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The effects of compressibility on the statistics and coherent structures of a temporally
developing mixing layer are studied using numerical simulations at convective Mach
numbers ranging from Mc = 0.2 to 1.8 and at Taylor Reynolds numbers up to 290.
As the convective Mach number increases, the streamwise dissipation becomes more
effective to suppress the turbulent kinetic energy. At Mc = 1.8, the streamwise dissipation
increases much faster than the other two components in the transition region, even larger
than pressure–strain redistribution, correlating with the streamwise elongated vortical
structures at a higher level of compressibility. We confirm the existence of the large-scale
high- and low-speed structures in the mixing layers, which accompany the spanwise
Kelvin–Helmholtz rollers at low convective Mach number and dominate the mixing layer
at higher convective Mach number. Conditional statistics demonstrate that the large-scale
low-speed structures are lifted upwards by a pair of counter-rotating quasi-streamwise
rollers flanking the structures. The small-scale vortical structures have an apparent
preference for clustering into the top of the low-speed regions, which is directly associated
with high-shearing motions on top of the low-speed structures. The high-speed structures
statistically exhibit central symmetry with the low-speed structures. The statistics and
dynamics of large-scale high- and low-speed structures in the compressible mixing layers
resemble those in the outer region of the turbulent boundary layers, which reveals the
universality of the large-scale structures in free shear and wall-bounded turbulence. A
conceptual model is introduced for the large-scale high- and low-speed structures in
turbulent mixing layers.
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1. Introduction

Compressibility has a stabilising effect on a variety of high-speed shear flows, including
homogeneously sheared turbulence (Sarkar 1995; Kumar, Bertsch & Girimaji 2014; Chen
et al. 2018), turbulent mixing layers (Papamoschou & Roshko 1988; Pantano & Sarkar
2002; Arun et al. 2019; Li et al. 2021) and wall-bounded turbulence (Huang, Coleman
& Bradshaw 1995; Pirozzoli & Bernardini 2011; Bross, Scharnowski & Kähler 2021; Xu
et al. 2021b). The planar mixing shear layer is the simplest flow configuration of practical
turbulent flow, devoid of the complexities of wall effect. However, it plays a key role
in many applications, including scramjet engines, reduction of supersonic jet noise and
inertial-confinement fusion (Dimotakis 1991; Lele 1994; Pope 2000).

In compressible mixing layers, the growth of the mixing shear layer is substantially
reduced at high Mach numbers. An early experimental study conducted by Birch & Eggers
(1972) showed that high Mach number can lead to the reduction in the growth rate of the
mixing layer. Dominant spanwise rollers were observed by Brown & Roshko (1974) in
compressible free shear layer with different ratios of densities across the shear layer, and
they suggested that the growth rate of a turbulent free shear layer is significantly affected
by compressibility rather than density ratio. Numerous studies attempted to explain the
suppression mechanism of compressibility from the perspective of kinetic energy transfer
(Sarkar 1995; Vreman, Sandham & Luo 1996; Pantano & Sarkar 2002; Atoufi, Fathali &
Lessani 2015; Arun et al. 2021; Li et al. 2021). Sarkar (1995) performed direct numerical
simulation (DNS) of compressible homogeneous shear flow, and observed a reduction
in the growth rate of turbulent kinetic energy (TKE) by the increase of the gradient
Mach number. He reported that the reduction of turbulent energy growth rate is primarily
due to the reduced level of turbulence production and not due to explicit dilatational
effects (pressure dilatation and compressible dissipation), and pressure–strain correlation
tensor is significantly changed due to compressibility. Vreman et al. (1996) found that the
dilatational contribution to dissipation is negligible even when eddy shocklets are observed
in a compressible turbulent mixing layer. Furthermore, he reported that reduced pressure
fluctuations are responsible for the changes in growth rate via the pressure–strain term.
Pantano & Sarkar (2002) and Foysi & Sarkar (2010) confirmed that the reduced turbulence
levels and mixing-layer spread rate at high Mach number are attributed to the suppression
of pressure–strain redistribution. Atoufi et al. (2015) and Li et al. (2021) examined the
energy exchange mechanisms in compressible turbulent mixing layer by analysing the
budget terms of mean kinetic, internal and TKE transport equations. Arun et al. (2021)
investigated the scale-space transport of TKE at different Mach numbers using DNS data
of mixing layers. They showed that production is influenced by long-distance interactions,
whereas the pressure dilatation effects are more localised.

There is a large volume of published studies describing the compressibility effect on
coherent structures in mixing layers. In incompressible and weakly compressible mixing
shear layers, the flow is dominated by large, predominantly two-dimensional, spanwise
vortex structures (rollers) and rib-like vortices that arise from the Kelvin–Helmholtz
instability of the layer (Rogers & Moser 1994; Balaras, Piomelli & Wallace 2001; Wang,
Tanahashi & Miyauchi 2007). As the mixing layer becomes more compressible, the
large roller structures break down and the vortical structures are greatly stretched in
the streamwise direction, which leads to different mixing characteristics (Sandham &
Reynolds 1991; Balaras et al. 2001; Rossmann, Mungal & Hanson 2002; Fathali et al.
2008; Hickey, Hussain & Wu 2016; Arun et al. 2019; Li et al. 2021). In DNSs of spatially
evolving mixing layers by Zhou, He & Shen (2012), it was observed that Λ structures in
the flow field evolve to hairpin vortices which eventually break down to slender vortices
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Large-scale structures of a compressible shear layer

before the flow reaches a self-similar state. A recent numerical study of mixing layers by
Arun et al. (2019) showed that the vortical structures at high Mach number tend to align
in the streamwise direction but the tendency is weaker compared with that at low Mach
number, which results in reduced levels of the Reynolds shear stress and suppression of
turbulent energy production. They also found that the orientations of the vortex vectors are
less sensitive to compressibility effects with the increase of time.

