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THEORETICAL PEARLS
An unsolvable numeral system
in lambda calculus
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Abstract

For numeral systems in untyped A-calculus the definability of a successor, a predecessor and
a test for zero implies the definability of all recursive functions on that system. Towards a
disproof of the converse statement, H. P. Barendregt and the author constructed a numeral
system consisting of unsolvable A-terms, being adequate for unary functions. Then,
independently, B. Intrigila found an analogous system for all computable functions.

1 Notation

We suppose the reader has some basic knowledge about untyped A-calculus. The set
of lambda terms is denoted by A, and A° is the set of closed terms. Syntactical equality
on A is denoted by =, and (beta) convertibility by = or simply by =. The following
standard combinators are used:

I=Xix.x,
K=kxy.x,
B = )\fgx. flgx),

Q = (Ax.xx)(Ax.xx),
true = hxy.x (=K),
false = Axy.y.

2 Numeral systems

Numeral systems are used to represent natural numbers and numeric functions in A-
calculus.

Definition 2.1
A numeral system is a sequence of A-terms

d=d,.d,, ...
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such that
(1) each d,, is a closed term;
(2) Vm, neN [d, =4d, = m = n].

The best known numerals are the Church numerals, which can be considered as
function iterators.

Definition 2.2
(1) Let F, Me A, and ne N. Then the n-fold iteration of F on M (notation F*(M))
is defined inductively as follows:
FY(M)= M,
FrY(M) = FF"(M)).
(ii) The system of Church numerals ¢ = ¢,, c,, ... is defined by

¢, = Mx. fM(x).

Definition 2.3
Let 4 be a numeral system.
(i) Let f:N* >N be a numeric function. Then f is A-definable with respect to d if
for some Fe A°

Vn,,....n,eNFd, ..d, =.d

F{CTR D
In that case f'is said to be A-defined by F.
(ii) d is adequate if all recursive functions are A-definable with respect to d.

Definition 2.4
Let d be a numeral system.
(i) d has a successor if there exists a term S € A° such that for all neN

S;d,=d,, ..
(i1) d has a predecessor if for some P;eA° one has
Pidy=d,
(iii) d has a test for zero if for some Zero e A°
Zero,d, = true,
Zero,d, , = false.

Proposition 2.5
The system of Church numerals ¢ has a successor, a predecessor, and a test for zero.

Proof
Take
Se = Mxfy . fxfy),

P; = Axfy. x(hpq.q(pf)) K1,
Zero, = Ax.x(Ay.false)true. [
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Theorem 2.6
Let d be a numeral system. If d has a successor, a predecessor, and a test for zero, then
d is adequate.

Proof
See Barendregt (1984, Section 6.4). [J

Corollary 2.7
The system of Church numerals ¢ is adequate.

One may wonder if the converse of Theorem 2.6 holds. In particular, if existence
of a test for zero is necessary for a numeral system to be adequate.

Question 2.8 (H. P. Barendregt and E. Barendsen, 1989).
Is there an adequate numeral system without a test for zero?

Barendregt and the author partially solved the problem in 1989 by constructing a
numeral system consisting of unsolvable terms, which was adequate with respect to
unary functions. Recently, Intrigila (1990) described a numeral system without a test
for zero which is adequate for all recursive functions. Below we present a proof
combining Intrigila’s construction and that by Barendregt and the author (which are
very similar), after giving the necessary background theory on solvability. Therefore
this paper is mainly self-contained.

In view of the paradigm that unsolvable terms internalize the notion ‘undefined’
or ‘meaningless’ (see Barendregt, 1984, pp. 40-43), the idea of representing natural
numbers by unsolvables seems a little perverse.

3 Solvability
Definition 3.1

(i) Let MeA°. Then M is solvable if for some sequence N

MN =1

(ii) A term MeA is solvable if a closure Ax. M is solvable.
(iii) M is unsolvable if M is not scivable.

Example 3.2
(i) K is solvable: KII = 1.
(ii) xQ is solvable: (Ax.xQ)(KI) = L.
(iii) € is unsolvable.

