INEQUALITIES FOR A CLASS OF TERMINATING GENERALISED HYPERGEOMETRIC FUNCTIONS

by T. M. MACROBERT
(Received 3rd February, 1949)

§ 1. Introductory. By applying Gauss's Theorem it can be seen that, if n is a positive integer and α is not integral,

$$
\left.\begin{array}{rl}
F\left(\begin{array}{c}
-n, \delta-n ; \\
\alpha-2 n
\end{array}\right. & 1
\end{array}\right)=\frac{\Gamma(\alpha-2 n) \Gamma(\alpha-\delta)}{\Gamma(\alpha-n) \Gamma(\alpha-\delta-n)}=\frac{\Gamma(1-\alpha+n) \Gamma(1-\alpha+\delta+n)}{\Gamma(1-\alpha+2 n) \Gamma(1-\alpha+\delta)}
$$

so that

$$
\begin{equation*}
F\binom{-n, \delta-n ; 1}{\alpha-2 n} \sim \frac{2^{\alpha} \Gamma\left(\frac{1}{2}\right)}{\Gamma(1-\alpha+\delta)} \cdot \frac{n^{\frac{1}{1}-\alpha+\delta}}{2^{2 n}} . \tag{1}
\end{equation*}
$$

In section 2 it will be proved that, if

$$
F(n) \equiv F\binom{-n, \delta-n, \gamma-2 n ; 1}{\alpha-2 n, \beta-2 n},
$$

where α and β are not integers,

$$
\begin{equation*}
|F(n)| \leqq M \frac{n^{\mu}}{2^{2 n}} \tag{2}
\end{equation*}
$$

where μ and M are constants independent of n.
Now, by the Ratio Test, the series

$$
\sum_{n=1}^{\infty} \frac{n^{\mu}}{2^{2 n}} x^{n}
$$

converges absolutely if $|x|<4$. Hence, by the Comparison Test, the series

$$
\sum_{n=1}^{\infty} F(n) x^{n}
$$

also converges absolutely if $|x|<4$.
The formulae

$$
\begin{align*}
& \frac{1}{\Gamma(z+1)} \sim \frac{e^{z}}{\sqrt{ }(2 \pi) z^{z+1}} \tag{3}\\
& \frac{\Gamma(z+\alpha)}{\Gamma(z+\beta)} \sim z^{\alpha-\beta}, \ldots \ldots \ldots . \tag{4}
\end{align*}
$$

where $-\pi<\operatorname{amp} z<\pi$ will be required in the proof; in these formulae the convergence is uniform if

$$
-\pi+\epsilon \leqq \operatorname{amp} z \leqq \pi-\epsilon .
$$

The proof can easily be extended to more general hypergeometric functions of the type $F(n)$.

A similar discussion of the function

$$
F\binom{-n, \alpha, \beta ; 1}{\gamma-\frac{1}{2} n, \delta-\frac{1}{2} n}
$$

will be found in section 3 .
§ 2. Proof by Contour Integration. The contour $D O A B C D$ (Fig. 1) consists of $D A$, the part of the x-axis from $-n^{2}$, where n is a large positive integer, to $n+\frac{1}{2}$, indented above the x-axis at the points $0,1,2, \ldots, n$, the segment $A B$ of the line $x=n+\frac{1}{2}, B$ being the point where the line meets the circle $|z|=n^{2}$, and the arc $B C D$ of that circle. Consider the integral

$$
\int e^{2 \pi i z} \pi \operatorname{cosec}(\pi z) f(z) d z
$$

Fig. 1
taken round the contour, where

$$
\begin{align*}
f(z) & =\frac{\Gamma(1-\alpha+2 n-z) \Gamma(1-\beta+2 n-z)}{\Gamma(1+z) \Gamma(n+1-z) \Gamma(n+1-\delta-z) \Gamma(1-\gamma+2 n-z)} . \tag{5}\\
& =-\frac{\sin \pi z}{\pi} \frac{\Gamma(-z) \Gamma(1-\alpha+2 n-z) \Gamma(1-\beta+2 n-z)}{\Gamma(n+1-z) \Gamma(n+1-\delta-z) \Gamma(1-\gamma+2 n-z)} . \tag{6}
\end{align*}
$$