However, most of the aforementioned studies are particularly focused on the small-scale
vortical structures and the spanwise Kelvin–Helmholtz vortices in mixing layers. In the
experimental study of a spatially developing mixing layer, Mungal (1995) observed that
the large-scale structures are elongated in the streamwise direction at moderate convective
Mach numbers Mc ≈ 0.8. The convective Mach number is defined as Mc = �U/(c1 + c2)
(Bogdanoff 1983), where c1 and c2 are the speed of sound in the upper and lower
streams and �U is the free-stream velocity difference across the shear layer. Messersmith
& Dutton (1996) found that the size of the streamwise-oriented large structures in
compressible mixing layers generally increases with increasing compressibility. DNS of
the spatially developing mixing layer was carried out by Pirozzoli et al. (2015) at moderate
compressibility conditions (Mc ≈ 0.45). They observed that the streamwise velocity
organises itself into large-scale low- and high-speed streaks, the size of which is found to
grow in the streamwise and spanwise direction with an approximately proportional fashion
to the local vorticity thickness. The dynamic mode decomposition (DMD) has been used to
extract the spanwise rollers, which are not clearly visible in the instantaneous streamwise
velocity.

The low- and high-speed large-scale coherent structures residing in the log-law layer
of wall-bounded shear flow have been extensively studied in the last two decades
(Ganapathisubramani et al. 2005; Marusic, Mathis & Hutchins 2010; Smits, McKeon &
Marusic 2011; Jiménez 2018), and they have been shown to carry significant fraction of
TKE and Reynolds shear stress, and interact evidently with the small-scale structures near
the wall. Bross et al. (2021) experimentally investigated compressibility effects on the
large-scale coherent structures and their relation to turbulence statistics in compressible
boundary layers. They found that compressibility has a clear effect on boundary layer, and
that the scale of large-scale coherent structures based on the boundary layer thickness
becomes longer and wider for supersonic turbulent boundary layers when compared
with subsonic and transonic turbulent boundary layers. Due to the strong stabilising
effect of stable density stratification, the existences of streamwise elongated low- and
high-speed large-scale coherent structures were also confirmed in stably stratified shear
layers by Watanabe et al. (2019) and Watanabe & Nagata (2021). These structures
resemble turbulent structures found in wall turbulence. However, the compressibility
effect on coherent structures in compressible mixing shear layers is not fully understood,
particularly for the large-scale streaks of low- and high-speed streamwise velocity.

The purpose of this paper is to explore the compressibility effects on temporally
evolving turbulent mixing layers at various Mach numbers. The characteristic of
solenoidal and dilatational components of the velocity field is investigated by Helmholtz
decomposition. Further understanding of the suppression mechanism of mixing layer
growth rate is obtained by analysing the budgets of total TKE and the evolution of coherent
structures. The properties of the large-scale structures are investigated through two-point
correlations and conditionally averaging the turbulent fields, which are compared with the
wall turbulence to reveal the universality of the large-scale structures in free shear and
wall-bounded turbulent flows. The paper is organised as follows. The governing equations
and computational method are provided in § 2, followed by a validation study in § 3. In
§ 4, we provide in detail our results. Finally, conclusions are drawn in § 5.

947 A38-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.660


X. Wang, J. Wang and S. Chen

2. Governing equations and numerical method

The unsteady, three-dimensional, compressible Navier–Stokes equations in the
conservative form are solved for the temporally evolving mixing layer, which are written
as follows:

∂ρ

∂t
+ ∂(ρuk)

∂xk
= 0, (2.1)

∂(ρui)

∂t
+ ∂(ρukui)

∂xk
= − ∂p

∂xi
+ 1

Re
∂σik

∂xk
, (2.2)

∂E
∂t

+ ∂[(E + p)uj]
∂xj

= 1
α

∂

∂xk

(
κ

∂T
∂xk

)
+ 1

Re
∂(ujσjk)

∂xk
, (2.3)

p = ρT/(γ M2), (2.4)

where the indices i = 1, 2, 3 denote the three spatial directions represented by x1, x2 and
x3 (or x, y and z), which are the streamwise, vertical and spanwise directions, respectively,
and u1, u2 and u3 (or u, v and w) denote the instantaneous velocity components in the
corresponding directions. Here, ρ is instantaneous density, p is instantaneous pressure and
T is instantaneous temperature. The viscous stress σik is defined as

σik = 2μSik − 2μΘ

3
δik, (2.5)

in which Sik = (∂ui/∂xk + ∂uk/∂xi)/2 is the strain rate tensor, and Θ = ∂uk/∂xk is the
velocity divergence or dilatation. The total energy per unit volume E is defined as

E = p
γ − 1

+ 1
2
ρuiui. (2.6)

The temperature-dependent viscosity coefficient μ and thermal conductivity coefficient κ

are specified by Sutherland’s law (Sutherland 1893).
The variables in the governing equations of compressible turbulence have been already

normalised by a set of reference scales, including the reference length Lr, velocity Ur,
density ρr, pressure pr = ρrU2

r , temperature Tr, energy per unit volume ρrU2
r , viscosity

μr and thermal conductivity κr (Samtaney, Pullin & Kosović 2001; Wang et al. 2012).
There are three reference governing parameters: the reference Reynolds number Re =
ρrUrLr/μr, the reference Mach number M = Ur/cr and the reference Prandtl number
Pr = μrCp/κr, which is assumed to be equal to 0.7. In addition, the speed of sound is
defined by cr = √

γ RT , where R is the specific gas constant. Here γ = Cp/Cv is the ratio
of specific heat at constant pressure Cp to that at constant volume Cv , which is assumed to
be equal to 1.4. The parameter α is defined as α = Pr Re(γ − 1)M2.

