resulting interpolation
functions, we will not focus on its calculation at this time. his issue, which is key to
improving the accuracy of the results, will be treated in a forthcoming publication.

Once Fℓ ,k ,θ is known for ℓ = 1, 2, . . . , θ, the inverse discrete Fourier transform
(iDFT) can be used to approximate the derivatives of g, which are initially unknown,
at the interpolation nodes:

(2.5) g(ℓ)j ,θ =
1
N

N−1

∑
k=0
Fℓ ,k ,θ exp(i2πk j/N).

Using these values, the polynomials and their derivatives on each interval [t j , t j+1[

are then constructed by a Taylor expansion as follows:

[g(ℓ)]θj (t) =
θ−ℓ

∑
p=0

(t − t j)p

p!
g(p+ℓ)j ,θ , t ∈ [t j , t j+1[

for ℓ = 0, 1, . . . , θ.
Let us note that even though the Taylor series are truncated, the way the numerical

derivatives are computed leads to interpolating functions that are continuous on the
whole interval [0, T].
Beaudoin and Beauchemin made this observation when they numerically noticed

the continuity of the interpolation functions obtained from their new method. hey
arrived at this conclusion by analyzing the diòerences between the values at every
interior node between the ( j − 1)-th and the j-th polynomial, and up to the θ-th
derivative. hey observed that this diòerence, up to the (θ − 1)-th derivative, was
nearly zero, which led them to believe that their method led to spline functions of any
(odd) degree. hey also noticed that while the choice of boundary conditions did not
in�uence the continuity of the spline, it had an impact on the accuracy of the results.

In order to illustrate this, let us consider û�y (N = 49) randomly generated val-
ues ranging from −1 to 1. We will compute the spline passing through those equally
distributed points on the interval [0, 2] for two, arbitrary chosen, sets of boundary
conditions. his illustrates, ûrstly, that the continuity of the spline of degree θ ob-
tained from thismethod is independent of the chosen boundary conditions. Secondly,
Figures 1 and 2 illustrate the diòerences created by using splines of diòerent degrees.
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Figure 1: Plots of diòerent interpolation splines, with boundary conditions b0 = gN − g0 and
bn = 0, n = 1, 2, . . . , θ − 1. Blue circles represent the interpolation nodes. θ is the degree of the
spline polynomial. (Colour online).

Figure 2: Plots of diòerent interpolation splines, with boundary conditions b0 = gN − g0 and
bn = 50n, n = 1, 2, . . . , θ − 1. Blue circles represent the interpolation nodes. (Colour online).

Let us note that, in Figures 1 and 2, there is a signiûcant diòerence between the splines
of odd and even degree. However, as the interpolation degree θ increases, these diòer-
ences are less signiûcant. Finally, in Figure 3, we observe the consequence of choosing
diòerent boundary conditions on the spline.
By deûning a maximum absolute error on the continuity of the ℓ-th derivative by

Maximum Absolute Error = max
j=1,2,. . . ,N−1

∣g(p+ℓ)j − ∆t
θ−ℓ

∑
p=0

g(p+ℓ)j−1 ∣,

and an average absolute error on the continuity of the ℓ-th derivative by

Average Absolute Error =
1

N − 1

N−1

∑
j=1

∣g(p+ℓ)j − ∆t
θ−ℓ

∑
p=0

g(p+ℓ)j−1 ∣;

we can then compare the values from the ( j − 1)-th and j-th polynomials at every
interior nodes for ℓ = 0, 1, . . . , θ. hese results are shown in Tables 1 and 2.
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Figure 3: Comparisons of the spline of degree θ = 9 using two diòerent sets of boundary con-
ditions. Blue circles represent the interpolation nodes. (Colour online).

