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Abstract

In this paper we derive extremality and comparison results for explicit and implicit initial
and boundary value problems of first-order differential equations. Both the differential
equations and the boundary conditions may involve discontinuities.

1. Introduction

Recently, the existence of Caratheodory solutions of the differential equation

ii'(r) = g(t, «(/)), (1.1)

with given initial or boundary conditions, has been proved under various kinds of
hypotheses which allow g to be discontinuous in both its variables (see for example
[1,2,4—14,16,18,19]). A culmination in this research was achieved in [5], where
existence of extremal solutions of the initial value problem (1.1) was proved for a
large class of discontinuous functions g. The results of [5] were applied in [18] to
prove existence results for (1.1) equipped with discontinuous functional boundary
conditions.

In this paper this research is continued as follows:

(a) Existence results of [5,18] are extended to the case when u'(t) is replaced in (1.1)
by dcp(u(t))/dt, where cp : R -> R is an increasing homeomorphism.
(b) The L'-boundedness of g assumed in [5] is replaced by a weaker growth condi-

tion.
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(c) When g is nonnegative-valued, local conditions are introduced which allow a
new type of discontinuity for g.
(d) Dependence of the extremal solutions on the function g and on the given initial

and boundary conditions is studied.
(e) The obtained results are applied to initial and boundary value problems of the

differential equation u'(t) = q(u(t))g(t,u(t)).

2. Existence and comparison results for initial value problems

In this section we derive existence and comparison results for extremal solutions
of first-order scalar initial value problems.

2.1. Hypotheses and main results Consider first the initial value problem

d
—<p(u(t)) = g(t, «(0) fora.e. t e J = [t0, r,], ufo) = x0. (2.1)
at

DEFINITION 2.1. A function u : J -> K is said to be a lower solution of (2.1) if u
belongs to the set Y = {u € C(J) \ <p o u e A C(J)} and if

d
—<p(u(t)) < g(t, u(t)) for a.e. t e J, u(t0) < x0.
at

If the reversed inequalities hold, then u e Y is called an upper solution of (2.1), and
a solution of (2.1) if equalities hold. If u, and u* are such solutions of (2.1) that
"*(0 5 " (0 5 «*(0 on J for every solution u of (2.1), we say that «, is the least
solution and u* is the greatest solution of (2.1), and that u* and u* are the extremal
solutions of (2.1).

If the functions #>: R —»• K and g: JxK -> IR satisfy the following hypotheses:

(cpO) cp is an increasing homeomorphism;
(gO) for each x € K the function g(-, x) is measurable, and

limsupg(r, y) 5 #( ' .*) 5 liminf #(/, y) fora.e. r e 7;

(A) (2.1) has a lower solution u and an upper solution 17 such that t< < T7, and g is
L'-bounded in the set Q = {(r, x) \ t e J, u(t) < x < u(t)},

we prove that there exists the least and the greatest among those solutions u of (2.1)
for which u(t) < u(t) < u(t) on J. Replacing (A) by the following condition:

(g<P) lg('.*)l < Pi (Ot(\<P(x)\) for all x € R and a.e. t e J, where/?, e L |(7) ,
the function iff : IR+ —>• (0, oo) is increasing and /0°° dx/\//(x) = oo,
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we prove that (2.1) has extremal solutions, and that they are increasing with respect to
g and ;to- When g is nonnegative-valued we give a localised version to condition (gO),
which also allows downward jumps for g(r, •)• Conditions ensuring one-sided conti-
nuities for the dependence of extremal solutions of (2.1) on g and x0 are also given.

The obtained results are then shown to hold for the IVP

n'(r) = q(u(t))g(t, H ( 0 ) a.e. in J, u(t0) = x0,

where q : K -» (0, oo), if condition: (<p0) is replaced by the following condi-
tion.

(qO) q and \/q belong to L£(R), and /0
±o° dz/q(z) = ±oo.

Finally, examples and counter-examples are given to illustrate the obtained results
and the need for the given hypotheses.

REMARKS 2.1. Conditions (gO) and (qO) allow the functions g and q to be dis-
continuous. Condition (gO) holds, for example, if g is a Caratheodory function or
if g{t, x) is measurable in t for all x € K and increasing in x for a.e. t € J. Thus
sup-measurability of g is not assumed.

Condition (<p0) ensures only continuity of <p o w when u € C(J). If (p is locally
absolutely continuous, then <p' is locally Lebesgue integrable, and condition (<p0) holds
if and only if <p' is a.e. positive-valued and f0 °° <p'(x) dx = ±00.

2.2. Preliminaries We begin with a result due to Hassan and Rzymowski, 1999,
which forms a basis for the proofs of our main existence results for (2.1).

THEOREM 2.1 ([5, Theorem 3.1]). Letf : J x l -> Rbe an Ll-boundedJunction
which satisfies the following condition:

(HR) For each x e R the function f (-,x) is measurable, and

limsup/(f, y) <f(t, x) < liminf/(r, y) for a.e. t e J.

Then the IVP

u\t) = f (t, ii(0) for a.e. t € J, u(t0) = xo (2.2)

has extremal solutions in A C(J)for each XQ 6 K.

The next lemma makes condition (g<p) useful in proving global existence results.

LEMMA 2.1 ([12, Lemma 1.5.3]). Given J = [to, t]] and an increasing function
xjr : K+ ->• (0, 00) for which /0°° dx/ir(x) = 00, then for all fixed p e L\.{J) and
w0 e K+ the IVP

w'(t) = p(t)^(w(t)) for a.e. t e 7, w(t0) = w0
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has a unique solution w 6 A C(J). Moreover, ifveA C(J) satisfies the inequality

v(t) <wQ+ p(s)f(v(s))ds, t 6 J,

then v(t) < w{t)for all t e J.

Next we shall show that (2.1) can be converted to the IVP

v'O) = g(t,(p-\v(t))) a.e. in 7, v(t0) = <p(x0). (2.3)

LEMMA 2.2. If condition (<pO) holds, then u e Y is a lower solution, an upper
solution or a solution of (2.1) if and only if v = <p o u is a lower solution, an upper
solution or a solution of the IVP (2.3), respectively.

PROOF. If u € Y is a lower solution of (2.1), then v = <p o u e AC(J), and

v'(t) = —<p(u(t)) < g(t, M(0) = g(t, (p-l(v(t))) a.e. in J.
dt

Moreover, since u(t0) < x0 and <p is increasing, then v(t0) = (p(u(to)) < <p(x0),
whence v is a lower solution of the IVP (2.3).

Conversely, let v e A C(J) be a lower solution of (2.3). Then u = cp~x ov € C(J)
by condition (^0), and <p o u = v e A C(J), whence u e Y, and

—(p(u(t)) = v'(t) < g(t, <p-\v(t))) = g(t, u(t)) a.e. in J.
dt

Since v(t0) < >̂(JCO) and <p~l is increasing, then u(to) = (p~l(v(t0)) < <p~' (<p(x0)) = x0.
Thus u is a lower solution of the IVP (2.1).

