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ABSTRACT. Estimating the potential impacts of climate change requires understanding
the ability of agents to adapt to changes in their climate. This paper uses panel data
from India spanning from 1956 to 1999 to investigate the ability of farmers to adapt. To
identify adaptation, the author exploits persistent, multidecadal monsoon regimes dur-
ing which droughts or floods are more common. These regimes generate medium-run
variation in average rainfall, and there is spatial variation in the timing of the regimes.
Using a fixed-effects strategy, she tests whether farmers have adapted to the medium-
run rainfall variation induced by the monsoon regimes. The author finds evidence that
farmers adjust their irrigation investments and their crop portfolios in response to the
medium-run rainfall variation. However, adaptation only recovers a small fraction of the
profits farmers have lost due to adverse climate variation.

1. Introduction
Climate scientists broadly agree that the global climate is changing and that
these changes will accelerate in coming decades (Christensen and Hewit-
son, 2007). However, estimates of the economic impacts of climate change
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vary widely, in large part due to uncertainty about adaptation (Mendelsohn
et al., 1994; Adams et al., 1998; Schlenker et al., 2005; Deschênes and Green-
stone et al., 2007; Schlenker and Roberts, 2009; Tol, 2014). Rapid adaptation
may curb economic damages, but slower adaptation will likely magnify
them. Understanding adaptation is particularly crucial in developing coun-
tries and in the agricultural sector, as both are especially vulnerable to
climate change (Parry, 2007).

Recent scholarship has typically estimated climate change damages
using year-to-year weather variation to compare economic outcomes under
hotter versus cooler temperatures. This climate–economy relationship is
then extrapolated to future climate change to estimate impacts (Deschênes
and Greenstone et al., 2007; Guiteras, 2009; Schlenker and Roberts, 2009;
Dell et al., 2012; Burgess et al., 2014).1 Since these calculations rely on
annual weather variability, they do not account for possible adaptations
that agents may undertake in response to sustained climate change. There-
fore, to assess the accuracy of these estimates, it is vital to predict the likely
extent of future adaptation.

In this paper, we exploit historical rainfall variation in India to esti-
mate adaptation. Rather than analyzing year-to-year weather deviations,
we focus on climate fluctuations that last several decades. The Indian mon-
soon undergoes multidecadal phases during which droughts or floods
are more common. These monsoon phases induce persistent deviations
in rainfall from decade to decade. We test whether farmers adapt their
irrigation investments and crop portfolios in response to these per-
sistent rainfall deviations. The monsoon regimes do not cause varia-
tion in temperature, so we do not analyze adaptation to temperature
changes.

Figure 1 shows a moving average of India’s summer rainfall, highlight-
ing the monsoon phases. These phases induce persistent rainfall deviations
and, hence, lagged rainfall provides information about future rainfall.
Therefore, forward-looking farmers should adjust their agricultural deci-
sions in response to recent weather.

Adaptation is tested for by analyzing whether agricultural decisions
respond to lagged weather, looking specifically at irrigation investments
and crop choice. We exploit the fact that the return to irrigation investment
varies across wet versus dry growing seasons and that, similarly, the rela-
tive yields of different crops vary across wet versus dry growing seasons.
The empirical strategy here is to regress irrigation assets and crop portfo-
lios on rainfall from the past decade, while controlling for current rainfall,
wealth, household fixed effects and year fixed effects. Regional variation in
the timing of the decadal rainfall regimes, displayed in figure 2, allows for
the inclusion of year fixed effects in the regressions and, hence, adaptation
to rainfall can be separated from unrelated temporal changes in irrigation
and crop choice.

1 Another methodology uses cross-sectional climate variation to link climate and
the economy, but this work suffers from potential omitted variable bias (Mendel-
sohn et al., 1994; Schlenker et al., 2005; Sanghi and Mendelsohn, 2008).
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Figure 1. Interdecadal variability of the Indian monsoon
Notes: This figure displays the 31-year moving average of India’s summer monsoon
rainfall, measured as a z-score deviation from the historical mean.
Source: The rainfall data are from the India Institute of Tropical Meteorology’s Homoge-
neous Indian Monthly Rainfall Data Set (1871–2008). The figure is constructed based
on the author’s calculations.

Analyzing two agricultural data sets, evidence is found of both irrigation
adaptation and crop adaptation. Each additional dry year in the past
decade increases the probability that a farmer will invest in irrigation by
1.2 percentage points, relative to a baseline 5 per cent probability of invest-
ing.2 Each additional dry year in the past decade reduces the average daily
water need of a farmer’s monsoon season crop portfolio by 0.2 mm/day,
relative to an average water need of 8 mm/day.3 In addition to testing for
the presence of adaptation, the extent to which adaptation prevents profit
losses is also measured. It is found that farmers are able to recover only
a limited amount of their lost profits by adapting. Specifically, it is esti-
mated that in the face of sustained adverse weather conditions, adaptation
recovers no more than 9 per cent of lost profits.

In addition to contributing to the literature on climate change and agri-
culture in India (Guiteras, 2009; Krishnamurthy, 2012; Fishman, 2016),
this paper contributes to a rapidly growing literature on climate change
adaptation. Dell et al. (2014) present a helpful synthesis of this liter-
ature. Researchers have used a variety of techniques to identify the
magnitude and efficacy of adaptation, including the Ricardian method
or hedonic valuation method (Mendelsohn et al., 1994; Fleischer et al.,
2008; Seo et al., 2010; Kurukulasuriya et al., 2011; da Cunha et al., 2014)

2 A dry year is defined as a year in which rainfall is below the 20th percentile of the
rainfall distribution for a particular location.

3 The crops with lower water needs have lower expected yields, which is why
farmers do not plant them exclusively.
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Figure 2. Spatial variation of the interdecadal variability of the Indian monsoon
Notes: This figure graphs the 31-year moving average of the summer monsoon rainfall,
measured in millimeters for India’s five meteorological regions. The horizontal line rep-
resents mean rainfall for that region.
Source: The rainfall data are from the India Institute of Tropical Meteorology’s Homoge-
neous Indian Monthly Rainfall Data Set (1871–2008). The figure is constructed based
on the author’s calculations.

and variants of the Ricardian method that incorporate panel data (Luis
and Orlando, 2015) and structural agro-economic models (Kurukula-
suriya and Mendelsohn, 2008). Researchers have also analyzed adapta-
tion by looking at long-run responses to one-time environmental shocks
(Hornbeck, 2012; Deryugina, 2013; Hornbeck and Naidu, 2015), apply-
ing instrumental variables approaches that address the endogeneity of
adaptation (Di Falco and Veronesi, 2013, 2014), using economic mod-
els that integrate biophysical modeling (Finger et al., 2010), employing
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multinomial logit choice models (Seo and Mendelsohn, 2008; Wang et al.,
2010), testing whether new technologies have changed weather impacts
over time (Barreca et al., 2015), analyzing differential weather impacts by
the long-run frequency of the event (Deschênes and Greenstone, 2011;
Hsiang and Narita, 2012), estimating correlations between farmer behav-
ior and their perceptions of changes in climate (Bryan et al., 2009), and,
lastly, using a ‘long-difference’ approach that compares short-run weather
impacts with long-run impacts (Dell et al., 2012; Burke and Emerick,
2016).

This paper contributes to the adaptation literature in multiple ways.
First, this study is unique because it uses a household data set that spans
several decades. The existing literature on adaptation uses either admin-
istrative data (Dell et al., 2012), cross-sectional household data (Bryan
et al., 2009; Mukherjee and Schwabe, 2015), or a short panel of house-
hold data that spans less than 10 years (Luis and Orlando, 2015). This
paper is also unique because it estimates adaptation to large-scale, cycli-
cal, decadal variation in climate that exhibits both spatial and temporal
variation. The bulk of the existing literature on adaptation exploits either
cross-sectional (spatial) variation in climate, a one-time shock to climate,
or perceived changes in climate that are measured at a single point in
time.