The turbulent stress tensor Rij is defined by

Rij = ρ̄ũ′′
i u′′

j = ρu′′
i u′′

j , (2.7)

where φ̃ = ρφ/ρ̄ represents the Favre average of a variable φ, and φ̄ is the Reynolds
average obtained by plane averaging along the homogeneous x, z-directions and ensemble
averaging of repeated simulations. The Reynolds fluctuations and Favre fluctuations are
denoted as φ′ = φ − φ̄ and φ′′ = φ − φ̃, respectively. The Reynolds stress is governed by
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the following equation (Pantano & Sarkar 2002)

∂Rij

∂t
+ ∂(Rijũk)

∂xk
= T ij + Pij + ij + ij + ij, (2.8)

where the transport, turbulent production, dissipation, pressure–strain and mass flux
coupling terms are, respectively,

T ij = − ∂

∂xk

(
ρu′′

i u′′
j u′′

k + p′u′′
j δik + p′u′′

i δjk − 1
Re

σ ′
iku′′

j − 1
Re

σ ′
jku′′

i

)
, (2.9a)

Pij = −Rik
∂ ũj

∂xk
− Rjk

∂ ũi

∂xk
, (2.9b)

ij = − 1
Re

σ ′
ik

∂u′′
j

∂xk
− 1

Re
σ ′

jk
∂u′′

i
∂xk

, (2.9c)

ij = p′
(

∂u′′
j

∂xi
+ ∂u′′

i
∂xj

)
, (2.9d)

ij = u′′
j

(
1

Re
∂σ̄ik

∂xk
− ∂ p̄

∂xi

)
+ u′′

i

(
1

Re
∂σ̄jk

∂xk
− ∂ p̄

∂xj

)
. (2.9e)

It is straightforward to obtain the transport equation for the TKE K̄ = Rii/2 from (2.8) by
contracting the indices

∂K̄
∂t

+ ∂(K̄ũk)

∂xk
= T̄ + P̄ + ε̄ + Φ̄ + Σ̄, (2.10)

where the transport terms T̄ , P̄, ε̄, Φ̄ and Σ̄ are similarly obtained from (2.9), respectively,

T̄ = − ∂

∂xk

(
1
2
ρu′′

i u′′
i u′′

k + p′u′′
i δik − 1

Re
σ ′

iku′′
i

)
, (2.11a)

P̄ = −Rik
∂ ũi

∂xk
, (2.11b)

ε̄ = − 1
Re

σ ′
ik

∂u′′
i

∂xk
, (2.11c)

Φ̄ = p′ ∂u′′
i

∂xi
, (2.11d)

Σ̄ = u′′
i

(
1

Re
∂σ̄ik

∂xk
− ∂ p̄

∂xi

)
. (2.11e)

The transport equations of the TKE components K̄i can be simply obtained by avoiding
summation convention over repeated indices i in (2.10) and (2.11), and the corresponding
transport terms are T̄i, P̄i, ε̄i, Φ̄i and Σ̄i, which are omitted here for the sake of brevity
(Pantano & Sarkar 2002; Ma & Xiao 2016; Arun et al. 2019).

The numerical simulation has been performed using an in-house code employing a
hybrid numerical scheme proposed by Wang et al. (2010). The hybrid scheme combines a
seventh-order weighted essentially non-oscillatory (WENO) scheme (Balsara & Shu 2000)
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for the shocklet regions and an eighth-order compact central finite difference scheme (Lele
1992) for smooth regions. The shock front is identified by spatial points with highly

negative local velocity divergence as defined by Θ < −3.0Θrms, where Θrms =
√

Θ2

is the root-mean-square (r.m.s.) value of velocity divergence. The time advancement is
performed with a second-order explicit low-storage Runge–Kutta scheme as described by
Gottlieb & Shu (1998). The stability and accuracy of the numerical method have been
demonstrated in previous studies of compressible turbulence (Wang et al. 2010, 2012, 2018,
2019, 2020).

