THEORETICAL PEARLS
 An unsolvable numeral system in lambda calculus

ERIK BARENDSEN*
Department of Computer Science, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen,
The Netherlands.E-mail: erikb@ cs.kun.nl.

Abstract

For numeral systems in untyped λ-calculus the definability of a successor, a predecessor and a test for zero implies the definability of all recursive functions on that system. Towards a disproof of the converse statement, H. P. Barendregt and the author constructed a numeral system consisting of unsolvable λ-terms, being adequate for unary functions. Then, independently, B. Intrigila found an analogous system for all computable functions.

1 Notation

We suppose the reader has some basic knowledge about untyped λ-calculus. The set of lambda terms is denoted by Λ, and Λ° is the set of closed terms. Syntactical equality on Λ is denoted by \equiv, and (beta) convertibility by $={ }_{\beta}$ or simply by $=$. The following standard combinators are used:

$$
\begin{aligned}
\mathbf{I} & \equiv \lambda x \cdot x, \\
\mathbf{K} & \equiv \lambda x y \cdot x, \\
\mathbf{B} & \equiv \lambda f g x \cdot f(g x), \\
\mathbf{\Omega} & \equiv(\lambda x \cdot x x)(\lambda x \cdot x x), \\
\text { true } & \equiv \lambda x y \cdot x \quad(\equiv \mathbf{K}), \\
\text { false } & \equiv \lambda x y \cdot y .
\end{aligned}
$$

2 Numeral systems

Numeral systems are used to represent natural numbers and numeric functions in λ calculus.

Definition 2.1
A numeral system is a sequence of λ-terms

$$
d=d_{0}, d_{1}, \ldots
$$

[^0]such that
(1) each d_{n} is a closed term;
(2) $\forall m, n \in \mathbb{N}\left[\boldsymbol{d}_{m}={ }_{\beta} \boldsymbol{d}_{n} \Rightarrow m=n\right]$.

The best known numerals are the Church numerals, which can be considered as function iterators.

Definition 2.2

(i) Let $F, M \in \Lambda$, and $n \in \mathbb{N}$. Then the n-fold iteration of F on M (notation $F^{n}(M)$) is defined inductively as follows:

$$
\begin{aligned}
F^{0}(M) & \equiv M \\
F^{n+1}(M) & \equiv F\left(F^{n}(M)\right)
\end{aligned}
$$

(ii) The system of Church numerals $c=c_{0}, c_{1}, \ldots$ is defined by

$$
c_{n} \equiv \lambda f x \cdot f^{n}(x)
$$

Definition 2.3

Let \boldsymbol{d} be a numeral system.
(i) Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be a numeric function. Then f is λ-definable with respect to d if for some $F \in \Lambda^{\circ}$.

$$
\forall n_{1}, \ldots, n_{k} \in \mathbb{N} F d_{n_{1}} \ldots \boldsymbol{d}_{n_{k}}={ }_{\beta} \boldsymbol{d}_{f\left(n_{1}, \ldots, n_{k}\right)} .
$$

In that case f is said to be λ-defined by F.
(ii) \boldsymbol{d} is adequate if all recursive functions are λ-definable with respect to \boldsymbol{d}.

Definition 2.4

Let \boldsymbol{d} be a numeral system.
(i) \boldsymbol{d} has a successor if there exists a term $S_{d}^{+} \in \Lambda^{\circ}$ such that for all $n \in \mathbb{N}$

$$
S_{d}^{+} \boldsymbol{d}_{n}=\boldsymbol{d}_{n+1}
$$

(ii) \boldsymbol{d} has a predecessor if for some $P_{d}^{-} \in \Lambda^{\circ}$ one has

$$
P_{d}^{-} d_{n+1}=d_{n}
$$

(iii) \boldsymbol{d} has a test for zero if for some Zero $_{d} \in \Lambda^{\circ}$

$$
\begin{aligned}
\text { Zero }_{d} d_{0} & =\text { true } \\
\text { Zero }_{d} \boldsymbol{d}_{n+1} & =\text { false }
\end{aligned}
$$

Proposition 2.5

The system of Church numerals c has a successor, a predecessor, and a test for zero.
Proof
Take

$$
\begin{aligned}
S_{c}^{+} & \equiv \lambda x f y \cdot f(x f y), \\
P_{c}^{-} & \equiv \lambda x f y \cdot x(\lambda p q \cdot q(p f))(\mathbf{K} y) \mathbf{I}, \\
\text { Zero }_{c} & \equiv \lambda x \cdot x(\lambda y . \text { false }) \text { true. }
\end{aligned}
$$

Theorem 2.6
Let \boldsymbol{d} be a numeral system. If \boldsymbol{d} has a successor, a predecessor, and a test for zero, then d is adequate.

Proof

See Barendregt (1984, Section 6.4).
Corollary 2.7
The system of Church numerals \boldsymbol{c} is adequate.
One may wonder if the converse of Theorem 2.6 holds. In particular, if existence of a test for zero is necessary for a numeral system to be adequate.