The unique data set and source of climate variation lead to a method-
ological contribution to the literature. Specifically, we can estimate how
farmers adapt to medium-run (10–20 year) changes in climate that are
occurring over the span of our data set, while controlling for unobserved
heterogeneity. Put differently, the data allow us to look at how the behavior
of a household changes across several decades, in response to time-varying
changes in climate. The estimates of decade-to-decade adaptation are an
important complement to the long-run adaptation estimates that are gener-
ated by methods that rely on purely spatial climate variation.4 Conversely,
the estimates in this study are also a complement to studies that estimate
how farmers respond to recent perceived changes in climate. Typically,
these studies use cross-sectional household data and focus only on behav-
ior and climate perceptions from the past 10–20 years. The multidecadal
household panel used in this paper, on the other hand, allows us to con-
trol for unobserved farmer heterogeneity and to analyze adaptation over
several decades. In addition, a model is built that allows us to disentangle
the effects of wealth and expectations. This is a methodological contribu-
tion because it allows us to test directly whether farmers are updating their
beliefs about future rainfall in response to past rainfall, even in the absence
of explicit data on farmers’ perceptions about climate change.

Several important limitations of this study should be acknowledged.
First, this study only analyzes irrigation and crop choice. Data limitations

4 When adaptation is estimated using cross-sectional climate variation, the rela-
tionship between farmer behavior and climate is based on the long-run climate of
each location. As a result, these estimates are best thought of as estimates of how
farmers will adapt to climate change in a long-run (steady-state) setting.
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do not permit the study of other potential adaptations, such as adjust-
ing fertilizer and agricultural inputs (Duflo et al., 2011), shifting sowing
dates (Giné et al., 2009), purchasing crop insurance (Di Falco et al., 2014),
switching out of agriculture (Rose, 2001), or migrating (Fishman, 2015;
Viswanathan and Kavi Kumar, 2015). Secondly, since the monsoon regimes
affect only precipitation, adaptation to temperature changes is not ana-
lyzed. Thirdly, since the household data set spans several decades, there
is substantial, non-random attrition, which causes the analyzed sample
to include households that are, on average, wealthier than a representa-
tive sample would be. Fourthly, there are potential threats to the exclusion
restriction for the instrumental variables strategy, which are discussed in
greater detail in section 5. Fifthly, due to data limitations, we are not fully
able to rule out the possibility that depletion of water supplies or con-
founding factors, such as changes in agricultural technology or policies,
are driving the results.

The paper is organized as follows. Section 2 describes the monsoon
phases in greater detail. Section 3 presents a model of climate, irriga-
tion, and crop choice. Section 4 describes the data, and section 5 pro-
poses the empirical strategy. Section 6 presents the main results. Section 7
discusses several robustness tests that were performed and which are
reported in an online appendix, available at https://doi.org/10.1017/
S1355770X17000195. Section 8 calculates the fraction of lost profits farmers
recovered by adapting, and section 9 concludes.

2. Background on interdecadal rainfall variability
Indian agriculture depends heavily on the summer monsoon, which occurs
during June, July, August and September (Krishna Kumar et al., 2004).
Because India’s climate is semi-arid, wetter monsoons increase agricul-
tural output, and drier monsoons decrease it (Das, 1995; Jayachandran,
2006). Monsoon rainfall exhibits high interannual variability, as shown
in figure A1 of online appendix 1. The monsoon also undergoes inter-
decadal variability, in the form of wet and dry phases that typically each
last for about three decades (Pant and Kumar, 1997). Figure 1 in the main
text smoothes national, annual rainfall with a moving average filter, to
highlight the regimes.

The monsoon regimes cause average rainfall to vary more from decade
to decade than it would if rainfall was independent and identically dis-
tributed (i.i.d.), as discussed in greater detail in online appendix 1. This
persistent decadal variation means that lagged rainfall has predictive value
for future rainfall. If rainfall were i.i.d., then lagged rainfall would not have
this predictive element. Rational farmers should notice these persistent
rainfall variations and update their future rainfall expectations in response.
This updating could occur even if farmers were not aware of the existence
of the monsoon regimes, per se. On the other hand, if rainfall were i.i.d.,
lagged rainfall would have no predictive value, and it would be irrational
for farmers to update their rainfall expectations in response to it. The statis-
tical significance of the decadal variations allows us to interpret a farmer’s
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response to lagged rainfall as evidence of rational adaptation, rather than
as an indicator of irrational behavior.5

The monsoon regimes are not geographically homogeneous. There is
significant spatial variation in the length and timing of the regimes (Sub-
baramayya and Naidu, 1992). In particular, rainfall in the southern penin-
sula and the easternmost region tends to be out of phase with the rest
of the country (Wang, 2006). Figure 2 displays smoothed rainfall graphs
for India’s five meteorological regions, highlighting the spatial variation.
Providing more detail, online appendix 4 presents maps of district rainfall
from the previous decade, for the three survey years of the REDS data set
and at four decade intervals for the WB data set. We choose rainfall from the
previous decade as a rough measure of the current monsoon regime (Kri-
palani and Kulkarni, 1997). The spatial variation in recent rainfall allows
us to include year fixed effects in the regressions and, hence, distinguish
rainfall adaptation from time trends in irrigation and crop choice.

3. Theoretical framework
We present climate and agricultural models and derive tests for adaptation.

3.1. Climate model
We model the monsoon regimes as a hidden Markov process. Let st indicate
the monsoon regime in year t , with st = 0 denoting a dry regime and st = 1
denoting a wet regime. Year t rainfall can be written as:

rt = θ0 + δst + ut , (1)

where θ0 is the average rainfall during a dry regime, θ0 + δ is the aver-
age wet regime rainfall, and ut represents year-to-year rainfall variability.
The monsoon regimes are persistent but not permanent, and they switch
according to a Markov process. During a dry regime, the probability of
switching to a wet regime during the next period is p0. During a wet
regime, the probability of switching to a dry regime is p1. Each year, farm-
ers observe rt and use this information to update their belief about the
current regime state, which they do not observe. A farmer’s belief about
the current regime state determines his expectation of the next period’s
rainfall.

3.2. Agricultural model
In this model, each farmer lives for two periods. In each period t , the
farmer allocates his wealth, wt , between an irrigation asset, it , and another

5 We have not been able to find descriptive survey data regarding the question
of whether farmers in India are aware of the monsoon regimes or the decadal
rainfall variation that they induce. However, surveys demonstrate that farmers
have noticed recent changes in temperature and rainfall that have been induced
by anthropogenic climate change, which are comparable in magnitude to the
changes that we analyze in this study (Palanisami et al., 2014).
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agricultural asset, at , such that at + it = wt .6 The farmer also chooses a crop
portfolio each period. The farmer has one unit of land, which he divides
between a drought-tolerant crop and a crop that is relatively more sensi-
tive to drought. Let ρt be the area planted with the drought-tolerant crop,
and let 1 − ρt be the drought-sensitive crop area.

Profits are determined by the asset mix, the crop portfolio, and rainfall
rt . For tractability, we assume a quadratic profit function of the form:

πt = βaat + βi it + βρρt + 1
2
δaaa2

t + 1
2
δi i i

2
t + 1

2
δρρρ

2
t + δρiρt it + δir it rt +

+ δρrρt rt + δr rt + εt , (2)

where πt is profits per acre and εt is a mean zero productivity shock. To
establish our adaptation tests, we assume that:

(1) Profits are increasing in rainfall (δr > 0). This assumption is consis-
tent with earlier work on India (Jayachandran, 2006; Cole et al., 2012),
and is verified in online appendix 5.

