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Subdivisions of Simplicial Complexes
Preserving the Metric Topology

Kotaro Mine and Katsuro Sakai

Abstract. Let |K| be the metric polyhedron of a simplicial complex K. In this paper, we characterize a

simplicial subdivision K ′ of K preserving the metric topology for |K| as the one such that the set K ′(0)

of vertices of K ′ is discrete in |K|. We also prove that two such subdivisions of K have such a common

subdivision.

1 Introduction

For a simplicial complex K, the polyhedron |K| has two topologies: the Whitehead

(weak) topology and the metric topology. In the theory of infinite-dimensional

manifolds, polyhedra with metric topology are important because of the triangu-

lation theorem. For instance, let E be a linear metric space with density τ such that E

is an absolute retract and homeomorphic to the countable power EN or its subspace

EN

f = {(xi)i∈N | xi = 0 except for finitely many i}. Every manifold modeled on E

is homeomorphic to the product of a polyhedron |K| with the metric topology and

the model space E, where K is a locally finite-dimensional simplicial complex such

that the star at each vertex has at most τ many simplexes [4, Proposition 3.3]. Re-

cently, it was shown that each open set in LF-spaces can be triangulated in the above

sense [2, 3].

In this paper, we assign |K| the metric topology. The metric topology has the disad-

vantage of the Whitehead topology in that a subdivision K ′ of K changes the metric

topology in general, that is, |K ′| 6= |K| as spaces. A simplicial subdivision is said to be

admissible if it preserves the metric topology.1 The barycentric subdivision Sd K is ad-

missible. D. W. Henderson established the following characterization [1, Lemma V.5]

to prove the metric version of Whitehead’s theorem on small subdivisions, that is, ev-

ery simplicial complex has arbitrarily small admissible subdivisions [1, Lemma V.7].

Theorem 1.1 (D. W. Henderson) A simplicial subdivision K ′ of K is admissible if

and only if the open star O(v, K ′) at each vertex v ∈ K ′(0) is open in |K|.

In this paper, we give another characterization which can be more easily checked

than Theorem 1.1 above.
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1This naming comes from the fact that the metric defined by such a subdivision is admissible. Hender-

son called it a proper subdivision [1].
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Theorem 1.2 A simplicial subdivision K ′ of K is admissible if and only if the set K ′(0)

of vertices of K ′ is discrete in |K|.

In the paper [3], this theorem was proved for a derived subdivision K ′ of a lo-

cally finite-dimensional simplicial complex K. Now any assumption is not necessary.

Moreover, we can prove the following.

Theorem 1.3 Any two admissible subdivisions of K have an admissible common sub-

division.

A homeomorphism f : |K| → |L| is admissible PL if f is simplicial with respect to

admissible subdivisions K ′ and L ′ of K and L, respectively. See §3 for the existence

of PL homeomorphisms which are not admissible PL, that is, there is a homeomor-

phism f : |K| → |L| with respect to the metric topologies of |K| and |L| which is

simplicial with respect to some subdivisions K ′ and L ′ of K and L, respectively, but

such subdivisions K ′ and L ′ are not admissible. Of course, f is also a homeomor-

phism with respect to the weak (Whitehead) topologies of |K| and |L|. As a corollary

of Theorem 1.3, we have the following.

Corollary 1.4 The composition of admissible PL homeomorphisms is also an admis-

sible PL homeomorphism.

2 Proofs of Theorems 1.2 and 1.3

Let K be a simplicial complex. By K(0), we denote the 0-skeleton of K, that is, K(0)

is the set of all vertices of K. The set of vertices and the interior of a simplex σ
are denoted by σ(0) and σ◦, respectively. When a simplex σ is spanned by vertices

v0, . . . , vn, i.e., σ(0)
= {v0, . . . , vn}, we write σ = 〈v0, . . . , vn〉. The notation σ 6 σ ′

means that σ is a face of σ ′.

For each point x ∈ |K|, let σx ∈ K be the carrier of x, that is, x ∈ σ◦
x . Let

(βK
v (x))v∈K(0) ∈ IK(0)

be the barycentric coordinate, that is,
∑

v∈K(0) βK
v (x) = 1 and

{v ∈ K(0) | βK
v (x) > 0} = σ(0)

x . Then we can write x =

∑

v∈K(0) βK
v (x)v. The open

star at v ∈ K(0) is defined by O(v, K) = {x ∈ |K| | βK
v (x) > 0}. The metric ρK for

the polyhedron |K| is defined as follows:

ρK (x, y) =

∑

v∈K(0)

|βK
v (x) − βK

v (y)|.