Similar reasoning shows that u e Y is a solution or an upper solution of (2.1) if
and only if v = <p o u is a solution or an upper solution of (2.3), respectively.

2.3. Existence and comparison results Denote by < the pointwise ordering of
C ( J ) . I f M , 77 6 C ( J ) a n d u < u , d e n o t e [ u , u ] = { u e C ( J ) \ u < u < 7 7 } .

We now prove our first existence and comparison result for (2.1).

THEOREM 2.2. Assume that conditions (<p0), (gO) and (A) hold. Then the IVP (2.1)
has the least solution u, and the greatest solution u* in [u, 77]. Moreover,

I M,(r) = min{u+(r) | «+ is an upper solution of (2.1) in [u, 77]},
_ (2-4)

u*(t) = max{H_(r) | «_ is a lower solution of (2.1) in [u, u]}.
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PROOF. Condition (A) and Lemma 2.2 imply that the functions v = <p o u and
7J = <p o 77 are lower and upper solutions of the IVP (2.3), and that v. < v. If t e J and
x € [v(t), v(t)], then <p~x(x) e [K(0> «<(0]- This result and condition (A) ensure the
existence of an M e Ll(J) such that \g(t, cp'^x))] < M(t) fora.e. t e J and for all
x € [v(r), v(t)]. Thus the function / : J x K ^ K , defined by

f(t,x):= u(r) <x< v(t), t e J, (2.5)

x > v(t),

is L1-bounded. Applying conditions (gO) and (<pO) it is also easy to see t ha t / has the
properties given in condition (HR). It then follows from Theorem 2.1 that the IVP

v\t) = / (t, v(t)) for a.e. t e J, v(t0) = <p(xQ), (2.6)

has the least solution vt and the greatest solution v*. To prove that vt and v* are
extremal solutions of (2.3) in [v_, v] we show that every solution i; of (2.6) belongs to
the order interval [t;, F]. For if i; ^ v, there exist a,b e J, a < b, such that

= v(a) and v(t) < v(t) on (a, b]. (2.7)

Since u is a solution of (2.6) with / defined by (2.5), we obtain

v'(r) - i/(r) = \/(t) -f{t, v(t)) = v'(r) - u'(0 = 0 for a.e. t e (a, b).

Thus u(f) - v(r) = v(a) - v(a) + /fl'(v'(^) - v'(s))ds < 0, t e {a, b], which
contradicts (2.7), and hence implies that v_ < v. Similarly, it can be shown that if
v is a solution of (2.6), then v < v. This and (2.5) imply that v is a solution of
(2.6) if and only if v is a solution of (2.3) in [v_, V]. This proves that vt and w* are
extremal solutions of (2.3) in [v_, v]. Since <p~x is strictly increasing, it then follows
by Lemma 2.2 that «, = (?"' o D, and u* = cp'1 o v* are extremal solutions of (2.1) in
[«, 77]. To prove (2.4), let u+ be an upper solution of (2.1) in [u_, 77]. Replacing 77 by
M+ in the above proof it follows that the IVP (2.1) has a solution u e [i£, u+] c [u, 77].
But u, is the least of all the solutions of (2.1) in [£, 77], so that ut < u+. Similarly, it
can be shown that if «_ is a lower solution of (2.1) in [i<, 77], then M_ < u*. Noticing
also that ut is an upper solution and u* a lower solution of (2.1), we obtain (2.4).

REMARKS 2.2. In the case when

g(t, x) = \ ' x > tf
 t e J = [0, 1], x e R, <p(x) = x and x0 = 0,

1. x < t,
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condition (gO) does not hold although for these g, <p and x0 the IVP (2.1) has a unique
solution u(t) = t,t e J (see [5, Example 1.2]). However, by the proof of Theorem 2.2
it suffices for given xQ e K to assume that condition (gO) holds for a.e. t e J and
whenever u(t) < x < 77(/)- This holds in the above case when we choose u(t) = 0
and 77(0 = t,t e J.

As an application of Lemmas 2.1 and 2.2 and Theorem 2.2 we shall now prove the
following generalisation to Theorem 2.1.

THEOREM 2.3. Assume that the functions <p : K -> K and j : y x R - > i satisfy
conditions (<pO), (gO) and (g<p). Then the IVP (2.1) has for each x0 e K the least
solution u* and the greatest solution u*. Moreover,

I ut(t) = min{u+(t) | u+ is an upper solution of (2.1)},
(2.8)

M*(0 = max{«_(0 | M_ is a lower solution of (2.1)}.

PROOF. Letjco e K be given. Choose w0 e K so that \<p(xo)\ < w0. If v e AC(J)
is a solution of (2.3), it follows from condition (g<p) that

< Pi W^du(OI) a.e. in / .
Thus

< \<P(xo)\+ I W(s)\ds <wo+ f Pl(s)i,(\v(s)\)ds

for all t e J. This implies by Lemma 2.1 that \v(t)\ < w(t) on J, where w is the
solution of the IVP

w'(t) = p\(t)\jr(w(t)) a.e. in J, w(t0) = w0. (2.9)

Moreover, applying (g<p) and (2.9) we obtain \g(t, <p~l(x))\ < p\{t)ir(w(t)) = w'(t)
for a.e. t e J, and for all x e [—w(t), w{t)]. This implies that — w and it; are lower
and upper solutions of (2.3).

The above proof and Lemma 2.2 imply that u = <p~x o (—if) and 77 = <p~x o w
are lower and upper solutions of the IVP (2.1), and that all the solutions of (2.1)
belong to the order interval [_w, 77]. Moreover, if t e J and x € L M W . ^ W L then
<p(x) € [—w(t), w(t)], so that for a.e. t e J and for all x e [u(t), u(t)],

\g(t,x)\ = \g(t,<p-\<p(x))\ < Pl(t)ir(w(t)) = w'(t).

Thus condition (A) holds, whence the IVP (2.1) has by Theorem 2.2 extremal solutions
u, and u* in [i£, 77]. Because all the solutions of (2.1) belong to [u_, 77], then ut and
M* are the extremal solutions of (2.1). To prove the last assertion, let u+ be an upper
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solution of (2.1). Choose w0 above so that —w0 < <p(u+(t)) on J. Then — w <(pou+,
whence u < u+, so that the IVP (2.1) has by Theorem 2.2 a solution u e [u, u+]. But
ut is the least of all the solutions of (2.1), so that ut < u+. Similarly one can show
that if «_ is a lower solution of (2.1), then «_ < u*. Since u, is an upper solution and
u* a lower solution of (2.1), we obtain (2.8).

In spite of its generality, condition (gO) does not allow the function g(t, •) to have
jumps downwards if t belongs to a complement of a fixed null-set of J. However, if g
is nonnegative-valued, (gO) can be replaced by a localised version which allows also
the jump-discontinuities mentioned above, as shown in the next theorem.