(2) The return to irrigation is higher during periods of low rainfall
(δir < 0). This assumption is verified in online appendix 5.

(3) The drought-tolerant crop is less profitable, on average, than the
drought-sensitive crop (βρ < 0). This assumption is necessary to
ensure that farmers do not plant all their land with the drought-
tolerant crop.

(4) Low rainfall reduces the profitability of the drought-tolerant crop
less than it reduces the profitability of the drought-sensitive crop
(δρr < 0). This assumption comprises our definition of the drought-
tolerant crop.

3.3. Maximization problem
Each farmer maximizes:

u(c1)+ βE1[u(c2)], (3)

subject to:
c1 = w1 + π1 − w2 and c2 = w2 + π2, (4)

where 0 < β < 1. For tractability, we assume constant absolute risk aver-
sion utility of the form u(ct ) = −e−ηct . The timing of the model is as follows.
To begin, the farmer chooses his first-period assets and crop portfolio,
based on initial wealth and rainfall expectations. Next, first-period rainfall
occurs and first-period profits are determined. With these profits in hand,
the farmer chooses how much to consume in the first period and how much
wealth to bring into the second period. The farmer also chooses his second-
period asset mix and crop portfolio. Lastly, second-period rainfall occurs,
and second-period profits are determined.

6 Examples of other agricultural assets include tractors, tillers, ploughs, threshers
and livestock. We abstract away from the possibility of credit markets and non-
agricultural assets.
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3.4. Tests for adaptation
We now derive tests to determine whether farmers update their rainfall
expectations in response to past rainfall and whether they adapt their agri-
cultural decisions accordingly. We lack data on farmer rainfall expectations,
but the structure of the model allows us to test for adaptation, even with-
out explicit data on expectations. To clarify the analysis, we introduce
the following notation. Let μ1 = E0(r1) and μ2 = E1(r2) denote rainfall
expectations. Let w∗

2 denote the optimal amount of wealth to bring into
second-period wealth. Let i∗2 and ρ∗

2 denote the optimal second-period irri-
gation and crop choice decisions. Note that i∗2 and ρ∗

2 depend solely on μ2
and w∗

2 . Furthermore, w∗
2 itself is a function of w1, μ1, r1 and μ2.

3.4.1. Tests for irrigation adaptation
To derive a test for irrigation adaptation, we take the derivative of second-
period irrigation with respect to first-period rainfall. Rearranging terms,
we get:

di∗2
dr1

= ∂i∗2
∂w2

∂w∗
2

∂r1︸ ︷︷ ︸
wealth effect

+
[
∂i∗2
∂w2

∂w∗
2

∂μ2
+ ∂i∗2
∂μ2

]
︸ ︷︷ ︸

expectations effect

dμ2

dr1
.

The wealth effect term captures the impact that first-period rainfall has
on second-period irrigation investment that occurs strictly via the impact of
first-period rainfall on second-period wealth. The expectations effect term
captures the impact that first-period rainfall has on second-period irriga-
tion investment that occurs due to farmers updating their expectations of
second-period rainfall. In online appendix 7, it is demonstrated that, for
irrigation, the wealth effect is positive, and the expectations effect is neg-
ative.7 Having separated the influences of wealth and expectations, two
tests for irrigation adaptation are presented.

Proposition 3.1. If farmers increase their irrigation investment after low rainfall,

this demonstrates adaptation: di∗2
dr1

< 0 implies dμ2
dr1

> 0.

Proposition 3.2. If, conditional on wealth, farmers increase their irrigation

investment after low rainfall, this also demonstrates adaptation: di∗2
dr1

∣∣∣
w2=constant

<

0 implies dμ2
dr1

> 0.

Proposition 3.1 is an unconditional test that can be used even without
data on wealth. Proposition 3.2, on the other hand, requires data on wealth
but is a more powerful test than Proposition 3.1. If farmers are adapting,
but the wealth effect dominates the expectation effect, then Proposition 3.2
will detect adaptation but Proposition 3.1 will not.

7 A CARA utility function has been used for tractability purposes. We are not able
to prove the signs of the wealth effect and the expectations effect for irrigation or
crop choice for a broader range of utility functions.
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3.4.2. Test for crop adaptation
Lastly, we derive a test for crop adaptation. We take the derivative of
the second-period drought-tolerant crop area with respect to first-period
rainfall. Rearranging terms, we get:

dρ∗
2

dr1
= ∂ρ∗

2
∂w2

∂w∗
2

∂r1︸ ︷︷ ︸
wealth effect

+
[
∂ρ∗

2
∂w2

∂w∗
2

∂μ2
+ ∂ρ∗

2
∂μ2

]
︸ ︷︷ ︸

expectations effect

dμ2

dr1.

The wealth effect term captures the impact that first-period rainfall
has on second-period crop choice that occurs strictly via the impact of
first-period rainfall on second-period wealth. The expectations effect term
captures the impact that first-period rainfall has on second-period crop
choice that occurs due to farmers updating their expectations of second-
period rainfall. In online appendix 7, it is demonstrated that, for crop
choice, the wealth effect is negative and the sign of the expectation effect
is ambiguous. Therefore, it is not possible to test for crop adaptation with-
out controlling for wealth. Without a wealth control, a negative correlation
between lagged rainfall and drought-tolerant crop areas could be occurring
solely through a wealth channel and, hence, would not provide evidence of
adaptation. On the other hand, if wealth is held constant, this removes the
wealth effect and makes the sign of the expectations effect unambiguously
negative, thereby generating the following test for adaptation:

Proposition 3.3. If, conditional on wealth, farmers plant a greater area of
drought-tolerant crops after low rainfall, this demonstrates adaptation to climate:
dρ∗

2
dr1

∣∣∣
w2=constant

< 0, then dμ2
dr1

> 0.

4. Data sources and summary statistics
We test our model with two agricultural data sets: a household panel and a
district panel. The household panel–the Rural Economic and Demographic
Survey (REDS)–was collected by the National Council of Applied Eco-
nomic Research (NCAER). The data cover three rounds (1970/71, 1981/82
and 1998/99) and 259 villages across the 17 major states of India. The sec-
ond and third rounds of the survey include data on the original households
and households that split off from the original households, as well as a
sample of new households. The analysis is restricted to households that
either were surveyed in multiple rounds or split off from a previously sur-
veyed household. Online appendix 2 displays a map with the locations
of the REDS villages and gives more information on the sampling. Online
appendix 3 discusses attrition in the REDS data set and its implications
for our study. The REDS survey includes detailed data on irrigation, crop
areas, assets, wealth, profits and inherited assets.

The district panel–the India Agriculture and Climate Data Set–was com-
piled by a World Bank research group and covers 271 districts across 14
states for each year between 1956 and 1987 (Sanghi et al., 1998). Online
appendix 3 includes a map of the districts covered in the World Bank data
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Table 1. Summary statistics

Household District

1971 1982 1999 1956 1971 1986

Panel A: Agricultural
variables

Agricultural profits per
acre (1971 Rs.)

502.96 586.6 741.7 − − −
(440.9) (654.9) (940.0)

Agricultural profits per
acre, deducting the
value of family labor
(1971 Rs.)