Figure 1 is a schematic of the flow configuration considered in the present work.
In this figure, x and z represent the homogeneous streamwise and spanwise directions,
respectively, and y denotes the transverse direction. The vorticity thickness is computed
by δω = �U/(dū/dy)max, and the momentum thickness, δθ , is defined as (Vreman et al.
1996)

δθ = 1
ρ∞�U2

∫ +∞

−∞
ρ̄(�U/2 − ũ)(�U/2 + ũ) dy, (2.12)

where �U is the free-stream velocity difference across the shear layer. The computational
domain with lengths Lx × Ly × Lz = 314δ0

θ × 314δ0
θ × 157δ0

θ in the streamwise, transverse
and spanwise directions is discretised uniformly with the number of grid points equal to
Nx × Ny × Nz = 1024 × 1024 × 512, where δ0

θ is the initial momentum thickness. The
plane y = 0 is at the centre of the computational domain. In order to allow periodic
configuration in the vertical direction, the mean streamwise velocity is initialised by
hyperbolic tangent profile with two shear layers (one is located at the middle and the other
at the boundary of transverse direction),

ũ1 = 1
2
�U

[
tanh

(
y

2Cδδ
0
θ

)
− tanh

(
y + Ly/2

2Cδδ
0
θ

)
+ tanh

(
y − Ly/2

2Cδδ
0
θ

)]
, (2.13)

where Cδ is an adjustment constant chosen such that the initial momentum thickness
becomes δ0

θ for all simulations (Vaghefi & Madnia 2015). The mean vertical and spanwise
velocities are set to zero, ũ2 = ũ3 = 0. The initial temperature is obtained from the
Busemann–Crocco relationship (Ragab & Wu 1989; Arun et al. 2019) for compressible
shear layers,

T = 1 + 1
2(γ − 1)M2

c (1 − ũ2
1), (2.14)

where Mc is the convective Mach number, defined as Mc = �U/(c1 + c2). Here c1 and c2
are the speed of sound in the upper and lower streams, respectively. The pressure field is
uniform, and the density field is obtained from the ideal gas equation of state.

Note that the above initial mean field is periodic in all three directions, therefore triply
periodic boundary condition is applied. Actually, by applying a numerical diffusion zone
near the vertical edges of the computational domain, as shown in figure 1, the shear layer
located at the boundary of vertical direction is forced to its initial state and the intensity
of possible disturbances is sufficiently reduced such that there is negligible effect on the
flow. The width of this buffer layer is set to 15δ0

θ which is large enough for all cases
presented in this paper. Additional discussions on the effects of the buffer layer width are
provided in Appendix A. The periodic configuration is convenient for computing statistics
and performing spectral analyses, and the accuracy of the present numerical simulation
is validated by comparisons against previous simulations of temporally evolving mixing
layers with stress-free boundary, as shown in § 3.
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y

z

Lx

Lz

Ly

�U/2

x

–�U/2

Figure 1. Schematic of the temporally evolving shear layer with mean velocity profile. The red dashed
rectangles represent the extent of the sponge layers in vertical direction.

Case Mc τ Mt Reθ Reλ Reω η/�x lx/Lx lz/Lz

M02 0.2 τ0 = 625 0.10 3768 266 19 960 0.42 0.24 0.12
τf = 875 0.09 4798 292 25 166 0.46 0.28 0.14

M08 0.8 τ0 = 750 0.34 2990 202 17 230 0.49 0.32 0.08
τf = 1250 0.31 4546 236 26 028 0.56 0.49 0.10

M18 1.8 τ0 = 1250 0.65 3036 200 21 158 0.86 0.36 0.14
τf = 2250 0.57 5232 234 38 094 1.05 0.60 0.17

Table 1. Simulation parameters at the beginning (τ = τ0) and end (τ = τf ) of the self-similar period.
Parameters Mt, Reλ, η, lx and lz are obtained at y = 0.

In order to accelerate the transition to turbulence, a spatially correlated perturbation
velocity field obtained by the digital filter method (Klein, Sadiki & Janicka 2003) is
imposed on mean velocities with the length scales chosen as the vorticity thickness δω

in each direction. It is assumed that the profiles of Reynolds stresses Rij have a Gaussian
like distribution in y to obey Rij = A(1 − ũ2

1). The peak amplitude A is set to 0.025�U
for the middle shear layer and there’s no initial fluctuation in the boundary shear layer.
Solenoidality is imposed on this initial turbulent field using Helmholtz decomposition of
velocity fields (see (4.1) in § 4.2).

Numerical simulations are performed for three different values of convective Mach
number, Mc = 0.2, 0.8, 1.8. The temporally evolving mixing layer is statistically
homogeneous in the x and z directions. Therefore, the statistics are functions of y and
normalised time τ = t�U/δ0

θ . Table 1 gives the key non-dimensional flow parameters
corresponding to the self-similar stage at the centreline. The turbulent Mach number Mt is
defined by

Mt =
√

2K
c

, (2.15)

where K is the TKE and c is the average speed of sound. The turbulent Mach number
ranges from 0.1 to 0.6, corresponding to the different levels of compressibility. The lowest
turbulent Mach number case corresponds to a nearly incompressible condition, while
the highest turbulent Mach number case almost approaches the strongest compressibility
effects as reported in the literature, to the best of our knowledge.
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The Reynolds numbers based on the momentum thickness Reθ , the vorticity thickness
Reω and the Taylor microscale Reλ are defined as

Reθ = ρ∞�Uδθ

μ∞
, Reω = ρ∞�Uδω

μ∞
, Reλ = 2K

√
5ρ

με
, (2.16a–c)

respectively, where ε is the TKE dissipation rate per unit mass and μ is viscosity
coefficient. The initial momentum thickness Reynolds number is Reθ = 320.