THEOREM 2.4. Assume that cp : K - • R has property ((pO), and that g : J x D& -> I
satisfies the following conditions:

(gOl) g(-, x) is measurable and nonnegative-valued for each x e KL
(gO2) For each (s, z) e [to, h) x K there exist positive constants S and e such that
l i m s u p ^ g(t, y) < g(t, x) for a.e. t e [s, s + S] and for all x € (z,z + e], and
g(t, x) < liminf^, g(t, y)fora.e. t e [s, s + S] and for all x 6 [z, z + e).

(a) If condition (A) holds, then the IVP (2.1) has the least solution H» and the
greatest solution u* in the order interval [u, 77], and (2.4) holds.
(b) If condition (g<p) holds, then (2.1) has for each x0 6 K extremal solutions,

and (2.8) holds.

PROOF. Consider first the IVP

u'(t) = g{t, u(t)) for a.e. t e J, u(t0) = x0, (2.10)

where g is bounded by p\ 6 Ll
+(J) and has properties (gOl) and (gO2), and where

x0 € U. is given. Choose S > 0 and e > 0 such that (gO2) holds when (s, z) = (/b. *o).
and denote Jo = [t0, to -f $]• We may also assume that fhp\{t)dt < e. Thus a
function / : Jo x K -> R, defined by

/ (r, x) := ^(r, max{^0, min{x, x0 + e}). t € Jo, x € R,

satisfies the hypotheses of Theorem 2.1 when 7 is replaced by yo> whence the IVP (2.2)
has extremal solutions «» and u* on Jo- Since g is nonnegative-valued, the above
choices of S and e and the definitions of 70 a n d / ensure that (2.2) and (2.10) have the
same solutions on Jo. In particular, ut is the least solution of (2.10) on Jo. Denote

ti = sup(f3 e J | (2.10) has the least solution ut on [to, t)]}.

Obviously t2 = t\, for otherwise we could repeat the above reasoning when (s, z) =
(h, u*(W), and obtain a continuation of ut to an interval Jt = [to, t2 + S], which
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contradicts the choice of t2. This proves that (2.10) has the least solution on J, the
proof for the existence of the greatest solution being similar. The proofs of (a) and (b)
are then similar to the proofs of Theorems 2.2 and 2.3.

2.4. Dependence on data As a consequence of Theorem 2.3 we obtain the following
result.

PROPOSITION 2.1. If conditions (<p0), (gO) and (g<p) hold, then the IVP

^-<p(u(t)) = g(t, u(t)) + h(t) for a.e. te J, u(t0) = x0, (2.11)
dt

has for all h 6 Ll(J) and x0 € R extremal solutions and they are increasing with
respect to x0, h and g.

PROOF. Given xo,xo e R, h,h € L\J) and g, g : J x R -> K, assume that g
and g have properties (gO) and (g<p), and that x0 < x0, h < h and g(-,x) < g(-,x)
for all JC € R. The functions (t,x) h-» g(t, x) + h(t) and (t, x) h-> |(r, A:) + h(t)
satisfy condition (gO), and also condition (ĝ >) when p i and \jf are replaced by t —>
/7i(r) + |/i(0l + IM0I and z —> iA(z) + li respectively. Denoting by « the least
solution of the IVP

^ ? ( K ( 0 ) = l a . «(0) + *(0 for a.e. t € 7, «(r0) = Jc0, (2.12)
dt

it follows from the above hypotheses that ti is an upper solution of (2.11). This and
(2.8) imply that u, < u. Similarly, it can be shown that if u is the greatest solution of
(2.12), then u* < u, which concludes the proof.

Next we shall prove a result concerning right-continuity of the greatest solution of
(2.1) with respect to x0 and g.

PROPOSITION 2.2. Let <p : K -> K satisfy condition (<p0), let gn : J x R ->• R,
n = 1, 2, . . . . be a decreasing sequence of functions which all satisfy the hypotheses
(g<p) and (gO) when g = gn, let a function g : J x K -> R have properties (g<p)
and

(gl) for each x 6 R the function g(-, x) is measurable, and

limsupg(f, y) < g(t, x) = \\mg(t, y) for a.e. t € J,

and assume that the following condition holds:

(gn) lim sup (gn(s, x) — g(s, x)) = 0 for a.e. s e J and all a, b € R, a < b.
n°°
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!f(xn)™=l is a decreasing sequence converging to x0 € K, then the IVPs

d
—<p(u{t)) = gn(t, «(/)) a.e. in J, u(t0) = xn (2.13)
at

have greatest solutions un, which converge uniformly on J to the greatest solution u*
of the IVP (2.1).

PROOF. The proof of Theorem 2.3 ensures that the IVP

v\t) = gn{t,<p-\v{t))) a.e. in J, v(t0) = <p(xn) (2.14)

has for each n = 1, 2 , . . . the greatest solution vn. If n < m, then xm < xn and
gm(t, <p~\x)) < gn(t, (p~x(x)) in J x R, so that vm is a lower solution of (2.14). Thus
vm 5 vn by Theorem 2.3 and Lemma 2.2, whence the sequence (vn)™=l is decreasing.
Denote w0 = sup{\cp(xn)\ | n = 1, 2 , . . . } , and let w be the solution of the IVP

w'(t) = pi (t)f(w(t)) a.e. in J, w(t0) = w0. (2.15)

Applying condition (g<p) we obtain for each n = 1, 2, . . . and for all t e J,

f C
I MO I < W(xn)\ + I \gn(s,<p-\vn{s)))\ds <wo+ Pl(sW(\(vn(s)\)ds.

Jta Jta

This implies by Lemma 2.1 that |vn(r)| < w(t) for each t e J and for each n =
1, 2, In particular,

vn(t) e [-tu(f,), iy(r,)] for all n = 1, 2 , . . . and t e J. (2.16)

If k < a < b < t\, we have for each n = 1, 2 , . . . ,

C -'
~ Ja

(2.17)

Thus the sequence (vn)£li is decreasing, uniformly bounded by (2.16) and equicon-
tinuous by (2.17), whence it converges uniformly on J to a function v which has the
property \v(b) — v(a)\ < \w(b) — w(a)\, a,b e J. In particular, u € AC(J). It
follows from (2.16) when n -»• oo that u(r) e [-iu(?i), iy(?i)] for all r € 7. Since
go(t, •) is by (gl) right-continuous for a.e. t e J, since the sequence (#>"' o vn) is
decreasing and converges uniformly <p~l ov, and since condition (gn) holds, then

gn(s, (p'^Vnis))) -> ^(5, ̂ "'("(.y))) as n -> oo for a.e. s e J. (2.18)
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Each vn satisfies the integral equation

«U0 = <p(xn) + f gn(s, <p-l(vn(s)))ds, t e J. (2.19)

Because*,, —> xoandvn(t) —> v(t), and since both <p and (p~l are continuous, it follows
from (2.19) when n —> oo, applying also (2.18) and the dominated convergence
theorem, that

/ g ( s , <p l(v
Jto

v(t) = <p(x0) + / g(s, <p-l(v(s)))ds, t e J. (2.20)
Jto

This implies that v is a solution of the IVP (2.3).
Denote by 0 the greatest solution of (2.3). Since v is a lower solution of (2.14) for

each n e N , then v(t) < vn(t), t e J, n = 1, 2 This implies when n -> oo that
v(t) < v(t) on J. The reverse inequality holds since v is a solution of (2.3) and v is
its greatest solution. Thus v = v, that is, u is the greatest solution of (2.3).