Below an equivalent characterization of solvability, using the reduction behaviour
of a term, will be given. See Barendregt (1984) for details.

Lemma 3.3
Each MeA is either of the form

M=kx,..x,.yP...P,, n=20, m20, (1)
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or
M=ix, .. x,.00y.P)P,...P,, n=20, m=1. 2)

Proof
By a straightforward case distinction. []

Definition 3.4
(i) A term M is a head normal form (hnf) if M is of the form (1) in Lemma 3.3.
(i) M has a hnf if M =, N with N a hnf.
(iii) If M is of the form (2) in Lemma 3.3 then (Ay.P,) P, is called the head redex
of M.

Theorem 3.5 (C. P. Wadsworth)
For all MeA,
M is solvable <+ M has a hnf.

The connection with reduction strategies is established in the following.

Definition 3.6
(i) Suppose M has A as head redex. We write

M- N

if N results from M by contracting A. This is called a one step head reduction.
(ii) —», is the reflexive transitive closure of —,.
(iii) The head reduction path of M is the sequence M, M, ... such that

M=M—-> M > M,—, ...

If M, is a hnf for some i then the head reduction of M is said to terminate at
M,. Otherwise M has an infinite head reduction.

Theorem 3.7 (C. P. Wadsworth)
M has a hnf iff the head reduction path of M terminates.

The following is a ‘topological’ result, stressing that an unsolvable cannot really be
used as a meaningful argument in a computation.

(Genericity) Lemma 3.8
Let M, Ne A with M unsolvable and N having a normal form. Then for all Fe A

FM=N = VLeA FL=N.

Proof
See Barendregt (1984, proposition 14.3.24). []

4 An unsolvable numeral system
Definition 4.1

For F, Ge A, define
FoG = Ax.F(Gx).

Note that BFG = FoG.
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Definition 4.2

The combinator P is defined by
P =00/ fof),

where © is Turing’s fixedpoint combinator, defined as follows.
A = hxy. y(xxy),
0= AA.

Lemma 4.3
(i) PoP=P.
(i1) Px is unsolvable.

Proof
(i) By definition.
(1) Note that
Px -, (Af.fof)Px—,(PoP)x—, P(Px),

so Px has an infinite head reduction path. Hence Px is unsolvable by theorems
3.7and 3.5. J

Definition 4.4
The numeral system u = u,, u,, ... is defined as follows. For each neN
u, = Ax.P(xc,).

Lemma 4.5
Each u, is unsolvable.

Proof
By Lemma 4.3 (ii). [J

In order to show (in a uniform way) that u is adequate we need a sequence of
combinators.

Definition 4.6

For each n > 1, define
B, =kzx, ... x,.2(x; ... x,).
Note that B, = B.

Theorem 4.7
u is an adequate numeral system.

Proof
Suppose f:N¥ - N is recursive. Let F A-define f with respect to ¢. Define
F*=hx, .. x,z.By %, By, X, ... B, . x, B, zF.

Claim. F* \-defines f with respect to u.
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Proof (example: k = 3). Suppose F represents f:N? > N w.r.t. ¢. Define

F* = huvwz B, uB,vB, wB, zF.
Let p, g, reN. Then

F*u,u,u, =iz .B,u,Bu,B;u B, zF
=Az.u,(Bqu,B,u B, zF)
=Az.P(Bgu,B,u B, zFc))
= Az.P(u,B,u,B,zFc))
= Az.P(P(B,u,B,zFc,c))
= Az.P(P(u,B,zFc,c,)))
= Az.P(P(P(B,zFc,c,c,)))
= Az. P(P(P(z(Fc,c,c,))))
= Az.P(P(P(z¢y, , ) since F A-definesf,
= Az.P(z¢y,, ) byLemmad4.3(),
SUpen U

Now we can answer Question 2.8 affirmatively.

Proposition 4.8
u does not have a test for zero.

Proof.
By the genericity lemma one has for each Ze A°

Zu,=true = VneN Zu, =true. [J
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