Identifying x with (βK
v (x))v∈K(0) ∈ ℓ1(K(0)), we can regard |K| as a subspace of the

Banach space ℓ1(K(0)). Then the metric ρK is induced by the norm of ℓ1(K(0)). A

simplicial subdivision K ′ of K is admissible if and only if the metric ρK ′ is admissible

for |K|.
For each x ∈ |K|, define O(x, K) =

⋂

v∈σ(0)
x

O(v, K). Then O(x, K) is open in |K|
with cl|K| O(x, K) = | St(σx, K)|, where St(σ, K) is the star at σ ∈ K which is the

subcomplex of K defined as follows:

St(σ, K) = {σ ′ ∈ K | ∃σ ′ ′ ∈ K such that σ, σ ′
6 σ ′ ′}.
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For each x ∈ |K| and 0 < t < 1, we can define ϕx
t : | St(σx, K)| → | St(σx, K)| by

ϕx
t (y) = (1 − t)x + t y, where σx ∈ K is the carrier of x. The following is easy.

Lemma 2.1 For each x ∈ |K| and 0 < t 6 1, the image ϕx
t (| St(σx, K)|) is closed in

|K| and ϕx
t (O(x, K)) is open in |K|.

For A ⊂ |K|, let C(A, K) = {σ ∈ K | σ ∩ A = ∅}. Then C(A, K) is a subcomplex

of K. In case A = {x}, we write C(x, K) instead of C({x}, K). Then O(x, K) =

|K| \ |C(x, K)|. Observe that K = St(σ, K) ∪ C(σ◦, K) for each simplex σ ∈ K.

In particular, K = St(v, K) ∪ C(v, K) for each vertex v ∈ K(0). Note that K 6=
St(σ, K) ∪C(σ, K) in general.

For each v ∈ |K| \ K(0) and σ ∈ St(σv, K) ∩ C(v, K), let vσ ∈ K be the simplex

spanned by {v}∪σ(0), that is, (vσ)(0)
= {v}∪σ(0). Then we can define the simplicial

subdivision Kv of K as follows:

Kv = C(v, K) ∪ {vσ | σ ∈ St(σv, K) ∩C(v, K)}.

Observe that K(0)
v = {v} ∪ K(0), C(v, Kv) = C(v, K), and O(v, Kv) = O(v, K) for each

v ∈ |K| \ |K(0)|. The following was proved in [3].

Lemma 2.2 ([3, Lemma 9]) For each w ∈ |K| \K(0), Kw is an admissible subdivision

of K.

We shall prove the following lemma.

Lemma 2.3 Let K ′ and K ′ ′ be simplicial subdivisions of K such that K ′(0) and K ′ ′(0)

are discrete in |K|. Then, K ′ and K ′ ′ have a common simplicial subdivision K ′ ′ ′ such

that K ′ ′ ′(0) is discrete in |K|.

Proof Here we use the following admissible metric on |K| defined as follows:

d(x, y) =

√

∑

v∈K(0)

(

βK
v (x) − βK

v (y)
) 2

.

Then each n-simplex σ ∈ K with this metric is isometric to the standard n-simplex

of Euclidean space R
n+1 and diamd σ =

√
2 if n 6= 0.

The following is a cell complex which is a common subdivision of K ′ and K ′ ′:

L = {σ ′ ∩ σ ′ ′ | σ ′ ∈ K ′, σ ′ ′ ∈ K ′ ′ such that σ ′ ∩ σ ′ ′ 6= ∅}.

Since L has a simplicial subdivision K ′ ′ ′ such that K ′ ′ ′(0)
= L(0), it suffices to show

that L(0) is discrete in |K|.
Let x0 ∈ |K| and let σ0 ∈ K be the carrier of x0. Since L(0) ∩ σ0 is finite and σ0 is

compact, we can find 0 < δ < 1 such that

Bd(x0, δ) ⊂ O(x0, K), δ < distd

(

σ0, (K ′(0) ∪ K ′ ′(0)) \ σ0

)

d(v, x) > δ for each distinct two points v, x ∈ (L(0) ∩ σ0) ∪ {x0}.
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We show that d(x0, v) > δ2/4 for every v ∈ L(0) ∩Bd(x0, δ)\σ0. Then we would have

Bd(x0, δ
2/4) ∩ (L(0) \ {x0}) = ∅.

Let σ ∈ K be the carrier of v. Then σ0 is a proper face of σ, i.e., σ0 < σ, because

v ∈ O(x0, K) \ σ0. Since σ is isometric to the standard simplex of Euclidean space,

there exists the nearest point u ∈ σ0 from v, that is, d(v, u) = distd(v, σ0). Then the

segment from u to v is upright on σ0. Since v ∈ L(0) \ (K ′(0) ∪K ′ ′(0)), {v} = σ ′ ∩σ ′ ′

for some σ ′ ∈ K ′ \ K ′(0) and σ ′ ′ ∈ K ′ ′ \ K ′ ′(0). Then σ ′
0 = σ ′ ∩ σ0 6= ∅ and