If n is large enough all the singularities of the integrand will lie outside the contour and the value of the integral will be zero. Thus

$$
0=-\pi i \kappa(n) F(n)+P \int_{-n^{2}}^{n+\frac{1}{2}} e^{2 \pi i x} \pi \operatorname{cosec}(\pi x) f(x) d x+J_{1}+J_{2}
$$

where J_{1} and J_{2} are the integrals along $A B$ and $B C D$ respectively and

$$
\begin{align*}
\kappa(n) & =\frac{\Gamma(1-\alpha+2 n) \Gamma(1-\beta+2 n)}{\Gamma(1+n) \Gamma(1-\delta+n) \Gamma(1-\gamma+2 n)} \cdots \cdots \cdots \ldots \ldots \ldots \ldots \ldots . .(7) \tag{7}\\
& =\frac{\Gamma\left(\frac{1}{2}-\frac{1}{2} \alpha+n\right) \Gamma\left(1-\frac{1}{2} \alpha+n\right) \Gamma\left(\frac{1}{2}-\frac{1}{2} \beta+n\right) \Gamma\left(1-\frac{1}{2} \beta+n\right) 2^{-\alpha-\beta+2 n}}{\Gamma(1+n) \Gamma(1-\delta+n) \Gamma\left(\frac{1}{2}-\frac{1}{2} \gamma+n\right) \Gamma\left(1-\frac{1}{2} \gamma+n\right) \Gamma\left(\frac{1}{2}\right) 2^{-\gamma}} \\
& \sim \frac{2^{\gamma-\alpha-\beta}}{\Gamma\left(\frac{1}{2}\right)} \cdot \frac{2^{2 n}}{n^{\alpha+\beta-\gamma-\delta+\frac{1}{2}}}, \ldots \tag{8}
\end{align*}
$$

by (4).
Hence, on taking imaginary parts, we have

$$
F(n)=\frac{1}{\kappa(n)} \int_{-n^{2}}^{n+\frac{1}{2}} 2 \cos (\pi x) f(x) d x+\frac{1}{\pi \kappa(n)} I\left(J_{1}+J_{2}\right) .
$$

c

Now, in the integral replace $2 \cos (\pi x)$ by $e^{i \pi x}+e^{-i \pi x}$, separate the two parts and replace them by integrals round $D C B A$ and the reflection of $D C B A$ in the x-axis respectively. Then

$$
F(n)=\frac{1}{\pi \kappa(n)} I\left(J_{1}+J_{2}\right)-\frac{1}{\kappa(n)}\left(I_{1}+I_{2}+I_{3}+I_{4}\right),
$$

where I_{1} and I_{2} are the integrals of $e^{i \pi z} f(z)$ along $A B$ and the arc $B C D$ respectively and I_{3} and I_{4} are the integrals of $e^{-i \pi z} f(z)$ along the reflections of $A B$ and the arc $B C D$ in the x-axis respectively.

Now

$$
I_{1}=(-1)^{n+1} \int_{0}^{n^{2} \sin \phi} \frac{e^{-\pi y} \Gamma\left(\frac{1}{2}-\alpha+n-i y\right) \Gamma\left(\frac{1}{2}-\beta+n-i y\right)}{\Gamma\left(\frac{3}{2}+n+i y\right) \Gamma\left(\frac{1}{2}-i y\right) \Gamma\left(\frac{1}{2}-\delta-i y\right) \Gamma\left(\frac{1}{2}-\gamma+n-i y\right)} d y
$$

where $\cos \phi=\left(n+\frac{1}{2}\right) / n^{2}$, so that, when $n \rightarrow \infty, \phi \rightarrow \frac{1}{2} \pi$.
The factors $1 / \Gamma\left(\frac{1}{2}-i y\right)$ and $1 / \Gamma\left(\frac{1}{2}-\delta-i y\right)$ are finite and independent of n for finite values of y; while, when y is large, by (3),