− 375.3 425.3 − − −
(530.9) (819.2)

Agricultural revenue per
acre

− − − 1439.5 4425.6 15340.0
(637.3) (2070.2) (4796.9)

Proportion of land
irrigated

0.378 0.414 0.483 0.178 0.234 0.321
(0.437) (0.455) (0.466) (0.175) (0.203) (0.256)

Irrigation investment
during the recall period
(dummy)

0.0767 0.0724 0.0116 − − −
(0.266) (0.259) (0.107)

Log non-land wealth
(1971 Rs.)

8.065 7.040 9.123 − − −
(1.081) (1.406) (1.228)

Proportion of inherited
land irrigated

0.329 0.407 0.416
(0.380) (0.456) (0.468)

Log non-land inherited
wealth (1971 Rs.)

7.133 2.959 5.848 − − −
(0.962) (2.789) (3.690)

Average crop water need
(cm)

− 0.706 0.736 − − −
(0.224) (0.229)

Average crop water need
(cm) (monsoon crops)

− 0.754 0.820 − − −
(0.239) (0.249)

Panel B: Weather variables
Current year rainfall 0.313 0.208 0.279 0.579 0.436 −0.400

(0.929) (0.772) (0.723) (0.883) (1.007) (0.748)
Ten-year lagged average

rainfall
−0.000634 0.0653 −0.0303 0.108 0.000608 −0.0353
(0.328) (0.251) (0.326) (0.294) (0.288) (0.234)

Ten-year lagged average of
dry shock

0.196 0.183 0.166 0.176 0.203 0.191
(0.125) (0.0925) (0.150) (0.111) (0.122) (0.106)

Ten-year lagged average of
wet shock

0.177 0.220 0.167 0.224 0.185 0.163
(0.122) (0.130) (0.124) (0.133) (0.106) (0.115)

Notes: The table displays mean coefficients, with standard deviations in paren-
theses. The household sample is restricted to farmers who cultivate land. See
section 4 for details as to how the variables are constructed.

set. The data set includes information on irrigated areas, crop areas, crop
yields and prices, but does not include information about assets, wealth or
profits.

Panel A in table 1 presents the summary statistics for agricultural vari-
ables of both data sets. For households, agricultural profits per acre are
measured as crop receipts minus crop expenses, divided by the area of
land cultivated. For the district data set, which lacks information on crop
expenses, crop revenue per acre of land cultivated is used. For households,

https://doi.org/10.1017/S1355770X17000195 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X17000195


528 Vis Taraz

Table 2. Daily water requirements of common crops grown in
India

Crop Daily water Grown during
requirement monsoon

Barley 0.400 No
Cotton 0.525 Yes
Oilseeds 0.350 No
Maize 0.450 Yes
Millet 0.575 Yes
Peanut 0.525 Yes
Potato 0.750 No
Pulses 0.350 Yes
Rice 1.075 Yes
Sorghum 0.575 Yes
Soybean 0.525 Yes
Sugarcane 0.650 Yes
Wheat 0.425 No

Notes: The daily water requirement is measured in cen-
timeters per day. Monsoon crops are crops who are grown
during the summer monsoon season.
Sources: Agriinfo.in (2015).

a dummy variable is created for irrigation investment that is equal to one
if the household purchased materials, hired labor or used family labor to
construct new irrigation assets, purchase new irrigation assets or improve
existing irrigation assets during the 12 months prior to the survey inter-
view. For the district data set, which lacks direct information on irrigation
investment, irrigation investment is defined as the log of the 1-year change
in the area of irrigated land. For households, wealth is measured as the
sum of the value of irrigation assets, farm equipment, livestock, non-farm
assets, housing, durable goods, farm inventory and financial assets minus
debts, deflated to 1971 rupees. Online appendix 2 gives additional details
about the construction of the agricultural variables.

For both data sets, the water need of a crop portfolio is measured as the
area-weighted average of the crop water need of the crops grown in a given
year. We use the daily crop water need values (in centimeters per day) pro-
vided on the Agriinfo.in (2015) website. These values, which are specific to
the way that crops are grown in India, are presented in table 2. These num-
bers represent the average daily amount of water each crop needs, over the
course of its growing season, in order to achieve optimal growth. An impor-
tant caveat is that these values refer to optimal amounts, not necessarily
what farmers apply in practice.

There are two main growing seasons in India: the kharif (or monsoon)
season, which is the primary growing season and runs roughly from June
to September, and the rabi (or winter) season, which is secondary and
runs from October through February. The bulk of the rainfall comes dur-
ing the monsoon season, but both kharif and rabi crops are affected by the
quantity of monsoon rainfall. Rabi crops are affected because the monsoon
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affects soil moisture levels over the winter months, as well as surface water
and groundwater supplies that are used to irrigate some winter crops. To
address this seasonality, two different measures of crop water need are
used: one that includes all crops grown during the year, and an alternate
version that only includes the crops grown during the monsoon season.
This captures the fact that monsoon crops are likely to be more strongly
affected by monsoon rainfall than non-monsoon season crops. Due to the
lack of season-specific crop planting data, crops are classified based on the
season in which they are typically grown. The monsoon crops are cotton,
maize, millet, peanut, pulses, rice, sorghum, soybean and sugarcane and
the non-monsoon season crops are barley, mustard, oilseeds, potato and
wheat.

The agricultural data is merged with gridded weather data from the Ter-
restrial Precipitation: Monthly Time Series (1900–2008), version 2.01, and
the companion Terrestrial Air Temperature data set. The weather data for
each 0.5-degree latitude–longitude grid point combines information from
20 nearby weather stations, using an interpolation algorithm based on the
spherical version of Shepard’s distance-weighting method. Current year
growing season rainfall is measured as the z-score deviation from that
location’s historical mean.8

To capture the decadal variability of the monsoon, a decadal rainfall vari-
able is created that is the simple average of the rainfall z-scores from the
past decade. We also use a specification where we measure lagged rainfall
as the number of especially wet or dry years over the past decade. Follow-
ing Jayachandran (2006), the 20th percentile is used as the cutoff for a dry
year and the 80th percentile as the cutoff for a wet year. Panel B of table 1
gives the means and standard deviations for the rainfall variables for the
relevant years of the household and district surveys. Online appendix 2
gives additional details about the construction of the weather variables
and online appendix 4 presents a detailed discussion of the variation of
the decadal rainfall variables.

5. Empirical strategy
5.1. Tests for irrigation adaptation
In order to test for irrigation adaptation, we analyze how irrigation invest-
ment responds to lagged rainfall. For the household data set, a regression
is run of the form

irr invi j t = α1decaderain j t + α2rain j t + α3rain j t−1 + λt + μi j + ζi j t , (5)

where the subscripts represent household i , village j , and year t . The
dependent variable irr invi j t is a dummy variable equal to 1 if, during the
recall period, a household purchased irrigation equipment or used labor

8 Based on the state-specific monthly rainfall charts in Pant and Kumar (1997), the
growing season is defined as June through September for most of the country, and
June through December for the peninsular (southern) region.
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to improve irrigation assets. The explanatory variables are past decade
rainfall decaderain jt , current year rainfall rain j t , one-year lagged rainfall
rain j t−1, a year fixed effect λt , a household fixed effect μi j , and an error
term ζi j t .9 The household survey follows households after household splits
and after changes of the household head. Therefore, our household fixed
effect is common to all parts of the household dynasty that have broken off
from the original surveyed household, and can be thought of as a dynasty
fixed effect.

decaderain j t is measured in two ways. The first measure is a simple aver-
age of the rainfall z-scores from the past decade. The second measure
tabulates the proportion of years in the past decade that were especially
wet or dry. Following Jayachandran (2006), the 20th percentile is used as
the cut-off for a dry year and the 80th percentile as the cut-off for a wet
year. The coefficient of interest is α1. Our model demonstrates that the sign
of α1 is ambiguous and must be determined empirically. If the wealth effect
dominates, then α1 will be positive. Irrigation investment will increase after
wet decades, due to an accumulation of wealth and increased investment
in all assets. On the other hand, if farmers are adapting to expected rainfall
and the size of this effect is larger than the wealth effect, then we will find
α1 < 0. Irrigation investment will increase after dry decades, due to farm-
ers expecting more dry years in the future. Thus, finding α1 < 0 provides
evidence of adaptation.10

Current year rainfall is controlled for because farmers can invest in irri-
gation at any time during the year. Thus, a farmer’s observation of current
year rainfall (based on, say, the first half of the growing season) might
directly affect his decision to invest in irrigation during that period. This
response would not indicate adaptation to expected future year rainfall, but
would simply reveal within-season adjustment to current year rainfall.11

Propositions 3.1 and 3.2 demonstrate that we can test for irrigation adap-
tation with or without a wealth control. Thus, for completeness, we run a
second household specification where we control for wealth. Once we have
isolated the wealth effect, our model predicts that α1 = 0 if farmers are not
adapting. On the other hand, if farmers are adapting, then α1 < 0.