σ ′ ′
0 = σ ′ ′ ∩ σ0 6= ∅. Otherwise,

distd(x0, v) > distd

(

σ0, (K ′(0) ∪ K ′ ′(0)) \ σ0

)

> δ,

which is a contradiction. Let σ ′
1 and σ ′ ′

1 be the faces of σ ′ and σ ′ ′ which are opposite

to σ ′
0 and σ ′ ′

0 , respectively. In other words, σ ′
1 and σ ′ ′

1 are the simplexes spanned by

the vertices σ ′ and σ ′ ′ which do not belong to σ ′
0 and σ ′ ′

0 , respectively. Then we can

write

v = (1 − t ′)y ′ + t ′z ′ = (1 − t ′ ′)y ′ ′ + t ′ ′z ′ ′,

where y ′ ∈ σ ′
0, z ′ ∈ σ ′

1, y ′ ′ ∈ σ ′ ′
0 , z ′ ′ ∈ σ ′ ′

1 , and t ′, t ′ ′ ∈ (0, 1). Since σ ′ ∩ σ ′ ′ is a

singleton which is not contained in σ0, we have σ ′
0 ∩ σ ′ ′

0 = σ ′ ∩ σ ′ ′ ∩ σ0 = ∅, hence

d(y ′, u) + d(y ′ ′, u) > d(y ′, y ′ ′) > distd(σ ′
0, σ

′ ′
0 ) = distd((σ ′

0)(0), (σ ′ ′
0 )(0)) > δ.

Then d(y ′, u) > δ/2 or d(y ′ ′, u) > δ/2. We may assume that d(y ′, u) > δ/2.

Similarly to u, let x ′ ∈ σ0 be the nearest point from z ′, that is, d(z ′, x ′) =

distd(z ′, σ0) > δ, where the segment from x ′ to z ′ is upright on σ0. Since the right tri-

angle x ′y ′z ′ is similar to the right triangle uy ′v and d(x ′, y ′) 6 diamd σ0 =

√
2 < 2,

it follows that

d(x0, v) > d(u, v) =

d(x ′, z ′)

d(x ′, y ′)
· d(u, y ′) > δ2/4.

This completes the proof.

Now we can prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2 Since K ′(0) is discrete in |K ′|, it suffices to show the “if” part.

Observe that βK
v (x) =

∑

w∈K ′(0) βK ′

w (x)βK
v (w) for each x ∈ |K|. Then it follows that

ρK (x, y) =

∑

v∈K(0)

|βK
v (x) − βK

v (y)| 6
∑

v∈K(0)

∑

w∈K ′(0)

βk
v (w)|βK ′

w (x) − βK ′

w (y)|

=

∑

w∈K ′(0)

|βK ′

w (x) − βK ′

w (y)| = ρK ′(x, y),

hence id : |K ′| → |K| is continuous. It remains to show the continuity of id : |K| →
|K ′| at each w ∈ |K|. By Lemma 2.3, there is a common subdivision K ′ ′ of Kw and

K ′ such that K ′ ′(0) is discrete in |K|. Then, id : |K ′ ′| → |K ′| is continuous. It suffices

to show the continuity of id : |K| = |Kw| → |K ′ ′| at w, where w ∈ K(0)
w . Thus, we

may assume that w ∈ K(0).
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For each x ∈ |K|, observe that

ρK (x, w) =

∑

v∈K(0)

∣

∣βK
v (x) − βK

v (w)
∣

∣

= 1 − βK
w (x) +

∑

v∈K(0)\{w}

βK
v (x) = 2(1 − βK

w (x)).

By the same reason, we have ρK ′(x, w) = 2(1 − βK ′

w (x)).

Let δ = distρK
(w, K ′(0) \ {w}) > 0. For each ε > 0, we shall show that if

ρK (x, w) < δε/2, then ρK ′(x, w) < ε. For every v ∈ K ′(0) \ {w}, βK
w (v) 6 1 − δ/2

because 2(1 − βK
w (v)) = ρK (v, w) > δ. For each x ∈ |K|,

βK
w (x) =

∑

v∈K ′(0)

βK ′

v (x)βK
w (v) 6 βK ′

w (x) +
∑

v∈K ′(0)\{w}

βK ′

v (x)(1 − δ/2)

6 βK ′

w (x) + (1 − βK ′

w (x))(1 − δ/2) = δβK ′

w (x)/2 + 1 − δ/2.

Hence, it follows that

ρK ′(x, w)/2 = 1 − βK ′

w (x) 6
2(1 − βK

w (x))

δ
= ρK (x, w)/δ.

Thus, we have ρK ′(x, w) < ε.

Proof of Theorem 1.3 This is a combination of Theorem 1.2 and Lemma 2.3.

3 Remarks

Here we give some remarks and questions. First, we show the existence of PL home-

omorphisms which are not admissible PL.