$$
\begin{gathered}
\frac{1}{\Gamma\left(\frac{1}{2}-i y\right) \Gamma\left(\frac{1}{2}-\delta-i y\right)} \sim \frac{e^{-1-\delta-2 i y}}{2 \pi\left(-\frac{1}{2}-i y\right)^{-i y}\left(-\frac{1}{2}-\delta-i y\right)^{-\delta-i y}} \\
\quad=\frac{e^{-1-\delta-2 i y} e^{-x y} e^{i \psi \delta-\psi y}}{2 \pi\left|\frac{1}{2}+i y\right|^{-i y}\left|\frac{1}{2}+\delta+i y\right|^{-\delta-i y}},
\end{gathered}
$$

where $\chi=\tan ^{-1}(2 y)$, in the third quadrant, and $\psi=\tan ^{-1}\left\{y /\left(\frac{1}{2}+\delta\right)\right\}$, in the third or fourth quadrant. Thus, when $y \rightarrow \infty, \chi$ and ψ both $\rightarrow-\frac{1}{2} \pi$, and therefore

$$
\frac{e^{-\pi y}\left|\frac{1}{2}+\delta+i y\right|^{-\delta}}{\left|\Gamma\left(\frac{1}{2}-i y\right) \Gamma\left(\frac{1}{2}-\delta-i y\right)\right|}
$$

tends to a definite limit when $y \rightarrow \infty$. This function is therefore bounded for large values of y, and consequently for $0 \leqq y \leqq \infty$.

Thus

$$
\frac{e^{-\pi y}}{\left|\Gamma\left(\frac{1}{2}-i y\right) \Gamma\left(\frac{1}{2}-\delta-i y\right)\right| n^{\rho}},
$$

where ρ is the larger of 0 and 2δ, is bounded for $0 \leqq y \leqq n^{2} \leqq \infty$.
Again, from (4),

$$
\frac{\Gamma\left(\frac{1}{2}-\beta+n-i y\right)}{\Gamma\left(\frac{1}{2}-\gamma+n-i y\right)} \sim(n-i y)^{\gamma-\beta}=\left(n^{2}+y^{2}\right)^{\frac{1}{2}-\frac{1}{2} \beta-i \omega(y-\beta)}
$$

where $\omega=\tan ^{-1}(y / n)$, in the first quadrant. Therefore

$$
\left|\frac{\Gamma\left(\frac{1}{2}-\beta+n-i y\right)}{\Gamma\left(\frac{1}{2}-\gamma+n-i y\right)}\right| \frac{1}{n^{\sigma}}
$$

where σ is the larger of 0 and $2 \gamma-2 \beta$, is bounded for $0 \leqq y \leqq n^{2} \leqq \infty$.
Next

$$
\begin{aligned}
\frac{\Gamma\left(\frac{1}{2}-\alpha+n-i y\right)}{\Gamma\left(\frac{3}{2}+n+i y\right)} & \sim \frac{e^{1+\alpha+2 i y}\left(-\frac{1}{2}-\alpha+n-i y\right)^{-\alpha+n-i y}}{\left(\frac{1}{2}+n+i y\right)^{1+n+i y}} \\
& \sim e^{2 i y}\left(n^{2}+y^{2}\right)^{-\frac{1}{1-1}-1-i y} e^{-i \omega(1-\alpha+2 n)}
\end{aligned}
$$

where $\omega=\tan ^{-1}(y / n)$ in the first quadrant.
Therefore

$$
\left|\frac{\Gamma\left(\frac{1}{2}-\alpha+n-i y\right)}{\Gamma\left(\frac{3}{2}+n+i y\right)}\right| \frac{1}{n^{T}},
$$

where τ is the larger of 0 and $-2-2 \alpha$, is bounded for $0 \leqq y \leqq n^{2} \leqq \infty$.

Thus the modulus of the integrand, divided by $n^{\rho+\sigma+\tau}$, is bounded for $0 \leqq y \leqq n^{2} \leqq \infty$. Therefore, since the range of integration is of length $n^{2} \sin \phi$,

$$
\left|\frac{I_{1}}{\kappa(n)}\right|<M_{1} \frac{n^{\mu_{1}}}{2^{2 n}}
$$

where M_{1} is a definite positive number independent of n.
Similar results hold for I_{3} and J_{1}.
Again,