The Kolmogorov length scale η is defined by

η =
(

μ3

ρ3ε

)1/4

. (2.17)

It is listed in table 1 that the resolution parameter η/�x is in the range 0.42 ≤ η/�x ≤
1.02 at the centreline, where �x is the grid length in each direction, indicating that the
resolution of the present simulations is fine enough to resolve down to the order of the
Kolmorgorov length scale of the flow (Pantano & Sarkar 2002; Arun et al. 2019; Matsuno
& Lele 2021). It is noted that the Kolmogorov length scale achieves its minimum value at
the centreline, and it increases slightly during the self-similar region of the mixing layer,
seeing the detailed analysis in § 4. Additional discussions on grid convergence are provided
in Appendix A. The integral length scales in the streamwise direction (lx) and spanwise
direction (lz) are defined as

lx =
∫ Lx/2

0
Ruu(rx, 0, 0) drx, lz =

∫ Lz/2

0
Ruu(0, 0, rz) drz, (2.18a,b)

respectively, where Rff is the two-point correlation of a variable f , defined as

Rff (rx, ry, rz) = 〈f ′(x, 0, z)f ′(x + rx, ry, z + rz)〉
f 2
rms

, (2.19)

where 〈〉 stands for ensemble average. The largest integral length scales of lx/Lx = 0.60
is obtained at the end of the self-similar region at Mc = 1.8, and it is nearly 3 times
larger than the largest value in the previous numerical studies by Pantano & Sarkar (2002)
and Vadrot, Giauque & Corre (2021), and comparable to that by Pirozzoli et al. (2015).
The size of the computational domain is twice as large than those in previous numerical
simulations (Pantano & Sarkar 2002; Arun et al. 2019; Vadrot, Giauque & Corre 2020;
Matsuno & Lele 2021). Further analysis in § 4 shows that the integral length scales lx and
lz are sufficiently small compared with the length of the computational domain, ensuring
that the self-similar growth of large-scale structures is not confined. In order to enhance
the statistical convergence, the horizontal averaging is complemented with an ensemble
average over five independent runs with different initial conditions for each convective
Mach number. Self-similar quantities are also time-averaged over the self-similar period.

3. Validation and general statistics

The purpose of this section is to validate our simulation by comparing present results
against various previous experimental and numerical works in the literature. It is generally
accepted that, after an initial transition period, the temporal mixing layer has a self-similar
evolution characterised by a linear growth of momentum thickness. The selection of an
appropriate self-similar range is a quite complex task because an exact self-similarity is
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Figure 2. Comparison of mean streamwise velocity ū/�U in similarity coordinates (a) y/δθ and (b) y/δω. (c)
Time evolution of normalised momentum thickness for different Mc, and the vertical line segments mark the
self-similar time periods. (d) Comparison of linear growth rates at different Mc with different numerical and
experimental results.

difficult to achieve and there is no precise criteria to characterise this self-similar period.
We determine the self-similar period by analysing the collapse of profiles of the mean
velocity and the profiles of the Reynolds stresses, and further confirm it by computing the
time evolution of the integrated transfer terms of TKE, as shown in § 4.3. The resulting
time duration of the self-similar regime is indicated by intersecting vertical tick marks in
figure 2(c) and reported in table 1.

Figures 2(a) and 2(b) show the mean streamwise velocity profile in similarity
coordinates y/δθ and y/δω, respectively. Compared with several previous results (Spencer
& Jones 1971; Bell & Mehta 1990; Pantano & Sarkar 2002; Vaghefi et al. 2013; Buchta
& Freund 2017; Sharan, Matheou & Dimotakis 2019), very good agreement is obtained.
We find that the mean streamwise velocity profiles at different convective Mach numbers
collapse very well when plotted against y/δω. The time evolution of the momentum
thickness, normalised by its initial value (δ0

θ ), is shown in figure 2(c) for different
Mc. It is observed that as the convective Mach number increases, the growth rates
of both transitional and self-similar regimes decrease dramatically, leading to a longer
transitional time, which is consistent with previous numerical results by Pantano & Sarkar
(2002) and Vaghefi et al. (2013). The normalised self-similar growth rates are shown in
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Figure 3. Comparison of normalised components of the Reynolds stress for case M02: (a)
√

R11/�U, (b)√
R22/�U, (c)

√
R33/�U and (d)

√−R12/�U. The symbols denote experimental results for incompressible
shear layers, and the curves represent numerical results. The legend is the same for all plots.

figure 2(d), where δ̇inc is the growth rate of the quasi-incompressible case Mc = 0.2 in our
simulations. For comparison, the figure also shows available numerical (Pantano & Sarkar
2002; Hadjadj, Yee & Sjögreen 2012; Vaghefi et al. 2013; Buchta & Freund 2017) and
experimental (Chinzei et al. 1986; Papamoschou & Roshko 1988; Samimy & Elliott 1990;
Goebel & Dutton 1991; Debisschop, Chambers & Bonnet 1994) results in the literature.

The components of the normalised Reynolds stress are compared with previous works
in figure 3 for the case M02. All variables are time-averaged over the self-similar region
in similarity coordinates. It can be seen that the shape of the profiles and the peak value
of Reynolds stresses are generally in good agreement with published results. For further
validation of our DNS results, the dominant terms in the TKE transport equation (2.10),
namely production, dissipation and transport terms, are compared with the previous results
in figure 4 for cases M02, M08 and M18. These validations indicate that the current
DNS provides an accurate representation of the compressible mixing layer during the
self-similar stage.