Despite the dynasty fixed effect, there are two potential sources of endo-
geneity for wealthi j t . First, if the current period’s productivity shocks are

9 Lagged rainfall is included because residual impacts of last year’s rainfall may
influence this year’s irrigation and cropping decisions directly, independently of
an expectations/adaptation effect. In addition, the household data set does not
include the specific interview date for each household, so including lagged rain-
fall is important because, for households interviewed early in the survey year,
rainfall from the previous calendar year may be the most relevant.

10 Finding a positive coefficient would be inconclusive; it would neither demon-
strate nor rule out the possibility of adaptation.

11 We also control for rainfall from the previous year because the exact date of the
REDS survey for each household is unknown, but all households use a 12-month
recall period for their answers. Therefore, for some households, the actual relevant
rainfall year may be earlier than the year of the survey.
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correlated with lagged productivity shocks, then wealth will be endoge-
nous (because lagged productivity shocks affect wealth). Secondly, as
above, if there is variation in farming ability within a dynasty, and farming
ability is correlated (within the dynasty) with wealth, this will also cause
endogeneity.

We employ an instrumental variables strategy that attempts to mitigate
these endogeneity concerns. The REDS survey contains information, for
each household and split-off household, about the amounts of wealth, land
and irrigated land that were inherited at the time of household formation.
Typically in India, at the time of a father’s death, each son in the household
will inherit land and become head of his own separate household (Fer-
nando, 2014). We instrument for wealthi j t with inhwealthi j t , the amount
of inherited wealth. Earlier work has used the same instrumental variables
strategy (Foster and Rosenzweig, 1995, 2001, 2010).

Due to household splits, many dynasties include multiple household
heads, which gives us variation in inhwealthi j t , even in the presence of
the dynasty fixed effect.12 We now discuss the exclusion restriction for
our instruments and the extent to which these instruments reduce the
endogeneity issues outlined above. First, consider the endogeneity that
arises due to transient, current-period productivity shocks (that are not
due to unobserved farmer ability). Because inheritances occurred in an
earlier period, we should expect that inherited wealth should be less corre-
lated with transient current period productivity shocks than current period
wealth. Thus, we should expect the instruments to significantly reduce this
source of endogeneity bias.

Secondly, consider the endogeneity that arises due to variations in
farmer ability within a dynasty. Relative to this source of endogeneity,
there is potential concern about whether the exclusion restriction holds.
For example, if a son with higher farming ability inherits more wealth, then
the exclusion restriction would be violated. However, there is evidence that
inheritances may not be strongly correlated with variations in sons’ ability
(Foster and Rosenzweig, 2002; Fernando, 2014). Fernando (2014) finds that
the amount of inherited land is very strongly dictated by the number of
sons in the family (and the total amount of land), and states that ‘equal
division amongst sons [at the time of a father’s death] is the norm’. If land
is evenly divided, this is suggestive that non-land inheritances may also be
divided roughly evenly. Note that even if there is purely equal division of
inheritances among sons, changes across generations of household heads
provide variation of the inheritances within each dynasty.

We cannot fully prove that contemporaneous variations in inheritances
are uncorrelated with unobserved household ability, but to the extent
that these inheritances are less correlated than current wealth and current
irrigated land, our instrumental variables strategy should at least reduce
the endogeneity bias. Due to potential concerns about the validity of the

12 Amongst the households that are analyzed, 42 per cent come from dynasties with
multiple household heads. Our estimate of the coefficient of wealth will be a local
average treatment effect based on these households.
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instrument, a non-instrumented version of the regression is run in online
appendix 6.

For the district regression, irr inv j t is defined as the log of the one-year
change in the district’s irrigated area, we use a district fixed effect, and we
do not control for wealth. Proposition 3.1 demonstrates that we can test for
irrigation adaptation, even in the absence of a wealth control. As with the
household regression, finding α1 < 0 provides evidence of adaptation.

5.2. Test for crop adaptation
Lastly, we test for crop adaptation. We only perform this test with our
household data set, and our regression is of the form:

water needi j t = γ1decaderain j t + γ2rain jt + γ3rain j t−1 + γ4wealthi j t

+ τt + φi j + ψi j t (6)

where water needi j t is the area-weighted water need of the farmer’s crop
portfolio. In one specification, we look at the area-weighted water need of
all crops grown during the year. In a second specification, we look at the
area-weighted water need of monsoon-season crops only. As mentioned
above, we control for current year rainfall because farmers may have some
knowledge of the current year’s rainfall before they sow all of their crops.
As in the irrigation regression, a response of crop choice to current year
rainfall would indicate a within-season adjustment to rainfall, but would
not provide evidence of adaptation to the expected future year rainfall.13

We control for wealthi j t because, as demonstrated in section 3.4.2, with-
out a control for wealthi j t , we could not interpret γ1 as evidence of
adaptation. Wealth is endogenous and we instrument for it with inherited
wealth. The validity of the instrument follows the same argument as above.
Due to potential concerns about the validity of the instrument, we also run
a non-instrumented version of the equation in online appendix 6. Finding
γ1 = 0 demonstrates that farmers are not adapting their crop portfolios.
Conversely, in the presence of adaptation, we expect to find γ1 > 0.

5.3. Standard error clustering
Standard errors are clustered at the weather grid-point level, which allows
for serial correlation within dynasties and within districts (because any
dynasty or district is always associated with the same weather grid point).
In addition, this clustering allows for correlation in the error terms between
adjacent households (or districts) that share the same value of rainfall due
to the resolution of the rainfall data.

In online appendix 6, we verify that the results are robust to standard
errors that allow for spatial correlation. This is important because lagged
decadal rainfall exhibits substantial spatial correlation, as discussed in
online appendix 4. To implement spatial clustering, we use code from

13 We also control for rainfall from the previous year because the exact date of the
REDS survey for each household is unknown, but all households use a 12-month
recall period for their answers. Therefore, for some households, the actual relevant
rainfall year may be earlier than the year of the survey.
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Hsiang and Solow (2010) and Fetzer (2014). Guided by the autocorrel-
ograms in online appendix 4, we allow for a spatial correlation within
800 km with a Bartlett (triangular) kernel and temporal correlation within
a 30-year window.