Derivative Order Maximum Absolute Error Average Absolute Error
0 6.53 × 10−99 3.13 × 10−99

1 3.20 × 10−97 1.37 × 10−97

2 1.58 × 10−95 6.28 × 10−96

3 9.64 × 10−94 4.45 × 10−94

4 9.06 × 10−92 3.53 × 10−92

5 6.58 × 10−90 2.76 × 10−90

6 5.06 × 10−88 2.14 × 10−88

7 3.40 × 10−86 1.27 × 10−86

8 1.50 × 10−84 5.66 × 10−85

9 4.39 × 1016 2.74 × 1016

Table 1: Errors at the interior interpolation nodes of an arbitrary function and its
derivatives when using a spline of degree θ = 9. Computations were performed with
Maple, using a precision of 100 digits. Boundary conditions were chosen as b0 =
gN − g0 and bn = 0, for n = 1, 2, . . . , 8. Of course, the error for the derivative of order
θ = 9 is not 0, since a spline of degree θ is continuous up to the (θ − 1)-th derivative.

he continuity of the interpolation function and its derivatives are obvious in this
example. his is a convincing observation, but not a formal proof of the continuity
of our interpolation functions on the interval [0, T]. In Section 4, we will therefore
formally demonstrate the continuity of these polynomials at every internal node for
ℓ = 0, 1, . . . , θ − 1. To achieve this goal, some important properties need to be stated,
which is the object of the next section.

3 Important Properties

he numerical tests completed by Beaudoin and Beauchemin led them to believe that
their method could only produce polynomial splines of odd degrees. Evidently, since
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Derivative Order Maximum Absolute Error Average Absolute Error
0 8.22 × 10−99 4.05 × 10−99

1 4.09 × 10−97 1.58 × 10−97

2 1.87 × 10−95 8.89 × 10−96

3 1.40 × 10−93 5.50 × 10−94

4 1.10 × 10−91 4.66 × 10−92

5 8.58 × 10−90 4.11 × 10−90

6 5.66 × 10−88 2.85 × 10−88

7 3.89 × 10−86 1.92 × 10−86

8 1.61 × 10−84 9.08 × 10−85

9 4.39 × 1016 2.91 × 1016

Table 2: Errors at the interior interpolation nodes of an arbitrary function and its
derivatives when using a spline of degree θ = 9. Computations were performed with
Maple, using a precision of 100 digits. Boundary conditions were chosen as b0 =
gN − g0 and bn = 50n, for n = 1, 2, . . . , 8. As mentioned in Table 1, the error for
the derivative of order θ = 9 is not 0 since a spline of degree θ is continuous up to the
(θ − 1)-th derivative.

their method requires solving (2.4), the problem observed for even values of θ could
be due to singularities in the matrix Mθ

b . One of the goals of this section is therefore
to establish a formula for the determinant of Mθ

b in order to ûnd the conditions un-
der which this determinant becomes null. To do so, we ûrst need to deûne Eulerian
numbers and polynomials and state some of their properties. Let us note that the
deûnitions presented can be found in [12].

3.1 Eulerian Numbers and Polynomials

Deûnition 3.1 Let m and n be two integers such that 0 ≤ m ≤ n − 1; the Eulerian
number ⟨ n

m⟩ is deûned by

⟨
n
m
⟩ =

m

∑
k=0

(−1)kCn+1
k (m + 1 − k)n ,

where

Cn+1
k =

(n + 1)!
(n + 1 − k)!k!

.

For example, when n = 4, the four Eulerian numbers for 0 ≤ m ≤ 3 are 1, 11, 11, and
1, respectively. For n = 5, the ûve Eulerian numbers for 0 ≤ m ≤ 4 are 1, 26, 66, 26,
and 1, respectively.
As can be observed from this last example, the Eulerian numbers for 0 ≤ m ≤ n− 1

are symmetric around the ⌈n/2⌉-th number when n is odd, where ⌈ ⋅ ⌉ denotes the
ceiling operator. In a similar way, when n is even, the Eulerian numbers for 0 ≤ m ≤

n − 1 are symmetric around the (n/2)-th and (n/2 + 1)-th numbers. More generally,
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from these symmetric properties, [8] gives the following relation:

(3.1) ⟨
n
m
⟩ = ⟨

n
n −m − 1

⟩.

Deûnition 3.2 Let An ∶ C → C be the Eulerian polynomial of degree n − 1; it is
deûned in terms of Eulerian numbers as follows:

(3.2) An(z) =
n−1

∑
q=0

⟨
n
q
⟩zq ,

where n ∈ N/{0} and z ∈ C.