4. Numerical results

4.1. Local compressibility
For compressible flow, the normalised velocity divergence serves as an excellent indicator
of the local compressibility. To obtain an impression of the changes in the local
compressibility of the mixing layer induced by convective Mach number, instantaneous
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Figure 4. TKE transport equation terms in (2.10): P̄ (green), ε̄ (red) and T̄ (blue) for cases (a) M02, (b) M08
and (c) M18. The budget terms are normalised by �U3/δθ . The solid lines correspond to the present DNS. The
dashed lines, open and filled symbols represent the results of Rogers & Moser (1994), Pantano & Sarkar (2002)
and Vaghefi (2014), respectively.

fields of the normalised velocity divergence Θδθ/�U in the middle x–y plane are shown
in figure 5 at two different times, together with an isoline of vorticity magnitude ω =
0.01�U/δ0

θ selected as the nominal threshold to identify the turbulent–non-turbulent
interface (TNTI) (Jahanbakhshi & Madnia 2016; Watanabe, Zhang & Nagata 2018).

The vorticity magnitude is computed by ω =
√

ω2
1 + ω2

2 + ω2
3, where ωi are vorticity

components. For the subsonic flow with Mc = 0.2, the results are omitted here because
there is no obvious region of high compression. At Mc = 0.8, several shocklets can be seen
outside the mixing zone at τ = 250 in the transition region, whereas no shocklets are found
at τ = 1000 in the self-similar region. At Mc = 1.8, the shocklets can be observed during
both transition and self-similar periods, and they tend to exhibit much smaller length scales
inside the mixing layer, which is consistent with previous observations (Vaghefi et al. 2013;
Buchta & Freund 2017).

To the best of the authors’ knowledge, the appearance of shocklets in simulations of
three-dimensional compressible mixing layers was first reported by Vreman, Kuerten
& Geurts (1995). However, there has been no certain critical Mach number beyond
which the shocklets appear. Wang, Gotoh & Watanabe (2017) found that the shocklets
start to form when turbulent Mach number Mt ≥ 0.6 in solenoidally forced compressible
isotropic turbulence. Chen et al. (2018) observed shocklets at relatively smaller turbulent
Mach numbers Mt ≥ 0.4 in compressible homogeneous shear turbulence owing to the
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Figure 5. Visualisation of normalised velocity divergence Θδθ/�U in middle x–y plane at two different time
instants: (a) Mc = 0.8, τ = 250, (b) Mc = 0.8, τ = 1000, (c) Mc = 1.8, τ = 500 and (d) Mc = 1.8, τ = 1250.
The red solid lines correspond to contours of ω = 0.01�U/δ0

θ , showing the TNTI.

higher level of velocity fluctuation. In compressible mixing layers, the occurrence of
shocklets has been captured when the convective Mach number is higher than 0.7 in
two-dimensional simulations (Lele 1989). For most of the three-dimensional simulations,
shocklets are observed at higher convective Mach number 1.2 (Vreman et al. 1995; Kourta
& Sauvage 2002; Vaghefi 2014; Buchta & Freund 2017). It is noteworthy that Zhou et al.
(2012) observed shocklets in the transition region of spatially developing compressible
mixing layer at lower convective Mach number Mc = 0.7. They inferred that larger initial
disturbance, which leads to stronger vortical structures, might contribute to the shocklet
formation at this low convective Mach number.

In figure 6, we present the temporal evolutions of the centreline turbulent Mach
number Mt,y0 and the r.m.s. velocity divergence Θrms,y0/(�U/δθ0) for simulations with
Mc = 0.2, 0.8 and 1.8. As can be seen, a significant overshoot in the centreline turbulent
Mach numbers can be observed in the transitional region, as well as the centreline r.m.s.
velocity divergence, indicating that the shocklet occurs more easily in this region. We find
that the critical turbulent Mach number for shocklets to appear is close to Mt,y0 = 0.4,
which agrees well with that in compressible homogeneous shear turbulence (Chen et al.
2018), and the corresponding r.m.s. velocity divergence is Θrms,y0/(�U/δθ0) ≈ 0.2 for the
free shear flow.

Figures 7(a) and 7(b) show the probability density function (PDF) of the normalised
velocity divergence inside and outside the turbulent region at several time instants for
convective Mach number Mc = 0.8. It was shown in previous results that the PDF of
velocity divergence became more skewed towards the negative value as the turbulent
Mach number and Taylor Reynolds number increase, due to strong compression region
associated with shocklets which occurs much more frequently than the strong expansion
region (Wang et al. 2012; Vaghefi & Madnia 2015; Chen et al. 2019). For the moderately
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Figure 6. Temporal evolution of the centreline (a) turbulent Mach number Mt,y0 and (b) r.m.s. velocity
divergence Θrms,y0/(�U/δθ0 ) at the centreplane for simulations with Mc = 0.2, 0.8 and 1.8. The dashed
vertical lines mark the self-similar time periods.
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Figure 7. PDF of the normalised velocity divergence Θ/(�U/δθ0 ) at five different time instants (a),(c) in the
turbulent region and (b),(d) outside the turbulent region for cases at (a),(b) Mc = 0.8 and (c),(d) Mc = 1.8.

compressible case with Mc = 0.8, the PDF of velocity divergence in the turbulent region
exhibits a skewness toward the negative side only at transition period τ = 250, and then it
rapidly becomes nearly symmetric. The PDF of velocity divergence outside the turbulent
region is skewed toward the negative side until τ = 750 in the self-similar period, owing
to the shocklets radiated from the mixing zone.
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Figures 7(c) and 7(d) show the PDF of the normalised velocity divergence inside and
outside the turbulent region at several time instants for convective Mach number Mc = 1.8.
As we can see, the PDFs of velocity divergence both inside and outside the turbulent
region are always strongly skewed towards the negative values. At τ = 2000, the PDF
of velocity divergence inside the turbulent region is in excellent agreement with the
result of Vaghefi & Madnia (2015) which is sampled at the beginning of the self-similar
evolution. The two tails of PDF become shorter as time goes on, indicating that the local
compressibility continuously decreases. We also find that the two tails of PDF inside the
turbulent region are always longer than that outside the turbulent region, showing stronger
local compressibility in the mixing zone.