The above results and Lemma 2.2 imply that the function un = <p~x o vn is for
each n = 1, 2 , . . . a greatest solution of the IVP (2.13), and that («„) is a decreasing
sequence which converges uniformly to the greatest solution of the IVP (2.1). This
concludes the proof.

REMARKS 2.3. The hypothesis that the sequence (xn)™=i is decreasing is essential.
For instance, if H is the Heaviside function: H(z) = [ Q ̂  , then the IVP

u'(t) = H(u(t)) a.e. in J, «(0) = 0

has u(t) = t as its only solution, and the IVP

u'n(t) = H(un(t)) a.e. in J, un(0) = -l/n

has for each n = 1, 2, . . . a unique solution un(t) = —l/n on J, so that the sequence
(un)^L\ does not converge even pointwise to u on J. This holds also for the solutions
of the IVPs

u'n(t) = //(«„(/) - l/n) a.e. in 7, iiB(0) = l/2n,

so that the result of Proposition 2.2 does not necessarily hold if, instead of (gn), we
assume that the sequence (gn)™=\ 1S increasing and converges pointwise to g.

Proposition 2.2 has an obvious dual for left-continuity of the least solution of (2.1)
with respect tox0 and g.

https://doi.org/10.1017/S1446181100012906 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012906


[11] First-order discontinuous I VPs and B VPs 523

2.5. A special case The IVP

u\t) = q(u(t))g(t, u(t)) a.e. in 7, u(t0) = x0, (2.21)

can be reduced to an IVP of the form (2.1) if q : R —> (0, oo) satisfies one of the
following conditions:

(qO) q and \/q belong to L~ (R), and /0
±o° dz/q(z) = ±oo;

(ql) q e L~ (R), \/q 6 L,10C(R) and f0
±O°dz/q(z) = ±00.

This is shown in the next two lemmas, the first one being an obvious consequence of
the properties assumed for q in conditions (qO) and (ql).

LEMMA 2.3. / / (qO) or (ql) holds, then the function <p : R -> R, defined by

<p(x) = I - ^ 7 . x € R, (2.22)
Jo

is an increasing homeomorphism, its inverse cp ' « locally Lipschitz continuous if
(ql) holds, and both <p and (p~l are locally Lipschitz continuous if (qO) is valid. In
particular, <p satisfies condition (<pO).

LEMMA 2.4. If condition (qO) holds, then u 6 A C(J) w a lower solution, an upper
solution or a solution of (2.21) if and only if u is a lower solution, an upper solution
or a solution of the IVP (2.1), where <p : R -» R is defined by (2.22).

PROOF. Let u be a solution of (2.21). Then u € A C(7), and condition (qO) ensures
that \/q is measurable and locally essentially bounded. Thus an application of [17,
38.3] yields

J u[

i/(0
KM / M IM 1 .» I f 1 -~\

t e J.

This implies that <p o u € A C(J), and that

d , / X N </ fu'(s)ds u'{t)
= g(t,u(t)) a.e. in 7.

Thus M is a solution of the IVP (2.1).
Conversely, let M e K be a solution of (2.1). Then <p o u e A C(J), and since

is locally Lipschitz continuous, u e A C(J). Because

f"U) f"(l) dz f u'(s)ds
<p(u(t)) - <p(u(to)) = / <p'(z)dz = / —— = / , t 6 7,
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we obtain

q(u(s)) q\

Thus u is a solution of the IVP (2.21).
The above proof shows that every solution of (2.21) is a solution of (2.1) and vice

versa. Obvious modifications to the above proof show that problems (2.21) and (2.1)
have the same upper and lower solutions.

According to Lemmas 2.3 and 2.4 the results derived for the IVPs (2.1) and (2.11)
have the following consequences.

PROPOSITION 2.3. The results of Theorems 2.2 and 2.3 hold for the IVP (2.21), and
the results of Proposition 2.1 hold for the IVP

u'(t) = q(u(t))(g(t, u(t)) + h(t)) fora.e. t e / , u(t0) = x0, (2.23)

if we replace the hypothesis (<pO) by condition (qO).

The next result is a consequence of Theorem 2.4.

PROPOSITION 2.4. Assume that the functions q : R -> (0, oo) and g : J x R - • R
satisfy conditions (ql), (gOl), (gO2) and (g<p). Then the IVP (2.21) has for each x0 e R
extremal solutions, and they are increasing with respect to XQ and g.

PROOF. Because g is nonnegative-valued by (gOl), then each solution of (2.21) is
increasing. Hence, applying [17, 38.4] one can show as in the proof of Lemma 2.4 that
u 6 ACU) is a solution of (2.21) if and only if u is a solution of the IVP (2.1), where
<p : R —> R is defined by (2.22). The given assumptions and Lemma 2.3 ensure that
in such a case the hypotheses of Theorem 2.4 are valid, which concludes the proof.

REMARKS 2.4. The function <p : R -> R, defined by <pix) = \x\p~2x, x e R,
satisfies condition i<pO) for each p > 1. But <p is not locally Lipschitz continuous
if p e (1,2), and <p~l is not locally Lipschitz continuous \i p > 2. It then follows
from Lemma 2.3 that the function <p defined above is of the form (2.22), where q has
property (qO) (respectively (ql)), only when p = 2 (respectively p e (1, 2]). Thus
problem (2.1) is more general than problem (2.21).

We can replace ir(\<p(x)\) by \j/(\x\) in condition (gcp) if <p is Lipschitz continuous.
F o r if \<p(x) - <p(y)\ < K\x - y\, A:,y € R, for s o m e K > 0 , then \<p{x)\ <

K\x\ + \(p(0)\, x e R, and the function z t-> yj/iKx + \<piO)\) has the properties
given for \}r in condition (g<p). This holds for q>, defined by (2.22) if \/q is essentially
bounded.
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2.6. Examples and counter-examples

EXAMPLE 2.1. Choose J = [0, 1] and define a function q :

525

(0, oo) by

' 2 4 )

where [*] denotes the greatest integer < x. It is easy to see that q is discontinuous at
n/k1/m for all n e 1, k, m = 1, 2 Moreover, 1 < ^(z) < n*/6 for each z e l ,
so that q has property (qO).