6. Results
6.1. Tests for irrigation adaptation
Table 3 tests whether farmers adapt their irrigation investments in response
to lagged rainfall. Recall that we can test for irrigation adaptation either
with, or without, a wealth control. Columns 1 through 4 use the household
data and, in columns 2 and 4, we control for wealth, which is instrumented
for with inherited wealth. Columns 5 and 6 use the district data and do not
control for wealth. In all columns, we find the coefficient of lagged rainfall
is negative, which provides evidence of adaptation. In terms of magni-
tudes, column 4 demonstrates that a dry year in the preceding decade
increases the probability of irrigation investment during the recall period
by 1.2 percentage points. The baseline probability of investing in irrigation
during the recall period is 5 per cent.14 It is interesting to note that most
of the irrigation adaptation effect is driven by dry shocks, rather than wet
shocks (as seen in columns 3 and 4). Our theoretical model predicts that
farmers should update their rainfall expectations equally much in response
to wet or dry rainfall shocks. The larger observed response to dry shocks
suggests that these shocks may be more salient to farmers. In addition, it
suggests that farmers may be particularly concerned with protecting their
farm profits (via irrigation investment) when they expect harmful dry years
in the future.

6.2. Test for crop adaptation
In table 4, we test for crop adaptation using the household data set. We con-
trol for wealth in all columns and instrument for it with inherited wealth.15

Columns 1 and 2 look at the daily water need of all crops grown in the
year, and columns 3 and 4 focus on the daily water need of monsoon sea-
son crops only. The monsoon season crops are cotton, maize, millet, peanut,
pulses, rice, sorghum, soybean and sugarcane. The non-monsoon season
crops are barley, mustard, oilseeds, potato and wheat. The columns that use
the average rainfall specification are not significant. However, the columns
that use the wet/dry shock rainfall specification are significant at the 1 per
cent level for both all-season crops and monsoon season crops. The coeffi-
cient in column 2 indicates that each additional dry year in the past decade

14 The F-statistics for columns 2 and 4, presented at the bottom of the table, indicate
that the first-stage regressions for wealth are sufficiently strong. For concision, the
first-stage regression coefficients are not displayed, but they are available upon
request.

15 The F-statistics, presented at the bottom of the table, indicate that the first-
stage regressions are sufficiently strong. For concision, the first-stage regression
coefficients are not displayed, but they are available upon request.
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Table 3. Testing for irrigation adaptation

Data set Specification Household FE Household FE-IV Household FE Household FE-IV District FE District FE

Irrigation Irrigation Irrigation Irrigation Log of the Log of the
investment investment investment investment one-year one-year
(Dummy) (Dummy) (Dummy) (Dummy) change of change of

Dependent variable irrigated area irrigated area

(1) (2) (3) (4) (5) (6)

Ten-year lagged average rainfall −0.0501∗∗ −0.0463∗ −0.00739∗∗∗
(0.0238) (0.0238) (0.00254)

Ten-year lagged average of dry shock 0.111∗ 0.115∗∗ 0.0197∗∗∗
(0.0587) (0.0554) (0.00652)

Ten-year lagged average of wet shock −0.0538 −0.0278 −0.00231
(0.0543) (0.0561) (0.00421)

Current year rainfall 0.00728 0.00881 0.00559 0.00723 0.00273∗∗∗ 0.00276∗∗∗
(0.00680) (0.00671) (0.00696) (0.00688) (0.000900) (0.000903)

One year lagged rainfall −0.00368 −0.00660 −0.00349 −0.00675 −0.000166 −0.000348
(0.00615) (0.00674) (0.00612) (0.00676) (0.00104) (0.000978)

Log non-land wealth (1971 Rs.) 0.0481∗∗∗ 0.0472∗∗∗
(0.0129) (0.0127)

Fixed effects Household Household Household Household District District

Year fixed effects Yes Yes Yes Yes Yes Yes
First stage

F-statistic (Log non-land wealth) 109.73 107.72
Observations 12,003 11,759 12,003 11,759 8,130 8,130

Notes: Standard errors, in parentheses below the coefficients, allow for clustering within each latitude-longitude rainfall grid point. A dry shock is defined as rainfall
below the 20th percentile and a wet shock is defined as rainfall above the 80th percentile. In columns 2 and 4, I instrument for wealth with inherited wealth. The
first-stage F-statistics are reported in the table. Full first-stage regressions are also available upon request. F-test: the Staiger and Stock (1997) rule of thumb is that
instruments are ‘weak’ if the first-stage F is less than 10, and the Stock and Yogo (2002) Weak ID test critical value for 2SLS bias being less than 10 per cent of OLS
bias is 16.38. See section 4 for details on how the variables are constructed. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4. Testing for crop adaptation

Data set Household Household Household Household
Specification FE-IV FE-IV FE-IV FE-IV

Crop water Crop water Crop water Crop water
Dependent need need need need
variable (monsoon) (monsoon)

(1) (2) (3) (4)

Ten-year lagged
average rainfall

0.0269 0.0379
(0.0233) (0.0287)

Ten-year lagged −0.159∗∗∗ −0.204∗∗∗
average of dry
shock

(0.0478) (0.0675)

Ten-year lagged 0.0193 0.0834
average of wet
shock

(0.0454) (0.0572)

Current year rainfall 0.0145∗∗ 0.0159∗∗ 0.0145 0.0166∗
(0.00715) (0.00686) (0.0103) (0.00981)

One-year lagged −0.0160∗∗ −0.0186∗∗ −0.0163∗ −0.0215∗∗
rainfall (0.00800) (0.00765) (0.00945) (0.00935)

Log non-land wealth −0.00428 −0.00522 −0.00368 −0.00512
(1971 Rs.) (0.0120) (0.0109) (0.0192) (0.0171)

Fixed effects Household Household Household Household
Year fixed effects Yes Yes Yes Yes
First stage

F-statistic (Log
non-land wealth)

69.22 71.49 66.94 69.38

Observations 5,577 5,577 5,462 5,462

Notes: Standard errors in parentheses allow for clustering within each latitude–
longitude rainfall grid point. A dry shock is rainfall below the 20th percentile
and a wet shock is rainfall above the 80th percentile. In all columns, we instru-
ment for wealth with inherited wealth. The first-stage F-statistics are reported
in the table. Full first-stage regressions are also available from the author. F-test:
the Staiger and Stock (1997) rule of thumb is that instruments are ‘weak’ if the
first-stage F is less than 10, and the Stock and Yogo (2002) Weak ID test critical
value for 2SLS bias being less than 10% of OLS bias is 16.38. See section 4 for
details on how the variables are constructed. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

reduces the average water need of the crops planted by 0.16 mm/day, rel-
ative to an average water need of 7.3 mm/day. Restricting the analysis to
monsoon season crops, we find that each additional dry year in the past
decade reduces the average daily water need of a farmer’s monsoon sea-
son crop portfolio by 0.2 mm/day, relative to an average water need of
monsoon season crops of 8 mm/day.16

16 Note that our average crop water need regressions use the daily amount of water
that each crop requires over its growing season. However, different crops have
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Table 5. Testing for crop adaptation: individual crops

Data set Household Household Household Household Household Household Household Household
Specification FE-IV FE-IV FE-IV FE-IV FE-IV FE-IV FE-IV FE-IV

Dependent variable Rice Wheat Pulses Millet Cotton Sorghum Peanut Maize

(1) (2) (3) (4) (5) (6) (7) (8)

Ten-year lagged average −0.209∗∗ 0.0401 0.125∗∗ −0.0257 −0.0554 −0.0843 0.0724 0.0324
of dry shock (0.0814) (0.0663) (0.0540) (0.0681) (0.0456) (0.0774) (0.0522) (0.0405)

Ten-year lagged average 0.0789 0.0726∗ −0.0172 −0.155∗∗ 0.133∗∗ −0.152∗∗∗ 0.0464 −0.00858
of wet shock (0.0778) (0.0431) (0.0448) (0.0734) (0.0604) (0.0543) (0.0419) (0.0362)

Current year rainfall 0.0191 −0.00764 −0.0217∗ 0.0150 −0.00655 0.00498 −0.00212 −0.000965
(0.0122) (0.00984) (0.0112) (0.0148) (0.00629) (0.0115) (0.00893) (0.00595)

One-year lagged rainfall −0.0344∗∗∗ 0.00427 0.00682 0.00666 −0.0113∗ 0.00343 0.00930 0.00234
(0.0129) (0.00608) (0.00673) (0.00780) (0.00590) (0.00563) (0.00728) (0.00399)

Log non-land wealth
(1971 Rs.)

