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THEORETICAL PEARLS
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Abstract

For numeral systems in untyped X-calculus the definability of a successor, a predecessor and
a test for zero implies the definability of all recursive functions on that system. Towards a
disproof of the converse statement, H. P. Barendregt and the author constructed a numeral
system consisting of unsolvable ?t-terms, being adequate for unary functions. Then,
independently, B. Intrigila found an analogous system for all computable functions.

1 Notation

We suppose the reader has some basic knowledge about untyped ^-calculus. The set
of lambda terms is denoted by A, and A0 is the set of closed terms. Syntactical equality
on A is denoted by = , and (beta) convertibility by = p or simply by = . The following
standard combinators are used:

I = Xx.x,

K = Xxy.x,

il = (Xx. xx) (kx. xx),

true = Xxy .x ( = K),

false = Xxy .y.

2 Numeral systems

Numeral systems are used to represent natural numbers and numeric functions in X-
calculus.

Definition 2.1
A numeral system is a sequence of ^.-terms
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such that

(1) each dn is a closed term;
(2) VIM, »elM[rfm =„</„=>/« = «].

The best known numerals are the Church numerals, which can be considered as
function iterators.

Definition 2.2
(i) Let F,MeA, and neN. Then the n-fold iteration of Fon M (notation F"(M))

is denned inductively as follows:

F°(M) = M,

Fn+\M) = F(Fn(M)).

(ii) The system of Church numerals c = c 0 , c v . . . is denned by

Cn = -kf

Definition 2.3

Let d be a numeral system.
(i) Le t / : I^J*^ N be a numeric function. Then / i s X-definable with respect to d if

.for. some F.e A0 _

In that case / is said to be X-defined by F.
(ii) d is adequate if all recursive functions are ^-definable with respect to d.

Definition 2.4
Let d be a numeral system.

(i) </ has a successor if there exists a term SJ e A0 such that for all n e N

(ii) d has a predecessor if for some P^ e A0 one has

(iii) </ has a test for zero if for some ZerodeA°

Zerodd0 = true,

Zeroddn+1 = false.

Proposition 2.5
The system of Church numerals c has a successor, a predecessor, and a test for zero.

Proof
Take

P: = Xxfy.x(kpq.q(pf))(Ky)l,

Zeroc = Xx. x(Xy. false) true. •
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Theorem 2.6
Let d be a numeral system. If d has a successor, a predecessor, and a test for zero, then
d is adequate.

Proof
See Barendregt (1984, Section 6.4). D

Corollary 2.7
The system of Church numerals c is adequate.

One may wonder if the converse of Theorem 2.6 holds. In particular, if existence
of a test for zero is necessary for a numeral system to be adequate.

Question 2.8 (H. P. Barendregt and E. Barendsen, 1989).
Is there an adequate numeral system without a test for zero?

Barendregt and the author partially solved the problem in 1989 by constructing a
numeral system consisting of unsolvable terms, which was adequate with respect to
unary functions. Recently, Intrigila (1990) described a numeral system without a test
for zero which is adequate for all recursive functions. Below we present a proof
combining Intrigila's construction and that by Barendregt and the author (which are
very similar), after giving the necessary background theory on solvability. Therefore
this paper is mainly self-contained.

In view of the paradigm that unsolvable terms internalize the notion 'undefined'
or 'meaningless' (see Barendregt, 1984, pp. 40-43), the idea of representing natural
numbers by unsolvables seems a little perverse.

3 Solvability
Definition 3.1

(i) Let MeA°. Then M is solvable if for some sequence N

MN=l.

(ii) A term Me A is solvable if a closure Xx.M is solvable,
(iii) M is unsolvable if M is not solvable.

Example 3.2
(i) K is solvable: KII = I.

(ii) xQ, is solvable: (kx.xD.)(KI) = I.
(iii) il is unsolvable.

Below an equivalent characterization of solvability, using the reduction behaviour
of a term, will be given. See Barendregt (1984) for details.

Lemma 3.3
Each Me A is either of the form

M=\xl...xn.yP1...Pm, n^O, m^O, (1)
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or
M=Xx1...xn.(ky.P0)P1...Pm, « > 0 , m>\. (2)

Proof
By a straightforward case distinction. •

Definition 3.4
(i) A term M is a Ziearf normal form (hnf) if M is of the form (1) in Lemma 3.3.

(ii) M has a hnf if M =^N with N a hnf.
(iii) If M is of the form (2) in Lemma 3.3 then (ky.P0)Pl is called the head redex

of M.

Theorem 3.5 (C. P. Wadsworth)
For all Me A,

M is solvable <=> M has a hnf.

The connection with reduction strategies is established in the following.

Definition 3.6
(i) Suppose M has A as head redex. We write

if N results from M by contracting A. This is called a one step head reduction.
(ii) -»h is the reflexive transitive closure of ->•„.
(iii) The head reduction path of M is the sequence MO,MX,... such that

If M( is a hnf for some i then the head reduction of M is said to terminate at
M(. Otherwise M has an infinite head reduction.

Theorem 3.7 (C. P. Wadsworth)
M /20s a hnf (^ /Ae /;ead reduction path of M terminates.

The following is a ' topological' result, stressing that an unsolvable cannot really be
used as a meaningful argument in a computation.

(Genericity) Lemma 3.8
Let M, NeA with M unsolvable and N having a normal form. Then for all FeA

FM = N => VLeA FL = N.

Proof
See Barendregt (1984, proposition 14.3.24). •

4 An unsolvable numeral system
Definition 4.1
For F, GeA, define

FoG = Xx.F(Gx).
Note that BFG = Fo G.
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Definition 4.2
The combinator P is defined by

P = Q&f.fof),

where 0 is Turing's fixedpoint combinator, defined as follows.

A = Xxy.y(xxy),

& = AA.

Lemma 4.3
(i) PoP = P.

(ii) Px is unsolvable.

Proof
(i) By definition,

(ii) Note that
Px ^h (kf.fof) Px ̂ h (PoP)x - „ P(Px),

so Px has an infinite head reduction path. Hence Px is unsolvable by theorems
3.7 and 3.5. •

Definition 4.4
The numeral system u = uo,uv ... is defined as follows. For each nel^J

un = Xx.P(xcn).

Lemma 4.5
Each un is unsolvable.

Proof
By Lemma 4.3 (ii). •

In order to show (in a uniform way) that u is adequate we need a sequence of
combinators.

Definition 4.6
For each n ^ 1, define

Bn = Xzx1...xn.z(x1...xn).
Note that B2 = B.

Theorem 4.7
u is an adequate numeral system.

Proof

Suppose f:Nk^ N is recursive. Let F^.-define/with respect to c. Define

F* = Xxr ...xkz. B 2 k + 1 x x B 2 k x 2 . . . B k + 2 x k B k + l zF.

Claim. F* ^.-defines / with respect to w.
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Proof (example: k = 3). Suppose F represents / : N3 -> N w.r.t. c. Define

F* = Xuvwz. B7 «B6 vBb wB4 zF.
Let p, q, reN. Then

F*up uq ur = Xz. B7 up B6 ug B5 ur B4 zF

= Xz.P(P(P(z(FcpcQcr))))

= ^ . />(P(P(zc/(p,9r)))) since F >t-dennes/,

= X.z. P(zcnvQ r)) by Lemma 4.3 (i),

= «/(p,9,r,- •
Now we can answer Question 2.8 affirmatively.

Proposition 4.8
u does not have a test for zero.

Proof.
By the genericity lemma one has for each ZeA°

Z«0 = true => VneW Zun = true. •
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