The function

E
m=—oo n = l

where

f(t,x) =

COS(1/(JC - /)) + 2, x > t,

XuO), UC J, x = t,
cos(l/(x - t)) - 2, x < t,

satisfies conditions (gO) and (g<p). It then follows from Proposition 2.3 that the IVP
(2.21) has extremal solutions when q is given by (2.24) and g by (2.25).

If u(t) = t, then/ (•, «(•)) in (2.25) is equal to the characteristic function xu °f U,
which is not measurable if U is nonmeasurable. The set of all the discontinuity points
of g is {(r, t + q) | t e J, q e Q}. This is also the set of discontinuity points of the
function g : J x K -* K, defined by (2.25), where

f(t,x) =

(x - t) cos(l/(x — t)), x > t,

0, .K = t,

cos(l/(;c - 0) - 2, * < t,

which satisfies conditions (ĝ ?) and (gl), assumed in Proposition 2.2.

EXAMPLE 2.2. The points

c(«0, nm) = 1 - 2"m-' - ^ 2-* - m - 2 ]~[ 2-"' - 2-2"1-2

*=0 j=0 ;=0

m,n0, ..., nm 6 N, form a well-ordered set C of rational numbers with min C = 0
and sup C = 1 (see [12, Example 1.1.1]). Define

- . , z- c(n0, ...,nm)
c(n0,..., nm + 1) - c(n0, ...,nm)

c(n0,..., nm) < z < c(n0,..., nm + 1), m,n0 nm € N
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and g(t, x) =f(t + x - [t + x]), t e J = [0, 1], x e K. It is easy to see that g has
properties (gOl), (gO2) and (g<p), so that the IVP

(\()\p2())f( ()[ ] a .e . in J, x(0)=x0(\u(t)\

has by T h e o r e m 2.4 and R e m a r k 2.3 extremal solutions when i o e l and p > 1.

T h e I V P

u\t) = g(t, M(0) a.e. in J, x(0) = 0

has no solution on J = [0, T] for any T > 0 if g is one of the functions

„ v (2, * < > , fl , x < 0 ,
[1/2, * > t, [0, x > 0,

This illustrates the need of the property limsup^ g(t, y)<g(t,x) ^ l iminf^ g(t, y)
for all x 6 K and for a.e. t e / , at least between assumed lower or upper solutions
(see Remark 2.2) or locally (see Theorem 2.4).

The functions <p : K -> R and g : J x K - • R, defined by

, teJ,xeR

satisfy conditions (^0) and (gO) but not condition (g<p). When r0 = 0 and x0 = 1, the
IVP (2.1) can be rewritten in this case as

u\t) = 2tu(t)2 a.e. in / = [0, r,], u(0) = 1.

This IVP does not have any solution in AC(J) if t\ > 1, since the only possible
solution is u(t) = 1/(1 — t2). Thus condition (g^) cannot be omitted in general.

The IVP

—u\t) = 3t2cos\n/t) + tcos2(n/t)sin(n/t) a.e. in / = [0, T], u(0) = 0
at

is of the form (2.1), where

<p(x)=xi, g(t,x) = 3 / 2 cos 3 (^ / r ) + rcos 2 (xr /0s in(^ /0 , teJ,xeR.

Here <p and g satisfy conditions (<p0), (gO) and (g<p). It is easy to see that the only
possible solution is

itcos(n/t), f 6 (0, T],
~ jo, t = o.
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Since u e C(J) and <p o u = M3 e AC{J), then u e Y, whence u is a solution in the
sense of Definition 2.1. Since u is not of bounded variation, and hence not absolutely
continuous on J = [0, T] for any T > 0, this example justifies the choice of the
solution set Y in Definition 2.1 to be a subset of C(7).

Constant multiples of the Cantor function (see [15, page 334]) are solutions to the
problem

d ,
—u\t) = 0 a.e. in J = [0, 1], «(0) = 0,
dt

which then has a continuum of solutions which are continuous and monotone, having
no extremal solutions. This justifies the condition <p o u € A C(J) in Definition 2.1.

Existence and comparison results derived in [1,2,4-6,8,12,13,16,18,19] for ini-
tial value problems are special cases of the results derived above when <p is the identity
function.

3. Existence results for first-order boundary value problems

In this section we present existence and comparison results for first-order discon-
tinuous differential equations equipped with discontinuous, implicit and functional
boundary conditions. Some results of Section 2 are used in the proofs.

3.1. Hypotheses and preliminaries Consider the boundary value problem

4-<p(u(0) = g{t, u{t)) a.e. in J = [t0, r,], B(u(t0), u) = 0, (3.1)
dt

where g : 7 x K - > l , ^ : K - > K a n d B : R x C(J) -+ K. We assume that C(7)

is equipped with the pointwise ordering <.

DEFINITION 3.1. We say that a function u e C(J) is a lower solution of (3.1) if
<p o u e AC(J) and

d
-r(p(u(t)) < g(t, u(t)) a.e. in J, B(u(t0), u) < 0,
dt

and an upper solution of (3.1) if the reversed inequalities hold. If equalities hold, we
say that u is a solution of (3.1).

The following hypotheses are imposed on the functions <p, g and B:

(<p0) <p is an increasing homeomorphism;
(gO) For each x e K the function g(-,x) is measurable and limsupytt g(t, y) <

g{t, x)'< liminfy|X g(t, v) for a.e. t e J;
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(BO) For each x e R the function B(x, •) is decreasing and liminf>tJ B(y, u) >
B(x, u) > limsupyU B(y, u) for all « e C(J).

Moreover, if

(A) (3.1) has a lower solution i£ and an upper solution 77 such that u < 77, and g is
L'-bounded in the set Q = {(r, x) e J x R | i£(r) < x < 77(r)},

we prove that there exists the least and the greatest among those solutions of (3.1)
which belong to the order interval [.M, 77] = {« € C(J) \ u < u < 77}.

If condition (A) is replaced by conditions

(g<P) \gO,x)\ <pt (t)f(\cp(x)\) foralU e K and for a.e. t e / , where/>, € L]
+(J),

the function r/f : K+ ->• (0, oo) is increasing and /0°° dx/\lr(x) = oo;
(Bl) \x - B(x,v)\ < c\x\ + d for all (x, v) e R x C(7), where c e [0,1) and

d> 0,

we prove that (3.1) has extremal solutions, that is, the least and the greatest of all its
solutions, and that they are increasing with respect to g and decreasing with respect
to B.

These results are then applied to the BVP

«'(0 = q(u(t))g(t, M(0) a.e. in J, B(u(t0), u) = 0. (3.2)

Existence of the extremal solutions of (3.2) is also proved under growth conditions
which are different to (gcp) and (Bl). Examples are given to illustrate the obtained
results.

REMARK 3.1. No continuity hypotheses are imposed above on g and B.

The following two lemmas are used in the proof of our first existence result.

LEMMA 3.1. Assume that condition (BO) holds. If U\,... ,un are solutions of the

BVP (3.1), then m a x { w i , . . . , un] is a lower solution of (3.1), and mm{u\, . . . , « „ } is

an upper solution of (3.1).