−0.00625 0.00616 −0.00346 0.00523 −0.00395 0.0191∗∗ −0.00921 −0.00725
(0.0197) (0.0119) (0.0112) (0.0158) (0.0121) (0.00970) (0.00821) (0.00641)

Fixed effects Household Household Household Household Household Household Household Household
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

First stage
F-statistic (Log

non-land wealth)
70.50 70.50 70.50 70.50 70.50 70.50 70.50 70.50

Observations 5,622 5,622 5,622 5,622 5,622 5,622 5,622 5,622

Notes: Standard errors, in parentheses below the coefficients, allow for clustering within each latitude–longitude rainfall grid point. The dependent variable in each
column is the proportion of total cultivated area planted with that crop. A dry shock is rainfall below the 20th percentile and a wet shock is rainfall above the 80th
percentile. In all columns, we instrument for wealth with inherited wealth. The first-stage F-statistics are reported in the table. Full first-stage regressions are also
available from the author. F-test: the Staiger and Stock (1997) rule of thumb is that instruments are ‘weak’ if the first-stage F is less than 10, and the Stock and Yogo
(2002) Weak ID test critical value for 2SLS bias being less than 10% of OLS bias is 16.38. See section 4 for details on how the variables are constructed. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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To further understand the crop adaptation results, individual crop
regressions are run. In each column of table 5, the dependent variable is
the proportion of land that is planted with a specific crop for the top eight
crops by area in the REDS data set. These crops are (by area): rice, wheat,
pulses, millet, cotton, sorghum, groundnut and maize. Consistent with
the table 4 results, we find that after dry decades, farmers plant less rice
(1.075 mm/day water need) and more pulses (3.50 mm/day water need).
These are the crops with the highest and lowest water needs, respectively.
In addition, after wet decades, farmers plant less millet (5.75 mm/day)
and sorghum (5.75 mm/day), possibly because they are switching toward
planting more (high water need) rice.

We also find that after wet decades, farmers plant more wheat
(4.25 mm/day) and more cotton (5.25 mm/day). At first glance, these
results seem counterintuitive because wheat and cotton have slightly lower
water needs than millet and sorghum. However, wheat is grown during the
rabi season, unlike millet and sorghum which are monsoon season crops.
Compared to the other main rabi crops (barley and oilseeds), wheat has a
higher water need. Thus our results indicate that after wet decades farmers
shift their rabi crop portfolio towards higher water need crops. In a simi-
lar vein, cotton has a long growing season that spans both kharif and rabi.
Famers may be growing more cotton after wet decades because they are
planting more cotton, which is in the ground in both seasons, and growing
less of the low water need rabi crops of barley and oilseeds.

Taken together, the irrigation and crop regressions suggest evidence that
farmers are adapting in response to recent decadal rainfall. However, there
are two important caveats to consider. First, our analysis treats irrigation
investment and crop choice as two independent decisions, but in reality
the two choices are interrelated. Our analysis is not able to completely dis-
entangle the irrigation and crop choice decisions. A second caveat is that,
due to attrition, the household sample in REDS is not nationally represen-
tative. Specifically, the famers in our sample have, on average, higher land
areas, higher proportions of irrigated land and higher levels of non-land
wealth than would be found in a representative sample. Thus, the adapta-
tion results are an accurate representation of the behavior of this particular
population, but our results may not hold more broadly.

7. Robustness
In online appendix 6, we investigate the robustness of our results.

First, we re-run our adaptation regressions using a fixed-effects
specification that drops our instrumental variables strategy. In light of
potential issues with our instruments, these results provide another set

different length growing seasons, which thus affects the total amount of water
they require over their total growing season. We can construct the area-weighted
average of the total (rather than daily) water requirements of a given crop portfo-
lio. If we use this measure as our dependent variable, we find that the total water
requirements go up after wet decades and go down after dry decades, but the
coefficients are not statistically significant.
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of estimates which may be of interest. In addition, using the non-IV
specification allows us to estimate a new set of standard errors that allow
for spatial correlation. This is important because, as indicated in online
appendix 4, our lagged rainfall variable demonstrates significant spa-
tial correlation. To implement these standard errors, we use code from
Hsiang and Solow (2010) and Fetzer (2014). Guided by the autocorrelo-
grams in online appendix 4, we allow for a correlation within 800 km using
a Bartlett (triangular) kernel. The results are robust to these changes.

Secondly, we re-estimate our regressions using rainfall lag windows of
5 or 15 years, to verify that the choice of a 10-year window is not driv-
ing the results. The district irrigation regressions and the household crop
regressions are robust to using alternate rainfall windows. In the house-
hold irrigation regressions, however, the signs of the coefficients of interest
are preserved but are no longer statistically significant. We also present
regressions in which we control for lagged rainfall separately for each year
(rather than as an average). In this case, the coefficients are no longer indi-
vidually statistically significant (likely because they are correlated with
each other), but the set of rainfall lags is jointly significant.

Thirdly, we analyze how irrigation investment and crop choice are
affected by lagged temperature shocks from the past decade. Tempera-
ture shocks affect profits and wealth. Therefore, we would expect to see
wealth effects from lagged temperature on irrigation investment and crop
choice. However, temperature does not undergo the persistent cycles that
precipitation undergoes. Therefore, we would not expect to see an expec-
tations effect for temperature. Our analysis corroborates this story: we find
evidence of a temperature-induced wealth effect, but no evidence of a
temperature-induced expectations effect.

Fourthly, we discuss the possibility that depletion of groundwater or sur-
face water might be causing the relationship between irrigation investment
and lagged rainfall that we have found. Using irrigated area (rather than
irrigation investment) as the dependent variable, we find that the area of
irrigated land increases after dry decades. As is discussed in greater detail
in the appendix, this test provides some reassurance that water depletion
is not driving the results, but it does not fully rule out that possibility.

Fifthly, we test whether the irrigation adaptation results might be due to
public (government) investments rather than private (farmer) investments.
In India, the bulk of direct public irrigation investments are large-scale
dams. When we control for the presence of these dams, the irrigation adap-
tation results are preserved. However, government irrigation investment is
an outcome variable and may be endogenous to the household investment
decision. For this reason, our results are suggestive that the adaptation
results are not driven by public investment, but do not definitively rule
out that possibility.

Sixthly, we test whether changes in agricultural technology or poli-
cies might be confounding our results. We add controls for high-yielding
variety crops, electrification rates, fertilizer prices, financial institutions,
agricultural extension services, transportation infrastructure and govern-
ment intervention in output markets. The irrigation and crop adaptation
results are robust to adding these controls. However, these results are
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suggestive only, not definitive, since we are only able to control for a
subset of possible confounders. Furthermore, the confounders that we do
control for are potentially endogenous to the household irrigation and crop
decisions.