$$
I_{2}=-\frac{1}{\pi} \int_{\phi}^{\pi} e^{i \pi z} \sin (\pi z) \frac{\Gamma(-z) \Gamma(1-\alpha+2 n-z) \Gamma(1-\beta+2 n-z)}{\Gamma(n+1-z) \Gamma(n+1-\delta-z) \Gamma(1-\gamma+2 n-z)} n^{2} e^{i \theta} i d \theta,
$$

where $z=n^{2} e^{i \theta}$ and $-z=n^{2} e^{i(\theta-\pi)}$. Here, when n is large,

$$
\left|\frac{\Gamma(-z) \Gamma(1-\alpha+2 n-z) \Gamma(1-\beta+2 n-z)}{\Gamma(n+1-z) \Gamma(n+1-\delta-z) \Gamma(1-\gamma+2 n-z)}\right| \sim|-z|^{\gamma-\alpha-\beta+\delta-1}=n^{2 \gamma-2 \alpha-2 \beta+2 \delta-2}
$$

Hence

$$
\left|\frac{I_{2}}{\kappa(n)}\right|<M_{2} \frac{n^{\gamma-\alpha-\beta+\delta+\frac{1}{2}}}{2^{2 n}},
$$

where M_{2} is a definite positive number independent of n.
Similar results hold for J_{2} and I_{4}.
Thus, finally, we arrive at the inequality (2).
§ 3. Discussion of a Second Type of Generalised Hypergeometric Function. It is proposed ;o prove that, if

$$
\begin{equation*}
F(n)=F\binom{-n, \alpha, \beta ; 1}{\gamma-\frac{1}{2} n, \delta-\frac{1}{2} n}, \tag{9}
\end{equation*}
$$

where n is a positive integer, then

$$
\begin{equation*}
|F(n)| \leqq M n^{\mu} 2^{n} \tag{10}
\end{equation*}
$$

M and μ being constants independent of n.
It then follows that the series

$$
\sum_{n=1}^{\infty} F(n) x^{n}
$$

s absolutely convergent for $|x|<\frac{1}{2}$.
Let m be a positive integer greater than the larger of $-\alpha$ and $-\beta$. Let the contour $4 B C A$ be formed of the segment $A B$ of the x-axis from $m+\frac{1}{2}$ to n^{2}, where n is large, inlented above the axis at $m+1, m+2, \ldots, n$, the part of the circle $|z|=n^{2}$ above the x-axis rom B to the point C, where it crosses the ordinate at A, and the line $C A$.

Now, consider the integral

$$
\int e^{2 i \pi z} f(z) d z
$$

aken round the contour of Fig. 2, where

$$
\begin{align*}
f(z) & =\frac{\Gamma(-z) \Gamma(\alpha+z) \Gamma(\beta+\dot{z})}{\Gamma(n+1-z) \Gamma\left(\gamma-\frac{1}{2} n+z\right) \Gamma\left(\delta-\frac{1}{2} n+z\right)} \cdots \cdots \cdots \cdots \cdots \cdots . \tag{11}\\
& =(-1)^{n+1} \frac{\Gamma(-n+z) \Gamma(\alpha+z) \Gamma(\beta+z)}{\Gamma(1+z) \Gamma\left(\gamma-\frac{1}{2} n+z\right) \Gamma\left(\delta-\frac{1}{2} n+z\right)} \cdots \cdots \cdots \cdots \ldots . \tag{12}\\
& =-\frac{\pi}{\sin \pi z} \frac{\Gamma(\alpha+z) \Gamma(\beta+z)}{\Gamma(1+z) \Gamma(n+1-z) \Gamma\left(\gamma-\frac{1}{2} n+z\right) \Gamma\left(\delta-\frac{1}{2} n+z\right)} . \tag{13}
\end{align*}
$$

Fig. 2
Since all the singularities of the integrand lie outside the contour, the value of the integral is zero, and therefore

$$
0=i \pi \kappa(n)\{F(n)-\text { the first } m+1 \text { terms of the series }\}+P \int_{m+\frac{1}{2}}^{n^{2}} e^{2 i \pi x} f(x) d x+J_{1}+J_{2}
$$

where

$$
\begin{equation*}
\kappa(n)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(n+1) \Gamma\left(\gamma-\frac{1}{2} n\right) \Gamma\left(\delta-\frac{1}{2} n\right)} \tag{14}
\end{equation*}
$$

so that

$$
\begin{equation*}
|\kappa(n)|<D 2^{-n} n^{\frac{1}{2}-\gamma-\delta} \tag{15}
\end{equation*}
$$