PROOF. Assume that u\,... ,un are solutions of the BVP (3.1). Since M, 6 C(J)
and <p o ui e A C(J) for each i = 1, . . . . n, and since <p is strictly increasing, then
u = maxfM], . . . , « „ } belongs to C(J) and <p o u — ma\[<p o w,, . . . , <p o un] belongs
to A C(J). Moreover, it is easy to show that

d
—<p(u(t)) = g(t, u(t)) a.e. in J.
dt

Condition (BO) implies that if «,(fo) = max{ui(*b), • •, un(t0)}, then

B(u(to), u) = B(M,(r0), u) < B(Ui(t0), u^ = 0.
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Thus u = max{wi, . . . , un] is a lower solution of the BVP (3.1). The proof that
min{Mi, . . . , un] is an upper solution of (3.1) is similar.

LEMMA 3.2. If the hypotheses (gO), (<pO) and (A) are valid, and if v and u> are
lower and upper solutions of (3.1) such that u<v<w<u, then the IVP (2.1) has
for each x0 e [v(to), w(t0)] extremal solutions in the order interval [v, w]. This result
holds also when condition (gO) is replaced by conditions (gOl) and (gO2) given in
Theorem 2.4.

PROOF. The assertions are immediate consequences of Theorems 2.2 and 2.4.

3.2. Existence of extremal solutions of (3.1) in [u_, 77] We shall first prove that the
BVP (3.1) has at least one solution between the assumed lower and upper solutions u
and 77.

PROPOSITION 3.1. If the hypotheses (cpO), (BO) and (A), and either (gO) or (gOl)
and (gO2) are valid, then the BVP (3.1) has a solution in the order interval [u, 77].

PROOF. The set X = [x0 e [i£(fo). u(t0)] | (2.1) has a solution u e [i£, 77] for which
B(u(t0), u) < 0} is nonempty, because (2.1) has for x0 = u(to) a solution u in [M, 77]
by Lemma 3.2, and condition (BO) implies that

fl(iiOb), «) = B(u(to), u) < B(u(to), u) < 0.

Denote x* = supX, and let (xn)™=0 be an increasing sequence in X which converges
to x*. The definition of X allows us to choose for each n e N a function vn € [j£, 77]
such that <p o vn € A C(J) and

d
—<p(Vn(0) =g(t,vn(t)) a.e. in J, vn(to) =xn and B(vn(to), vn) < 0. (3.3)
dt

We may assume that (vn)™=0 is increasing, for otherwise we obtain an increasing
sequence (un)^L0 in [M, 77] by defining un = max{uo> • • •. vn), and as in the proof of
Lemma 3.1 it can be shown that (3.3) holds when vn is replaced by un. Condition (A)
implies the existence of a function M e L\J) such that

d
-r<p(vn(t)) = \g(t, vn(t))\ < M(t) a.e. in J,
dt

whence \(p{vn{ti))-<p{vn{tz))| < /('
3 M(t)dt for all t2, /3 € J,t2< r3. Thus (<poun) is

an absolutely continuous and increasing sequence in [<pou, <poH]. This and condition
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(<p0) imply that (vn) is an increasing sequence in \j±, 77], so that it converges to a
function v : J -*• K o n / . When n -*• <x> in the above inequality we obtain

\<p(v(t3)) - <p(v(t2))\ < f3 M(i)dt for all r2l r3 g J, r2 < r3.

This implies that y> o v e AC(./), whence t> e C(7) by condition (<p0). It follows
from (3.3) that (p(vn(t3)) - (p(vn(t2)) = / * g(t, vn(t)) dt for all n g N and t2, h e J,
(2 < (3. Allowing n to tend to infinity and applying Fatou's lemma we obtain

/

" d /""

—<p(v(t))dt = ^>(u(f3)) — ^(u(^)) 5 / limsupg(r, vn(t))dt
£*t J / ; R-+0O

for all f2, '3 ^ •/» h < r3. In view of this inequality and condition (gO) we get
d
—<p(v(t)) < limsupg(r, vn(t)) < limsupg(r, y) < g(t, v(t)) a.e. in J. (3.4)
dt n-»oo yt»(')

The last inequality of (3.3) and condition (BO) ensure that

B(vn(to), v) < B(vn(t0), vn) < 0 for all n e N.

These inequalities and another application of condition (BO) yields

B(v(t0), v) < liminf B(y,v) < liminf B(un(f0), v) < 0,
>t"('o) n-»oo

which, together with (3.4), implies that v is a lower solution of (3.1).
To prove that the BVP (3.1) has a solution in the order interval [v, 77], assume first

that x* = v(t0) = u(t0). Then the IVP (2.1), with x0 = x*, has by Lemma 3.2 a
solution u in [t>,77]. Since M(/0) = v(tQ) = 77(*b) and v < u < 77, condition (BO)
implies that

0 > B(v{t0), v) > B(u(t0), u) > B(u(to),u) > 0.

Thus B(u(t0), u) = 0, and since u is a solution of (2.1) when x0 = x*, then u is also
a solution of (3.1) in [v, 77] C [u, 77].

Assume next that x* = i>(r0) < 77(r0), and choose a decreasing sequence (yn) from
[>*, 77(r0)] which converges to x*. Dual arguments to those used in the construction
of the sequence (vn) above show the existence of a decreasing sequence (wn) in the
order interval [v, 77] such that each <p o wn belongs to A C(J) and

d
—<p(wn(t)) = g(t, wn(t)) a.e. in J, wn(to) = xn and B(wn(to), wn) > 0,
dt

and which converges on J to an upper solution w of (3.1). Since v(to) = w(t0) and
v < w, then replacing 77 by w in the above reasoning when v(to) — 77(f0) one can
prove that the BVP (3.1) has a solution in [v, w] C [u, 77]. This concludes the proof.
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Now we are ready to prove the main result of this subsection.

THEOREM 3.1. If the hypotheses (<pO), (BO) and (A), and either (gO) or (gOl) and
(gO2) are valid, then the BVP (3.1) has extremal solutions ut and u* in the order
interval [u, 77]. Moreover,

I ut(t) = min{«+(0 | u+ is an upper solution of (3.1) in [u_, 17]},

u*(t) = max{«_(r) | M_ is a lower solution of (3.1) in [u, 77]}.