Proposition 3.1 Let K = {v0, vi , 〈v0, vi〉 | i ∈ N} be the countable 1-dimensional

simplicial complex, where the metric space |K| is the (countable) hedgehog. Then there

exists a homeomorphism f : |K| → |K| with respect to the metric topology of |K| which

is PL, but not admissible PL. In fact, f is simplicial with respect to some subdivision K ′

of K, but K has no admissible subdivisions K ′ ′ and K ′ ′ ′ such that f is simplicial with

respect to K ′ ′ and K ′ ′ ′.

Proof For each i ∈ N, let wi = (1 − 2−i)v0 + 2−ivi ∈ 〈v0, vi〉. The following is a

non-admissible subdivision of K:

K ′
= {v0, wi , vi , 〈vi , wi〉, 〈wi , vi〉 | i ∈ N}.

Let f : K ′ → K ′ be the simplicial isomorphism defined by

f (0) = 0, f (v2i−1) = v2i , f (w2i−1) = w2i ,

f (v2i) = v2i−1, f (w2i) = w2i−1 for each i ∈ N.
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It is easy to see that both f : |K| → |K| and f −1 : |K| → |K| are continuous with

respect to the metric topology. If f is simplicial with respect to subdivisions K ′ ′ and

K ′ ′ ′ of K, then K ′ ′ and K ′ ′ ′ must contain wi , i ∈ N, as vertices, hence they are not

admissible. Thus, f is not admissible.

v1

v2

v2i−1

w2i

w1

0
w2

w2i−1

v2i
f

f

Figure 1: A PL homeomorphism which is not admissible PL

A simplicial complex K is called a full complex if every finite set of vertices spans

a simplex of K. Recall any derived subdivision K ′ of K is simplicially isomorphic to

the barycentric subdivision Sd K, hence |K ′| is homemorphic to |K| (= | Sd K|) with

respect to the metric topology. It should be noticed that the metric topology of |K ′|
is very different from the one of |K| in general.

Proposition 3.2 The countable-infinite full complex K has a derived subdivision K ′

of K such that K ′(0) is dense in |K|.
Proof We write K(0)

= {vn,k | n, k ∈ N}, where vn,k 6= vn ′,k ′ if (n, k) 6= (n ′, k ′).

Since |K| is separable, it has a countable dense subset D = {xn | n ∈ N}. For each

n ∈ N, let σn ∈ K be the carrier of xn and define

m(n) = max{k | vn,k ∈ σ(0)
1 ∪ · · · ∪ σ(0)

n }.

Moreover, for each k ∈ N, let σn,k ∈ St(σn, K) be the simplex spanned by

σ(0)
n ∪ {vn,m(n)+1, . . . , vn,m(n)+k}.

Then xn ∈ σn,k. If n 6= n ′, then σn,k 6= σn ′,k ′ for every k, k ′ ∈ N, but it is possible

that σn = σn ′ . We can take points yn,k ∈ σ◦
n,k, n, k ∈ N, so that yn,k → xn (k → ∞)

in |K|. Then Y = {yn,k | n, k ∈ N} is dense in |K|, and it follows that the interior σ◦

of each σ ∈ K contains at most one point of Y . For each σ ∈ K, define wσ ∈ σ◦ as

follows:

wσ =

{

yn,k if σ◦ ∩ Y = {yn,k} for some n, k ∈ N,

σ̂ if σ◦ ∩ Y = ∅,

where σ̂ is the barycenter of σ. Let K ′ be the derived subdivision of K defined by

these points wσ , σ ∈ K. Then K ′(0) is dense in |K| because Y ⊂ K ′(0).
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Recall that two simplicial complexes K and L are combinatorially equivalent if they

have simplicially isomorphic subdivisions. When they have simplicially isomorphic

admissible subdivisions (equivalently there exists an admissible PL homeomorphism

between K and L), it is said that K and L are admissible combinatorially equivalent.

By Corollary 1.4, the admissible combinatorial equivalence is an equivalence relation

between simplicial complexes. The following is open.

Question 1. When two simplicial complexes K and L are combinatorially equivalent,

are they admissible combinatorially equivalent?

Related to the above, we have the following question.

Question 2. Is every simplicial subdivision of K simplicially isomorphic to an admis-

sible subdivision of K?

The following question is also open.

Question 3. Does every simplicial subdivision of K have a simplicial subdivision

which is simplicially isomorphic to an admissible subdivision?

Added in Proof.

In the introduction it is mentioned that D. W. Henderson proved the metric version

of Whitehead’s theorem on small subdivisions [1]. However, his proof is valid only

for a locally finite-dimensional simplicial complex. The second author recently gave

a complete proof of this result without local finite-dimensionality in the following

paper: K. Sakai, Small subdivisions of simplicial complex with the metric topology, to

appear in J. Math. Soc. Japan.
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