D being a constant independent of n, and J_{1} and J_{2} are the integrals of

$$
e^{2 i \pi z} f(z)
$$

along $B C$ and $C A$ respectively.
Hence, on equating imaginary parts, we have

$$
\begin{aligned}
E(n) \equiv & \equiv(n)-\text { the first } m+1 \text { terms of the series } \\
& =-\frac{1}{\pi \kappa(n)} \int_{m+\frac{1}{2}}^{n^{2}} 2 \cos \pi x \sin \pi x f(x) d x-\frac{1}{\pi \kappa(n)} I\left(J_{1}+J_{2}\right) \\
& =\frac{1}{\kappa(n)} \int_{m+\frac{1}{2}}^{n^{2}}\left(e^{i \pi x}+e^{-i \pi x}\right) \phi(x) d x-\frac{1}{\pi \kappa(n)} I\left(J_{1}+J_{2}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\phi(z)=\frac{\Gamma(\alpha+z) \Gamma(\beta+z)}{\Gamma(1+z) \Gamma(n+1-z) \Gamma\left(\gamma-\frac{1}{2} n+z\right) \Gamma\left(\delta-\frac{1}{2} n+z\right)} \tag{16}
\end{equation*}
$$

Thus

$$
E(n)=-\frac{1}{\kappa(n)}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)-\frac{1}{\pi \kappa(n)} I\left(J_{1}+J_{2}\right),
$$

where I_{1} and I_{2} are the integrals of

$$
e^{i \pi x} \phi(z)
$$

along $B C$ and $C A$ respectively, and I_{3} and I_{4} are the integrals of

$$
e^{-i \pi z} \phi(z)
$$

along the reflections in the x-axis of $B C$ and $C A$ respectively.

On referring to (13) and (12) and applying (4) it can be seen that, on $B C$,

$$
\left|e^{i \pi z} \phi(z)\right|<G|z|^{\alpha+\beta-\gamma-\delta-1},
$$

where G is a constant independent of n. Thus the moduli of the integrals J_{1} and I_{1} are each less than

$$
H n^{2 \alpha+2 \rho-2 \gamma-2 \delta},
$$

where H is a constant independent of n. A similar result holds for I_{3}.
Again, on $A C$,

$$
\left|\frac{\Gamma(\alpha+z)}{\Gamma(1+z)}\right|<L y^{\alpha-1} \leqq N n^{|2 \alpha-2|}
$$

where $0 \leqq y \leqq n^{2}$ and L and N are constants independent of n. Also, from (3),

$$
\left|\frac{\Gamma(-n+z) \Gamma(\beta+z)}{\Gamma\left(\gamma-\frac{1}{2} n+z\right) \Gamma\left(\delta-\frac{1}{2} n+z\right)}\right|<R\left|\frac{(i y-n)^{i y-n}(i y)^{i y}}{\left(i y-\frac{1}{2} n\right)^{2 i y-n}}\right| n^{r},
$$

where R and τ are constants independent of n,

$$
=R \frac{\left(y^{2}+\frac{1}{4} n^{2}\right)^{\frac{1}{2} n} e^{-\psi y} e^{-\frac{1}{k} \pi y}}{\left(y^{2}+n^{2}\right)^{\frac{1}{n} n} e^{-2 x y}} n^{\tau},
$$

where $\psi=\tan ^{-1}(-y / n)$ in the second quadrant and $\chi=\tan ^{-1}(-2 y / n)$, also in the second quadrant. When $y \rightarrow n^{2} \rightarrow \infty, \psi$ and χ both $\rightarrow \frac{1}{2} \pi$. Thus the expression is less than

$$
Q n^{\tau},
$$

where Q is a constant independent of n.
It follows that the moduli of the integrals J_{2} and I_{2} are each less than

$$
S n^{\sigma}
$$

where σ and S are constants independent of n.
A similar result holds for I_{4}.
Hence, finally, (10) is obtained.
University of Glasgow