Question 2.8 (H. P. Barendregt and E. Barendsen, 1989).
Is there an adequate numeral system without a test for zero?
Barendregt and the author partially solved the problem in 1989 by constructing a numeral system consisting of unsolvable terms, which was adequate with respect to unary functions. Recently, Intrigila (1990) described a numeral system without a test for zero which is adequate for all recursive functions. Below we present a proof combining Intrigila's construction and that by Barendregt and the author (which are very similar), after giving the necessary background theory on solvability. Therefore this paper is mainly self-contained.

In view of the paradigm that unsolvable terms internalize the notion 'undefined' or 'meaningless' (see Barendregt, 1984, pp. 40-43), the idea of representing natural numbers by unsolvables seems a little perverse.

3 Solvability

Definition 3.1

(i) Let $M \in \Lambda^{\circ}$. Then M is solvable if for some sequence \vec{N}

$$
M \vec{N}=\mathbf{I}
$$

(ii) A term $M \in \Lambda$ is solvable if a closure $\lambda \vec{x} . M$ is solvable.
(iii) M is unsolvable if M is not soivable.

Example 3.2
(i) \mathbf{K} is solvable: $\mathbf{K I I}=\mathbf{I}$.
(ii) $x \boldsymbol{\Omega}$ is solvable: $(\lambda x, x \boldsymbol{\Omega})(\mathbf{K I})=\mathbf{I}$.
(iii) $\boldsymbol{\Omega}$ is unsolvable.

Below an equivalent characterization of solvability, using the reduction behaviour of a term, will be given. See Barendregt (1984) for details.

Lemma 3.3
Each $M \in \Lambda$ is either of the form

$$
\begin{equation*}
M \equiv \lambda x_{1} \ldots x_{n} \cdot y P_{1} \ldots P_{m}, \quad n \geqslant 0, \quad m \geqslant 0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
M \equiv \lambda x_{1} \ldots x_{n} \cdot\left(\lambda y . P_{0}\right) P_{1} \ldots P_{m}, \quad n \geqslant 0, \quad m \geqslant 1 . \tag{2}
\end{equation*}
$$

Proof

By a straightforward case distinction.
Definition 3.4
(i) A term M is a head normal form (hnf) if M is of the form (1) in Lemma 3.3.
(ii) M has a hnf if $M={ }_{\beta} N$ with N a hnf.
(iii) If M is of the form (2) in Lemma 3.3 then ($\lambda y . P_{0}$) P_{1} is called the head redex of M.

Theorem 3.5 (C. P. Wadsworth)
For all $M \in \Lambda$,

$$
M \text { is solvable } \Leftrightarrow M \text { has } a \mathrm{hnf} .
$$

The connection with reduction strategies is established in the following.

Definition 3.6

(i) Suppose M has Δ as head redex. We write

$$
M \rightarrow_{\mathrm{h}} N
$$

if N results from M by contracting Δ. This is called a one step head reduction.
(ii) \rightarrow_{h} is the reflexive transitive closure of \rightarrow_{h}.
(iii) The head reduction path of M is the sequence M_{0}, M_{1}, \ldots such that

$$
M \equiv M_{0} \rightarrow_{\mathrm{h}} M_{1} \rightarrow_{\mathrm{h}} M_{2} \rightarrow_{\mathrm{h}} \ldots
$$

If M_{i} is a hnf for some i then the head reduction of M is said to terminate at M_{i}. Otherwise M has an infinite head reduction.

Theorem 3.7 (C. P. Wadsworth)
M has a hnf iff the head reduction path of M terminates.
The following is a 'topological' result, stressing that an unsolvable cannot really be used as a meaningful argument in a computation.
(Genericity) Lemma 3.8
Let $M, N \in \Lambda$ with M unsolvable and N having a normal form. Then for all $F \in \Lambda$

$$
F M=N \quad \Rightarrow \quad \forall L \in \Lambda \quad F L=N .
$$

Proof
See Barendregt (1984, proposition 14.3.24).

4 An unsolvable numeral system

Definition 4.1
For $F, G \in \Lambda$, define

$$
F \circ G \equiv \lambda x . F(G x)
$$

Note that $B F G=F \circ G$.

Definition 4.2

The combinator P is defined by

$$
P \equiv \boldsymbol{\Theta}(\lambda f . f \circ f)
$$

where Θ is Turing's fixedpoint combinator, defined as follows.

$$
\begin{aligned}
A & \equiv \lambda x y \cdot y(x x y) \\
\boldsymbol{\Theta} & \equiv A A
\end{aligned}
$$

Lemma 4.3

(i) $P \circ P=P$.
(ii) $P x$ is unsolvable.