PROOF. Denote S = {u e C(J) | u is a solution of the BVP (3.1) in [u, 77]}, and
define a mapping w : J -> K by w(t) := supueS u(t), t e J. Let D = {tj}jeN be a
dense subset of J, and choose for each j e N a sequence (ui)£i0 from the solution
set S such that lim^oo v*k(tj) = w(tj), j e N. It follows from Lemma 3.1 that the
functions D, : 7 -> K, n e N, defined by vn{t) = max{i^(r) | j , k e {1, . . . , n}},
t € J , are lower solutions of (3.1). Moreover, (vn)™=0 is an increasing sequence in
[i/, 77]. It can be shown as in the proof of Proposition 3.1 that the sequence (vn)£lo
converges on J to a lower solution v of (3.1). The above construction implies also
that v e [u,Ti], and that

v(tj) = w{tj) = sup u(tj) for each j e N. (3.6)
ueS

In particular, the hypotheses of Proposition 3.1 hold when u_ is replaced by v, whence
the BVP (3.1) has a solution u* in [v, 77]. Thus u* € S and v < u*. These relations
imply by (3.6) that if u is any solution of (3.1) in [i£, 77], then

u(tj) <w(tj) = u*(tj), j € N.

Since D — [tj } j e N is a dense subset of J, it then follows that u(t) < u*(t) on J. Thus
u* is the greatest solution of the BVP (3.1) in [i/, 77].

The proof that the BVP (3.1) has the least solution ut in [i±, 77] is similar. To prove
(3.5), let u+ be an upper solution of (3.1) in [«, 77]. Replacing 77 by u+ in the above
proof it follows that the BVP (3.1) has a solution u e [u, u+] c [u, 77]. But «« is the
least of all the solutions of (3.1) in [u_, 77], so that ut < u+. Similarly, it can be shown
that if M_ is a lower solution of (3.1) in [«, 77], then «_ < u*. Because ut is an upper
solution and u* a lower solution of (3.1), we obtain (3.5).

3.3. Existence of extremal solutions of (3.1) As an application of Lemma 2.1
and Theorem 3.1 we now prove a result which guarantees the existence of least and
greatest solutions among all the solutions of problem (3.1).
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THEOREM 3.2. Assume that the functions <p : R -+ R, j : ; x I -> I and
B : K x C(J) -> K jaft"^ conditions (<pO), (gO), (g<p), (BO) a/ui (Bl). Then problem
(3.1) /ias rAe Zecwr solution ut and the greatest solution u*. Moreover,

Iw»(0 = min{w+(f) | u+ is an upper solution of (3.1)},

u*(t) = max{M_(f) | «_ is a lower solution of (3.1)}.

These results hold also when condition (gO) is replaced by conditions (gOl) and (gO2).

PROOF. Assume first that u is a solution of (3.1). Applying (3.1) and conditions
(Bl) and (g<p) we obtain

l«(«b)l = I«(«B) ~ B(u(to), u)\ < c\u(k)\ + d, that is, |M(r0)| < d/(l - c),

and
d
, T,--,-,, = \g(t, «(0)l <Pi(t)r//(\<p(u(t))\) a.e. in

at

By choosing w0 e IR so that — w0 < <p(-d/(l — c)), (p(d/(l — c)) < w0, we obtain

/" f
\<P(u(0)\ < l<p(«('o))l+ / Pi(s)\fr(\<p(u(s))\)ds <wo+ I p

for all t e J. This implies by Lemma 2.1 that |<p(«(r))| < w(t) on 7, where w is the
solution of the IVP

), a.e. in J, w(t0) = w0. (3.8)

Defining

u(t) = <p~1(-w(t)), t 6 J, and M(0 = <p~\w{t)), t € 7, (3.9)

the above considerations, choice of w0 and condition (<p0) imply that u 6 [M, 17].
Next we shall show that i± and 17 are lower and upper solutions of (3.1). Since u;,
as a solution of (3.8), belongs to AC(J), it follows from (3.9) that <p o u = —w
and (p o 77 = w belong to A C(J). Thus u and 17 belong to C(J) by condition
Applying (ĝ >), (3.8) and (3.9) we obtain

^ ( u ( / ) ) = - u / ( 0 = - M O V ' M O ) = -Pi(t)iK\<p(u(t))\) < g(*,u(t))
at

and

dt

for a.e. t e J. The choice of w0 and monotonicity of <p~] imply that

\ - c), dl(\ - c) < '
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Hence

-B(u(to), IT) = u(to) - B(H(to), u) - u(t0)

< c\u(to)\ + d- u(t0) = cu(t0) + d- u(t0) < 0

and

B(u(t0), M) = M(r0) + B(M(r0), «) - H(/O)

< c\u(to)\ + d + u(to) = -cu(t0) + d + u(to) < 0.

Moreover, applying (g^), (3.8) and (3.9), we see that

\g«,x)\ < pt(t)i,(\<p(x)\) < Pl(t)is(w(t)) = w'(t)

for a.e. t e J, and for all x e [u(t), 17(01. whence condition (A) holds.
The above proof shows that the hypotheses of Theorem 3.1 are satisfied, whence

problem (3.1) has extremal solutions ut and u* in [u, «]. Because all the solutions
of (3.1) belong to [u_, u], then ut and u* are the extremal solutions of (3.1). To
prove (3.7), let u+ be an upper solution of (3.1). Choose d in condition (Bl) so
that —d/{\ — c) < (p(u+(t)) on J. Then — w < (p o u+, whence u < u+, so that
problem (3.1) has by Theorem 3.1 a solution u e [u, u+]. But u* is the least of all the
solutions of (3.1), whence « » < « + . Similarly, it can be shown that if M_ is a lower
solution of (3.1), then u_ < u*. Noticing also that w* is an upper solution and u* a
lower solution of (3.1), we obtain (3.7).

As a consequence of Theorem 3.2 we obtain the following result.

PROPOSITION 3.2. If conditions (<p0), (BO), (Bl), (gO) and (g<p) hold, then the
problem

^<p(u(t)) g(t,u(t)) + h(t) fora.e. t e J, B(u(to),u) = O (3.10)
dt

has for all h € Ll(J) extremal solutions and they are increasing with respect to h and
decreasing with respect to B.

PROOF. Given h,he L\J) and B, B : J x C(J) -> K, assume that B and
B have properties (BO) and (Bl), and that h < h and B(x, u) > B(x, u) for all
(x,u) € RxC(J). The functions (t, x) i-> g(t, x) + h(t) and (t, x) (-• g(t,x) + h(t)
satisfy condition (gO), and also condition (g<p) when p\ and ty are replaced by t H>
P\(t) + \h(t)\ + \h(t)\ and z i-> if(z) + 1, respectively. Denoting by u the least
solution of the problem

^<p(u(t)) = g(t, u(0) + h(t) for a.e. t e J, B(u(t0), u) = 0,
dt
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then M is an upper solution of (3.10). This and (3.7) imply that «« < u. Similarly, it
can be shown that if u is the greatest solution of (3.10), then u* < u, which concludes
the proof.

EXAMPLE 3.1. Choose J = [0, 1] and consider the problem

H(u{t)-4t)-

["(0)] ,

a.e. in J,

(3.11)

where H is the Heaviside function and [x] denotes the greatest integer less than or
equal to*. Problem (3.11) is of the form (3.1) with

B(x,u) =x -

= H(x-4t)

[x]

[x]

2[fiu(t)dt]

IWI 1 + [/o

t 6 J,X € R ,

x e K, u e C{J).