As an example, the ûrst ûve Eulerian polynomials are

A1(z) = 1,
A2(z) = 1 + z,
A3(z) = 1 + 4z + z2 ,

A4(z) = 1 + 11z + 11z2
+ 1z3 ,

A5(z) = 1 + 26z + 66z2
+ 26z3

+ z4 .

Generally, ûnding all the roots of these polynomials is not easy. From [13], it is
known that all n − 1 roots of the Eulerian polynomial An are real numbers. his re-
sulted from a theorem demonstrated by Frobenius in 1910. Additionally, it is clear that
these roots are negative, since An(z) > 0 for all real number z ≥ 0. his property will
be essential to analyze the determinant of Mθ

b .
Now, by assuming q = n − q′ − 1 and by using property (3.1), equation (3.2) can be

written as

(3.3) An(z) =
0

∑
q′=n−1

⟨
n

n − q′ − 1
⟩zn−q′−1

=
n−1

∑
q=0

⟨
n
q
⟩zn−q−1 .

Let us note that equation (3.3) will be used to simplify some equations.
Other properties of Eulerian polynomials can also be derived. Here are three that

will be useful in what there is to follow:
● From [6], we have:

(3.4) An(z) =
⎧⎪⎪
⎨
⎪⎪⎩

1, if n = 0,
∑

n−1
k=0 Cn

kAk(z)(z − 1)n−1−k , if n ≥ 1.

● For n ∈ N/{0} and z ≠ 0, we can demonstrate that:

(3.5) An(z) = zn−1An(z−1
).

In fact, by factoring zn−1 from equation (3.2), we obtain

An(z) = zn−1
n−1

∑
q=0

⟨
n
q
⟩zq−(n−1) ,
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which is equivalent to

An(z) = zn−1
n−1

∑
q=0

⟨
n
q
⟩

1
zn−q−1 = zn−1

n−1

∑
q=0

⟨
n
q
⟩(

1
z
)
n−q−1

= zn−1An(z−1
)

by property (3.3).
● For n ∈ N/{0} and z ≠ 0, we have

(3.6) An(z) = (1 − z)n−1
+ z

n−1

∑
k=1
Cn

kAk(z)(1 − z)n−1−k .

In fact, from (3.5) and (3.4), it follows that

An(z) = zn−1
n−1

∑
k=0
Cn

kAk(z−1
)(z−1

− 1)n−1−k ,

which is equivalent to

An(z) = zn−1
n−1

∑
k=0
Cn

kAk(z−1
)(

1 − z
z

)
n−1−k

=
n−1

∑
k=0
Cn

kAk(z−1
)(1 − z)n−1−kzk .

Now, since Ak(z−1)zk can be written as

Ak(z−1
)zk

=
k−1

∑
q=0

⟨
k
q
⟩(

1
z
)
q
zk

=
k−1

∑
q=0

⟨
k
q
⟩zk−q

=
z
z

k−1

∑
q=0

⟨
k
q
⟩zk−q

= z
k−1

∑
q=0

⟨
k
q
⟩zk−q−1

= z
k−1

∑
q=0

⟨
k
q
⟩zq

= zAk(z)

for k ≥ 1, it follows that

An(z) = (1 − z)n−1
+ z

n−1

∑
k=1
Cn

kAk(z)(1 − z)n−1−k

3.2 Determinant of Mθ
b

Let us ûrst note that matrix Mθ
b , which is given by

Mθ
b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J1,k J2,k . . . Jθ ,k
J0,k J1,k . . . Jθ−1,k
⋮ ⋮ ⋱ ⋮

0 0 . . . J1,k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

is an upper Toeplitz–Hessenberg matrix, which is a class of almost upper triangular
matrices (see [10]). Its determinant is given by

(3.7) det(Mθ
b ) = J1,k det(Mθ−1

b ) +
θ−1

∑
r=1

(−1)θ−r Jθ+1−r ,k(J0,k)θ−r det(Mr−1
b ),

where det(M0
b) = 1 by convention. We refer the reader to [4] for a complete proof of

this property.
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heorem 3.3 he determinant of matrix Mθ
b is given by

(3.8) det(Mθ
b ) =

(∆t)θ

θ!

θ

∑
q=1

⟨
θ

q − 1
⟩(exp(−i2πk/N))

θ+1−q
.