Proof

(i) By definition.
(ii) Note that

$$
P x \rightarrow_{\mathrm{h}}(\lambda f . f \circ f) P x \rightarrow_{\mathrm{h}}(P \circ P) x \rightarrow_{\mathrm{h}} P(P x)
$$

so $P x$ has an infinite head reduction path. Hence $P x$ is unsolvable by theorems 3.7 and 3.5.

Definition 4.4

The numeral system $\boldsymbol{u}=\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots$ is defined as follows. For each $n \in \mathbb{N}$

$$
\boldsymbol{u}_{n} \equiv \lambda x . P\left(x \boldsymbol{c}_{n}\right) .
$$

Lemma 4.5

Each \boldsymbol{u}_{n} is unsolvable.

Proof

By Lemma 4.3 (ii).
In order to show (in a uniform way) that \boldsymbol{u} is adequate we need a sequence of combinators.

Definition 4.6

For each $n \geqslant 1$, define

$$
\mathbf{B}_{n} \equiv \lambda z x_{1} \ldots x_{n} . z\left(x_{1} \ldots x_{n}\right)
$$

Note that $\mathbf{B}_{\mathbf{2}} \equiv \mathbf{B}$.

Theorem 4.7

\boldsymbol{u} is an adequate numeral system.
Proof
Suppose $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is recursive. Let $F \lambda$-define f with respect to c. Define

$$
F^{*} \equiv \lambda x_{1} \ldots x_{k} z . \mathbf{B}_{2 k+1} x_{1} \mathbf{B}_{2 k} x_{2} \ldots \mathbf{B}_{k+2} x_{k} \mathbf{B}_{k+1} z F
$$

Claim. $F^{*} \lambda$-defines f with respect to \boldsymbol{u}.

Proof (example: $k=3$). Suppose F represents $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ w.r.t. c. Define

$$
F^{*} \equiv \lambda u v w z . \mathbf{B}_{7} u \mathbf{B}_{6} v \mathbf{B}_{5} w \mathbf{B}_{4} z F
$$

Let $p, q, r \in \mathbb{N}$. Then

$$
\begin{aligned}
F^{*} \boldsymbol{u}_{p} \boldsymbol{u}_{q} \boldsymbol{u}_{r} & =\lambda z \cdot \mathbf{B}_{7} \boldsymbol{u}_{p} \mathbf{B}_{6} \boldsymbol{u}_{q} \mathbf{B}_{5} \boldsymbol{u}_{r} \mathbf{B}_{4} z F \\
& =\lambda z \cdot \boldsymbol{u}_{p}\left(\mathbf{B}_{6} u_{q} \mathbf{B}_{5} \boldsymbol{u}_{r} \mathbf{B}_{4} z F\right) \\
& =\lambda z \cdot P\left(\mathbf{B}_{6} \boldsymbol{u}_{q} \mathbf{B}_{5} \boldsymbol{u}_{r} \mathbf{B}_{4} z F c_{p}\right) \\
& =\lambda z \cdot P\left(\boldsymbol{u}_{q}\left(\mathbf{B}_{5} \boldsymbol{u}_{r} \mathbf{B}_{4} z F c_{p}\right)\right) \\
& =\lambda z \cdot P\left(P\left(\mathbf{B}_{5} \boldsymbol{u}_{r} \mathbf{B}_{4} z F c_{p} \boldsymbol{c}_{q}\right)\right) \\
& =\lambda z \cdot P\left(P\left(\boldsymbol{u}_{r}\left(\mathbf{B}_{4} z F c_{p} \boldsymbol{c}_{q}\right)\right)\right) \\
& =\lambda z \cdot P\left(P\left(P\left(\mathbf{B}_{4} z F c_{p} \boldsymbol{c}_{q} \boldsymbol{c}_{r}\right)\right)\right) \\
& =\lambda z \cdot P\left(P\left(P\left(z\left(F c_{p} c_{q} \boldsymbol{c}_{r}\right)\right)\right)\right) \\
& =\lambda z \cdot P\left(P\left(P\left(z \boldsymbol{c}_{f(p, q, r}\right)\right)\right) \quad \text { since } F \lambda \text {-defines } f, \\
& =\lambda z \cdot P\left(z c_{f(p, q, r)}\right) \quad \text { by Lemma } 4 \cdot 3(i), \\
& \equiv \boldsymbol{u}_{f(p, q, r)} \cdot \square
\end{aligned}
$$

Now we can answer Question 2.8 affirmatively.
Proposition 4.8
u does not have a test for zero.
Proof.
By the genericity lemma one has for each $Z \in \Lambda^{\circ}$

$$
Z \boldsymbol{u}_{0}=\text { true } \Rightarrow \forall n \in \mathbb{N} \quad Z \boldsymbol{u}_{n}=\text { true. }
$$

References

Barendregt, H. P. 1984. The lambda calculus: its syntax and semantics, Studies in logic 103. North-Holland.
Intrigila, B. 1990. Some results on numeral systems in λ-calculus. Typescript, Rome, Italy.

[^0]: * Supported by the Dutch organisation for scientific research (NWO).