It is easy to see that the hypotheses of Theorem 3.2 hold, whence problem (3.11)
has the least solution ut and the greatest solution u*. These extremal solutions can be
determined by using numerical integration methods and inference. Denoting by Xw
the characteristic function of W c R, we get the following representations for ut

and «*:

M O = (-9/4-3r/4);r[o..i(0, teJ,

u*{t) = (13/6 + 5r/3) X[o,./2](0 + (17/8 + It/A) X[i/2.i7/i8j(0

+ (221/72 + 3r/4)x(i7/i8.ii(0, t e J.

The function «(r) = 0 is also a solution of (3.11).

3.4. Special cases In this subsection we shall consider solvability of the BVP (3.2)
where g : J x OS -» R, q : K -> (0, oo) and B : K x C(7) -> R. A function
u e A C(J) is said to be a Zower solution of the BVP (3.2) if

< q(u(t))g(t, u(t)) for a.e. f € 7, and ), ") < 0,

and an upper solution if the reversed inequalities hold. If equalities hold, we say that
u is a solution of the BVP (3.2).

Lemma 2.3 and the proof of Lemma 2.4 imply the following result.
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LEMMA 3.3. Assume that q : R —> (0, oo) satisfies the following condition:

(qO) q and \/q belong to L~ (R) and /0
±o° dz/q(z) = ±00.

Then u e AC(J) is a lower solution, an upper solution or a solution of (3.2) if
and only if u is a lower solution, an upper solution or a solution of the BVP (3.1),
respectively, where <p : R —• K is defined by

= ['— •
Jo q(z)

<p(x) = / — , * g R. (3.12)

Moreover, <p satisfies condition

In view of Lemma 3.3 we obtain the following result.

PROPOSITION 3.3. The results of Theorems 3.1 and 3.2 hold for problem (3.2) if
condition (<pQ) is replaced by condition (qO).

The next result gives another sufficient condition for the existence of extremal
solutions of the BVP (3.2).

THEOREM 3.3. Assume that functions g, B and q have properties (gO), (BO) and

(g2) \g(t,x)\ < M(t) + px{t)\x\for a.e. t e J and all x € R, where pu M e

(q2) q is measurable and essentially bounded and - is locally essentially bounded.

Assume also the existence of such constants a > 0 and b, c > 0 and a bounded and
nonnegative linear functional I on C(J) such that

(B2) \B(x,u) -ax + bl(u)\ < c for all x eRandu e C(J);
(Al) a > bl{eP{)), where P(t) = ft \\q\\oopl(s)ds, t e J.

Then the BVP (3.2) has extremal solutions, and all the solutions of (3.2) lie within the
order interval [—w, w], where

f+ f er«'-F"'\M[xM(,s)ds. (3.13)

PROOF. It follows from Lemma 3.3 that we can replace q{x) by min{<7(x),
and hence assume that q(x) < Ĥ Hoo for all x 6 R. It is elementary to verify that w,
given by (3.13), is a unique solution of the BVP

a.e. in J, awfo) - bl{w) = c. (3.14)
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Applying conditions (q2) and (g2) we obtain, for a.e. t 6 J,

w'(t) = \\g\\oo(M(t)+pl(t)w(t))>q(w(t))g(t,W(t))
and

-w\t) = Wqticoi-MiO-pdOwit)) < q(-w(t))g(t, -w(t)).

The boundary condition of (3.14) and condition (B2) imply that

B(w(t0), w) = B(w(t0), w) - aw(to) + bl(w) + c > 0

and

B(-w(to), -w) - B(-w(to), -w) - a(-w(t0)) + bl(-w) - c < 0.

Thus u = — w is a lower solution and 17 = w is an upper solution of (3.2). Moreover
\:g{*, u)\ < M{t) + pi(t)w(t) for a.e. t e J and for all u e [-u>(0> w(01. so that
g is L'-bounded in Q. Thus condition (A) holds when u_ = —w and 17 = to. Since
conditions (gO) and (BO) are assumed to hold, and since (q2) implies the validity of
condition (qO), then the B VP (3.2) has by Proposition 3.3 extremal solutions M» and u*
in [—w, w].

If u is a solution of (3.2), it follows from (3.2) and (g<p) that

u'(s) — ||q||oo/>i(s)u(s) < \\q\\ooM(s) a.e. in J. (3.15)

Multiplying both sides of (3.15) by e~P(s) and integrating from f0 to t, we obtain

u(t)<ePU)u(t0)+ f eP(l)-p(s)\\q\\ooM(s)ds, t e J. (3.16)
J h

In view of condition (B2) and the boundary condition of (3.2), we have

au(t0) — bl(u) = au(to) - bl(u) — B(u(t0), u) < c.

This and (3.16) imply that

c> au(t0) - bl(u)

> au(to) - bl (u(to)e
P()) - bl (z H> J eF(z)-p(s)\\q\\ooM(s)ds\ ,

so that

c + 6 / ( r H>/ ( V
( r ) - / > l

, . , P ( n • (3.17)

It then follows from (3.13), (3.16) and (3.17) that u(t) < w(t) for each t e J, that is,
u < w. Similarly one can show that — w < u, so that u € [-">> w].

The above proof shows that all the solutions of (3.2) belong to the order interval
[—w, w], whence ut and u* are least and greatest of all the solutions of (3.2).
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In the'case when B(x, u) = ax — bu{t\) — c and Iu = u(t\), we get the following
consequence of Theorem 3.3.

PROPOSITION 3.4. If the functions g and q have properties (gO), (g2) and (q2), and
if positive constants a and b satisfy Q p\{s) ds < (l/||«?||oo) ln(a/£>), then the BVP

u'(t) = q(u(t))g(t, u(t)) a.e. in J = [t0, r,], au(to) - feii(r,) = c, (3.18)

has for each e e l extremal solutions.

EXAMPLE 3.2. Let the functions q : R ->• R and g : J x R ->• K, 7 = [0, 1],
be defined by (2.24) and (2.25). It follows from Example 2.1 that q and g satisfy
conditions (q2), (gO) and (g2) when p,(t) = 0 and M{t) = 9.

The function

B(x,u) = 2x -
m——oo n—\

where

cos(lA) - 2, x > 0,

0, x = 0,

cos(l/x) + 2, x < 0,

satisfies conditions (B0) and (B2) when a = 2, b = 1, c = 9 and /(«) = / , H(0 df.
Also condition (Al) holds. Thus the BVP (3.2) has for these functions q, g and B
extremal solutions by Theorem 3.3.

REMARKS 3.2. The results of this section generalise those derived in [11,12,14] for
periodic boundary value problems, in [7,10] for problems with nonlinear boundary
conditions, and in [9,18] for problems with functional boundary conditions when
(p(x) = x, except that the lower and upper solutions are of a more general type in [18]
than in Definition 3.1.
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