Lastly, we run our regressions with region-by-year fixed effects. Due
to the large-scale spatial correlation of the monsoons, it is possible that
unobserved, time-varying confounding factors might be correlated with
the lagged rainfall variables. Region-by-year fixed effects flexibly control
for this. The district irrigation results and the household crop results are
robust to the addition of these controls. The coefficients of interest are
preserved in sign, magnitude and significance level. In the household irri-
gation regressions, however, the signs of the coefficients of interest are
preserved but the magnitudes decrease by about 50 per cent and the coeffi-
cients are no longer statistically significant. The inclusion of region-by-year
fixed effects is a stringent test since the household data set only spans
three survey years. Therefore it is perhaps unsurprising that our house-
hold irrigation regressions are only weakly robust to the inclusion of these
controls.

8. Effectiveness of adaptation
The preceding text finds evidence of adaptation; we now quantify its effi-
cacy. What fraction of profits were farmers able to protect from adverse
climate variations? To answer this question, we use the household data set
to estimate the extent to which irrigation adaptation increased profits dur-
ing 1971–1999.17 Rainfall during this period was below average (as shown
in figure 1), which reduced profits. On the other hand, farmers adapted
to this below-average rainfall, by increasing their irrigation investments,
which should have partially offset profit losses.

We take a two-step approach to estimate the efficacy of adaptation. First,
we estimate the percentage of profits that were lost due to below-average
rainfall during 1971–1999. Next, we estimate the percentage of these losses
that were recovered due to increased irrigation investment. To calculate
these percentage changes, we estimate profits π from three scenarios: a
counterfactual scenario A, in which the drought did not occur; a coun-
terfactual scenario B, in which the drought occurred but farmers did not
adapt their irrigation; and the actual scenario C, in which the drought
occurred and farmers adapted. The percentage of profits lost due to the
below-average rainfall is π B−π A

π A . The percentage of lost profits that were

recovered by adaptation is πC −π B

π B−π A .

17 The analysis focuses on irrigation adaptation because the efficacy of crop adapta-
tion is not calculable. Specifically, the data do not permit an unbiased estimate of
the impact of crop portfolio on profits. Unobserved shocks, such as health shocks,
may be correlated with both profits and drought-tolerant crop areas, and hence
a regression of profits on drought-tolerant areas will be biased. For irrigation, in
contrast, we can instrument for irrigated land with inherited irrigated land and
remove, or at least reduce, this bias.
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We observe πC only in the survey years (1971, 1982 and 1999). To
estimate πC for the non-survey years, we regress survey-year profits on
survey-year rainfall, temperature, irrigation and wealth:

πijt = �β1q × (rain j t = q)+ β2propirri j t +�β3q × (rain j t = q) ∗ propirri j t

+ β4wealthi j t + β5temperature j t + δt + κi j + εi j t . (7)

The variable rain j t = 1, 2, 3, 4, 5 is a categorical variable representing the
rainfall quintile for village j in year t and rain j t = 3 is the omitted category.
The results of this regression are shown in table A2 of online appendix 5.
We use the estimated coefficients and fixed effects to estimate non-survey-
year profits:

πC
i j t = �β1q × (rain j t = q)+ β2propirri j t +�β3q × (rain j t = q) ∗ propirri j t

+ β4wealthijt + β5temperature j t + δt + κi j , (8)

where propirri j t , wealthi j t and δt are linearly interpolated between survey
rounds.

To estimate π B , we compute ̂propirri j t , a counterfactual value of the
proportion of irrigated land in the absence of adaptation. We use the coef-
ficients from column 2 of table A10 in online appendix 6 to calculate the
adaptive response of irrigation to lagged rainfall.18 This table is analo-
gous to the baseline irrigation adaptation specification (table 3) but uses
the proportion of irrigated land as the dependent variable, rather than an
irrigation investment dummy. The irrigation investment dummy captures
precisely how the household is adjusting its irrigation this year. However,
using it requires knowing what fraction of the farmer’s land becomes irri-
gated when he invests in irrigation, since profits depend on the proportion
of land irrigated. Thus, we instead use the proportion of irrigation, which
is a coarser measure of adaptation. We use this regression to subtract a
quantity of ‘adapted irrigation’ from propirri j t , which gives us ̂propirri j t ,
i.e., what irrigation would have been in the absence of adaptation.19 We
estimate

π B
i j t = �β1q × (rain j t = q)+ β2 ̂propirrijt +�β3q × (rain j t = q) ∗ ̂propirri j t

+ β4wealthi j t + β5temperature j t + δt + κi j . (9)

18 Note that we use the adaptation specification where we control for wealth. This
ensures that all of the response that we see for irrigation in response to lagged
rainfall is due to the expectations and is not simply due to the wealth effect.

19 A more straightforward calculation would be to compare actual profits over the
period 1971–1999 based on actual irrigation to profits for that same period if irri-
gation had remained at its 1971 levels. However, this would assume that all of the
growth in irrigation was due to responses to drier rainfall, whereas in fact a large
part of it was likely due to overall trends in irrigation that were driven by changes
in technology, etc.
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Lastly, to estimate π A, we calculate expected annual profits, using a 20
per cent chance of each rainfall quintile occurring. This calculation projects
what expected profits would have been if rainfall were at its historical mean
distribution. We estimate

π A
i j t = �β1q × (0.2)+ β2 ̂propirri j t +�β3q × (0.2) ∗ ̂propirri j t

+ β4wealthi j t + β5temperature j t + δt + κi j . (10)

We use π A, π B and πC to calculate profit losses and recoveries. For each
farmer, we sum total profits during 1971–1999, under each scenario. Using
these profit estimates, we find that, on net, the dry regime decreased prof-
its by 0.3 per cent. However, there is substantial heterogeneity and, for
households with losses, the average loss was 7.9 per cent. We estimate that
farmers with losses recovered, on average, only 9.4 per cent of their losses.
Note that this estimate is an upper bound on the effectiveness of irriga-
tion adaptation, because it does not incorporate the cost of the irrigation
investments.

Our results demonstrate that farmer adaptation to persistent rainfall
deviations was of limited efficacy. This suggests that adaptation to anthro-
pogenic climate change may also be limited. However, there are four
caveats to note. First, we only analyze irrigation adaptation. Farmers are
likely to adapt via other channels as well, which will allow them to recap-
ture additional profits. Secondly, extrapolating our results directly to future
climate change is problematic, since future climate change will affect both
rainfall and temperature. Thirdly, in addition to changing the demand for
irrigation water, climate change will also affect the supply of irrigation
water (Zaveri et al., 2016). In some regions, the available supply of irrigation
water will decrease, potentially limiting the ability of farmers to increase
their irrigation. Lastly, rich farmers with above-average land areas are over-
represented in our sample. However, if we expect wealthier households to
adapt more easily than poor households, then our estimate would over-
state the efficacy of irrigation adaptation. Our results indicate that, even
among richer households, irrigation adaptation was of limited benefit.

9. Conclusion
To accurately predict future climate change damages requires an accurate
understanding of the ability of agents to adapt to changes in climate. In
this paper, we exploit persistent rainfall variations in India over the past 50
years to test whether farmers adjust their irrigation and crop choice deci-
sions in response to recent rainfall. Evidence is found of both irrigation
adaptation and crop adaptation. However, analysis suggests that the effi-
cacy of adaptation is limited; we estimate that adaptation recovers at most
9 per cent of lost profits. These results suggest that, in the context of the
historical rainfall deviations that were analyzed, there are barriers to adap-
tation. This work does not elucidate the precise nature of these barriers.
Other work, summarized by Jack (2011), indicates that credit and informa-
tion constraints, as well as inefficiencies in input, output, land, labor and
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risk markets, inhibit agricultural adaptation in a variety of situations. The
specific barriers to climate change adaptation and, importantly, the institu-
tions, technologies and policies that might remove these barriers, call for
further exploration.

Supplementary material and methods
To view supplementary material for this article, please visit https://doi.
org/10.1017/S1355770X17000195.
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