4.2. Helmholtz decomposition of velocity fields
To reveal the underlying physics in the compressible turbulence and specifically the
characteristic of local compressibility, we shall employ the well-known Helmholtz
decomposition (Erlebacher & Sarkar 1993; Samtaney et al. 2001; Wang et al. 2012) to
the velocity field

u = us + ud, (4.1)

where the solenoidal component us satisfies ∇ · us = 0 and the dilatational component uc
is irrotational, i.e. ∇ × ud = 0.

The instantaneous fields of decomposed velocity in the x–y plane at z = Lz/2 are
presented in figures 8 and 9 for the cases with Mc = 0.8 at τ = 1000 and Mc = 1.8 at τ =
1700, respectively. Note that all visualisations are selected at the middle of the self-similar
region. For solenoidal velocity component, the visualisations in figures 8(a),(c),(e) and
9(a),(c),(e) show the typical features of a turbulent mixing layer, with patches of mixed
fluid in the central region entraining patches of unmixed fluid from both external streams.
It can be seen that the u′′

s field in the x–y plane is characterised by elongated low- and
high-speed regions, with characteristic sizes of the order of δω. Comparing figures 8(a)
and 8(c) or figures 9(a) and 9(c) reveals a strong anticorrelation between u′′

s and v′′
s events.

The large-scale negative u′′
s events are characterised by regions of positive v′′

s , upraising the
low-speed fluid. The large-scale positive u′′

s events are accompanied by regions of negative
v′′

s , moving the high-speed fluid downwards. Moreover, the solenoidal velocity fields
become visibly smoother at small scales for higher convective Mach number Mc = 1.8.
Figures 10 and 11 show the instantaneous fields of decomposed velocity in x–z plane
at y = 0 for cases with Mc = 0.8 at τ = 1000 and Mc = 1.8 at τ = 1700, respectively.
The main characteristic of the solenoidal velocity field is consistent with that found
previously in the x–y plane. The presence of large-scale streamwise elongated streaks of
u′′

s is presented more clearly in the x–z plane visualisation, with spanwise sizes of about
Lz/4 in the self-similar state. This indicates that the spanwise length of the domain is large
enough for the present simulation.

As can be seen in the right subfigures of figures 8 to 11, the increasing of convective
Mach number induces different flow patterns of dilatational velocity component both
in the x–y and x–z planes. For the case with Mc = 0.8, all three dilatational velocity
components exhibit large block-like spatial structures. The u′′

d and v′′
d structures are aligned

at oblique angles to the streamwise direction in x–y plane, whereas the w′′
d structure is

almost perpendicular. The v′′
d and w′′

d structures extend over the entire spanwise length of
the domain, as shown in figures 10(d) and 10( f ). These results suggest the presence of the
spanwise rollers at Mc = 0.8, which also can be observed in the instantaneous fields of
solenoidal velocity in the x–y plane, as shown in figures 8(a), 8(c) and 8(e).
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Figure 8. Instantaneous fields of (a) u′′
s , (b) u′′

d , (c) v′′
s , (d) v′′

d , (e) w′′
s and ( f ) w′′

d in the central x–y plane for
case M08 at τ = 1000.

At convective Mach number Mc = 1.8, all three dilatational velocity components show
severe discontinuity at the position of shocklets, particularly in the non-turbulent region, as
presented in figures 9(b), 9(d) and 9( f ). As can be seen, the fluids on two sides of shocklets
move towards the shocklets and generate a sheet-like strong compressible region, causing
a strong anticorrelation between u′′

d and v′′
d events. In the middle x–z plane, the u′′

d and v′′
d

events are also anticorrelated, which becomes less apparent masked by the trivial spanwise
structures of u′′

d .
To have a better picture of the effect of convective Mach number on the correlation

between streamwise and vertical velocity components, we present the joint PDF of the
velocity components, computed inside and outside the turbulent region at an instant in the
self-similar region. As shown in figure 12(a), the joint PDF of u′′

s /u′′
s,rms and v′′

s /v′′
s,rms

in the turbulent region reveals a statistical preference for points in the second and fourth
quadrants, appearing as the oval contour lines. The long axis of the oval shape of PDF(u′′

s ,
v′′

s ) exhibits an inclined angle with the symmetry line of the u′′
s –v′′

s plane, indicating the
component anisotropy of solenoidal velocity components. This oval shape of the PDF(u′′

s ,
v′′

s ) is consistent well with that in incompressible homogeneous shear flow (Adrian &
Moin 1988) and different from the results in the wall-bounded turbulent flow where
axisymmetric shapes are usually observed (Wallace 2016; Yu, Xu & Pirozzoli 2019; Xu
et al. 2021a). PDF(u′′

s , v′′
s ) in the non-turbulent region decays rapidly, illustrating the

solenoidal velocity components are insignificant here, as can be seen from figure 12(b).
The joint PDFs of u′′

d/u′′
d,rms and v′′

d/v′′
d,rms are plotted in figures 12(c) and 12(d). In

the turbulent region, we find that there is no significant correlation between u′′
d and v′′

d
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Figure 9. Instantaneous fields of (a) u′′
s , (b) u′′

d , (c) v′′
s , (d) v′′

d , (e) w′′
s and ( f ) w′′

d in the central x–y plane for
the case M18 at τ = 1700.