Proof To demonstrate this, we proceed by complete induction on θ.
● For θ = 1, we obtain det(M1

b) = ∆t exp(−i2πk/N) = J1,k , which is also the result
obtained from equation (3.7).

● Let us now assume that equation (3.8) holds for all integers up to m − 1:

(3.9) det(Mℓ
b) =

(∆t)ℓ

ℓ!

ℓ

∑
q=1

⟨
ℓ

q − 1
⟩ (exp(−i2πk/N))

ℓ+1−q

for 1 ≤ ℓ ≤ m − 1.
● To prove that equation (3.8) also holds for the integer m, let us ûrst note that,
from equations (3.7) and (3.9),

det(Mm
b ) = J1,k

(∆t)m−1

(m − 1)!

m−1

∑
q=1

⟨
m − 1
q − 1

⟩zm−q
k

+
m−1

∑
r=1

(−1)m−r Jm+1−r ,k(J0,k)m−r (∆t)r−1

(r − 1)!

r−1

∑
q=1

⟨
r − 1
q − 1

⟩zr−q
k ,

where zk = exp(−i2πk/N).
By replacing J0,k = zk − 1 and Jn ,k = (∆t)n

n! zk in this last equation, we obtain

det(Mm
b ) =

(∆t)m

(m − 1)!
zk

m−1

∑
q=1

⟨
m − 1
q − 1

⟩zm−q
k

+
m−1

∑
r=1

(−1)m−r (∆t)m+1−r

(m + 1 − r)!
zk(zk − 1)m−r

×
(∆t)r−1

(r − 1)!

r−1

∑
q=1

⟨
r − 1
q − 1

⟩zr−q
k

=
m(∆t)m

m!
zk

m−1

∑
q=1

⟨
m − 1
q − 1

⟩zm−q
k

+
(∆t)m

m!
zk

m−1

∑
r=1
Cm

r−1(1 − zk)m−r
r−1

∑
q=1

⟨
r − 1
q − 1

⟩zr−q
k

=
(∆t)m

m!
zk

m

∑
r=1
Cm

r−1(1 − zk)m−r
r−1

∑
q=1

⟨
r − 1
q − 1

⟩zr−q
k .

By performing a change of variables on both summations and by using prop-
erty (3.3), we obtain

det(Mm
b ) =

(∆t)m

m!
zk

m−1

∑
r=0
Cm

r (1 − zk)m−r−1
r−1

∑
q=0

⟨
r
q
⟩zq+1

k .
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Since∑r−1
q=0 ⟨

r
q⟩z

q+1
k = 1 when r = 0 (as det(M0

b) = 1) and using equation (3.6),
we obtain

det(Mm
b ) =

(∆t)m

m!
zk((1 − zk)m−1

+ zk
m−1

∑
r=1
Cm

r (1 − zk)m−r−1
r−1

∑
q=0

⟨
r
q
⟩zq

k)

=
(∆t)m

m!
zkAm(zk) =

(∆t)m

m!
zk

m−1

∑
q=0

⟨
m
q
⟩zq

k

Finally, by applying equation (3.3) and by performing another change of vari-
ables on the summation index, we obtain

det(Mm
b ) =

(∆t)m

m!

m

∑
q=1

⟨
m

q − 1
⟩zm+1−q

k ,

which proves that equation (3.8) also holds for θ = m.
From the complete induction principle, it follows that equation (3.8) holds for all
θ ∈ N/{0}. ∎

3.3 Singularities of Mθ
b

From equation (3.8), we study cases when det(Mθ
b )= 0 (or when Mθ

b is singular).
When this condition is met, system (2.4) cannot be solved, and we are unable to
compute the numerical derivatives of the given digitized function g. Evidently,
det(Mθ

b )= 0 implies that
θ

∑
q=1

⟨
θ

q − 1
⟩(exp(−i2πk/N))

θ+1−q
=

θ

∑
q=1

⟨
θ

q − 1
⟩zθ+1−q

k = 0.

Since zk ≠ 0, we are therefore searching for values of zk satisfying
θ−1

∑
q=0

⟨
θ
q
⟩zθ−q

k =
θ−1

∑
q=0

⟨
θ
q
⟩zθ−q−1

k = 0,

which is equivalent to

(3.10)
θ−1

∑
q=0

⟨
θ
q
⟩zq

k = 0

by property (3.3).
From (3.2), we notice that the le�-hand side of equation (3.10) corresponds to an

Eulerian polynomial of degree θ − 1. Generally, the zeros of Eulerian polynomials
are not easy to compute. However, they are all negative real numbers. his implies
that I{zk} = 0. Furthermore, since zk = exp(−i2πk/N) has an euclidean norm of 1
(i.e., ∥zk∥2

2 = 1), the only possible root corresponds to zk = −1, which occurs when

cos (
2πk
N

) = −1, k ∈ {0, 1, . . . ,N − 1},

or equivalently when
2πk
N

= γπ,

where γ is an odd integer and k ∈ {0, 1, . . . ,N − 1}. his implies k = N/2.
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In order for k = N/2 to be an integer, N must be chosen even. If we also choose θ
as an even integer, we obtain

θ−1

∑
q=0

⟨
θ
q
⟩zq

k =
θ−1

∑
q=0

⟨
θ
q
⟩(−1)q

=

θ
2 −1

∑
q=0

⟨
θ
q
⟩(−1)q

+
θ−1

∑
q= θ

2

⟨
θ
q
⟩(−1)q

=

θ
2 −1

∑
q=0

⟨
θ
q
⟩(−1)q

+
θ−1

∑
q= θ

2

⟨
θ

θ − q − 1
⟩(−1)q

=

θ
2 −1

∑
q=0

⟨
θ
q
⟩(−1)q

+
0

∑
q= θ

2 −1

⟨
θ
q
⟩(−1)q−θ+1

=

θ
2 −1

∑
q=0

⟨
θ
q
⟩(−1)q

+ (−1)1−θ
θ
2 −1

∑
q=0

⟨
θ
q
⟩(−1)q

= 0,

which implies det(Mθ
b ) = 0 when both θ and N are even integers. If θ is chosen as an

odd integer, we can easily show that det(Mθ
b ) ≠ 0.

In [2, 3], it is pointed out that there are issues when choosing θ as an even integer,
but no further analysis was given, because, having to cope with large numbers of data
points, they were always using a power of 2 for N . We now have demonstrated that
the issues come from the singularity of matrix Mθ

b when θ and N are both chosen as
even integers. his therefore implies that splines of even degrees can be constructed,
as long as N is chosen as an odd integer. hen, as a rule, when θ is odd, N can be odd
or even. When θ is even, then N must be odd.

4 Polynomial Splines

To demonstrate that the resulting piecewise polynomials form a spline function, we
must show that the interpolation functions g(ℓ)θ , ℓ = 0, 1, . . . , θ − 1, are continuous
on [0, T]. Let us therefore establish a general equation for the continuity of these
functions.

4.1 Continuity Conditions

As already stated, a polynomial of degree θ − ℓ was deûned on each interval [t j , t j+1[,
for j = 0, 1, . . . ,N − 1, by

(4.1) [g(ℓ)]θj (t) =
θ−ℓ

∑
p=0

(t − t j)p

p!
g(p+ℓ)j ,θ , t ∈ [t j , t j+1[.

Clearly, for ℓ = 0, 1, . . . , θ − 1, [g(ℓ)]θj is continuous on every interval [t j , t j+1[. he
only points that could be problematic are at t = t j+1, for j= 0, 1, . . . ,N − 2, where there
might be ûrst kind discontinuities. herefore, for the functions to be continuous,
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we must have

(4.2) lim
t→t−j+1

([g(ℓ)]θj (t)) = g(ℓ)j+1,θ

for j = 0, 1, . . . ,N − 2 and for ℓ = 0, 1, . . . , θ − 1. By replacing (4.1) in (4.2), we obtain

(4.3) g(ℓ)j+1,θ =
θ−ℓ

∑
p=0

(∆t)p

p!
g(ℓ+p)
j ,θ ,

which is an elegant continuity condition that is dependent of the degree θ of the poly-
nomial spline and the derivative order ℓ. In order for all the polynomial pieces to
connect smoothly, we must verify that equation (4.3) is satisûed.

4.2 Proof of Continuity

heorem 4.1 he numerical derivatives g(ℓ)j ,θ obtained from solving

Mθ
b F

θ
b = B + C

are computed in such a way that

[g(ℓ)]θj (t) =
θ−ℓ

∑
p=0

(t − t j)p g(p+ℓ)j ,θ

p!
, t ∈ [t j , t j+1]

satisfy the property

[g(ℓ)]θj−1(t j) = [g(ℓ)]θj (t j)

for all j = 1, 2, . . . ,N − 1 and for all ℓ = 0, 1, . . . , θ − 1.
Hence, gθ is a spline function of degree θ on the interval [0, T].

Proof Let us ûrst note that system (2.4), which needs to be solved to obtain the
piecewise polynomials, can be expressed as

θ−ℓ

∑
p=0

Jp ,kFp+ℓ ,k ,θ = bℓ

for ℓ = 0, 1, . . . , θ − 1.
By expanding Jp ,k in the last equation, we can write it as

θ−ℓ

∑
p=0

(∆t)p

p!
Fp+ℓ ,k ,θ exp(−i2πk/N) = bℓ + Fℓ ,k ,θ

or in an equivalent manner as

(4.4)
θ−ℓ

∑
p=0

(∆t)p

p!
Fp+ℓ ,k ,θ = (bℓ + Fℓ ,k ,θ) exp(i2πk/N).

To prove that the continuity condition (4.3) is satisûed, we begin by multiplying
equation (4.4) by exp(i2πk j/N)/N and then taking the sum over all values of k
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(i.e., k = 0, 1, . . . ,N − 1). From this, it follows that:

1
N

N−1

∑
k=0

θ−ℓ

∑
p=0

(∆t)p

p!
Fp+ℓ ,k ,θ exp(i2πk j/N) =

1
N

N−1

∑
k=0

(bℓ + Fℓ ,k ,θ) exp(i2πk( j + 1)/N).

By interchanging the summations on the le�-hand side, we obtain

1
N

θ−ℓ

∑
p=0

(∆t)p

p!

N−1

∑
k=0
Fp+ℓ ,k ,θ exp(i2πk j/N) =

1
N

(bℓ
N−1

∑
k=0

exp(i2πk( j + 1)/N) +
N−1

∑
k=0
Fℓ ,k ,θ exp(i2πk( j + 1)/N)).

Since
N−1

∑
k=0

exp(i2πk( j + 1)/N) =
1 − exp(i2π( j + 1))

1 − exp(i2π( j + 1)/N)
= 0

for j = 0, 1, . . . ,N−2 (see [9] for properties on complex exponential series), and using
equation (2.5), we obtain

θ−ℓ

∑
p=0

(∆t)p

p!
g(p+ℓ)j ,θ = g(ℓ)j+1,θ

for ℓ = 0, 1, . . . , θ − 1.
his proves that for any chosen degree θ, the derivatives are such that the piecewise

polynomials are continuous at every break point, whichmakes the resulting functions
continuous over the interval [0, T]. ∎

5 Conclusions

he initial goal of Beaudoin and Beauchemin was to develop a method that would
approximate the Fourier transform of a digitized function more accurately than the
DFT. By doing so, they realized that theirmethod not only led tomore accurate results
for the Fourier transform, but also seemed to enable spline interpolation of any odd
degree.

In our work, we have not only formally demonstrated that the resulting interpo-
lation functions are spline functions, but also that we are able to obtain these spline
functions for both even and odd degree approximations. he only condition to creat-
ing even-degree splines is to make sure to use an odd number N of intervals. Other-
wise, matrix Mθ

b becomes singular, and the numerical derivatives at the nodes cannot
be calculated. his same result for even-degree splines was mentioned in [1].

he advantage of our method to building splines of any degree is that it enables us
to obtain high-degree splines very easily. However, the issue of eòectively approximat-
ing the boundary conditions still persists. In [3], Beaudoin and Beauchemin initially
proposed a method to accurately compute these boundary conditions for any given
order, though the method lacks robustness. he next step is to ûnd an eõcient and
robust algorithm to accurately compute the boundary condition vector Bθ . With such
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a method, which is the goal of a forthcoming contribution, higher degree spline in-
terpolation could be used for numerical problems necessitating high accuracy.
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