for Mc = 0.8, whereas PDF(u′′
d , v′′

d ) also has a statistical preference in the second and
fourth quadrants for Mc = 1.8, showing an oval shape similar to that of PDF(u′′

s , v′′
s ). In

the non-turbulent region, both for Mc = 0.8 and Mc = 1.8, PDF(u′′
d , v′′

d ) has the inclined
oval pattern, which is elongated in the u′′

d direction for Mc = 1.8 compared with that in
the turbulent region. Actually, we find that, as the development of turbulent flow, the
inclination angle of the oval shape of the PDF(u′′

d , v′′
d ) for Mc = 0.8 in non-turbulent region

increases monotonically from 10◦ at τ = 200 to nearly 30◦ at τ = 1000. Only the results
at τ = 1000 is illustrated here in figure 12(d) for brevity.

It is worth noting that the statistical preference in the second and fourth quadrants of
PDF(u′′

s , v′′
s ) and PDF(u′′

d , v′′
d ) corresponds to totally different physical processes. The

former is related to the mixing between the two streams, demonstrated in the left subfigures
of figures 8–11, resembling the sweep and ejection events in wall-bounded turbulent shear
flow, and the latter is due to the induction of strong compression or expansion motions,
seen from the right subfigures of figures 8–11.

On the basis of Helmholtz decomposition of velocity, the Reynolds stress Rij can be
decomposed into

Rij = ρu′′
i u′′

j = ρu′′
s,iu

′′
s,j + ρu′′

d,iu
′′
d,j + ρu′′

s,iu
′′
d,j + ρu′′

d,iu
′′
s,j. (4.2)

However, it is found that in the turbulent region the magnitudes of the last three terms on
the right-hand side of (4.2) are several orders of magnitude smaller than the first term,
even for the highest convective Mach number Mc = 1.8. Then we take Reynolds shear
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Figure 10. Instantaneous fields of (a) u′′
s , (b) u′′

d , (c) v′′
s , (d) v′′

d , (e) w′′
s and ( f ) w′′

d in the central x–z plane for
case M08 at τ = 1000.

stress R12 = ρu′′v′′ for example to show the effect of compressibility, and the Helmholtz
decomposition of Reynolds normal stresses R11, R22 and R33 can be found in Appendix B.
The statistical preference in the second and fourth quadrants of PDF(u′′

s , v′′
s ) and PDF(u′′

d ,
v′′

d ) above shows that both solenoidal and dilatational velocity have a contribution to the
negative values of the Reynolds shear stress. Figure 13 provides the Reynolds shear stress
and its decomposed components for cases with Mc = 0.8 and Mc = 1.8. We can see that
Rij and ρu′′

s v
′′
s overlap almost perfectly with each other for both Mc = 0.8 and Mc = 1.8,

indicating the dominant role of the solenoidal velocity field. For Mc = 0.8, ρu′′
s v

′′
d is

positive with a peak value at y = 0 and is significantly greater than the negligible two
terms ρu′′

dv
′′
d and ρu′′

dv
′′
s . For Mc = 1.8, the values of three dilatation-related terms are

on the same order. As the convective Mach number increases, the magnitudes of three
dilatation-related terms become larger, demonstrating the effect of compressibility. It is
interesting to note that for Mc = 1.8, ρu′′

dv
′′
d has two peak values at y/δω ≈ ±0.5 and

becomes larger than ρu′′
s v

′′
s in the non-turbulent region, which is probably due to the

induction of the shocklets frequently formed near the TNTI, consistent with the analysis
of figure 9.

4.3. Integrated TKE transport
The physical mechanism of the suppression of layer growth rate due to compressibility is
further examined by analysing the time evolution of integrated TKE transport. The terms
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Figure 11. Instantaneous fields of (a) u′′
s , (b) u′′

d , (c) v′′
s , (d) v′′

d , (e) w′′
s and ( f ) w′′

d in the central x–z plane for
case M18 at τ = 1700.

in conservative form disappear after integration, hence the equation of the y-integrated
TKE becomes (Vreman et al. 1996; Attili & Bisetti 2012)

∂K̂
∂t

= P̂ + ε̂ + Φ̂ + Σ̂, (4.3)

where

K̂ =
∫ Ly/2

−Ly/2

1
2
ρu′′

i u′′
i dy, (4.4)

is total TKE, and the integrated transport terms P̂, ε̂, Φ̂ and Σ̂ are

P̂ = −
∫ Ly/2

−Ly/2
Rik

∂ ũi

∂xk
dy, (4.5a)

ε̂ = −
∫ Ly/2

−Ly/2

1
Re

σ ′
ik

∂u′′
i

∂xk
dy, (4.5b)
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Figure 12. Joint PDF of (a),(b) u′′
s /u′′

s,rms and v′′
s /v′′

s,rms and (c),(d) u′′
d/u′′

d,rms and v′′
d/v′′

d,rms for case with
Mc = 0.8 at τ = 1000 and Mc = 1.8 at τ = 1250: (a),(c) in the turbulent region and (b),(d) in the non-turbulent
region. The thick dashed auxiliary line indicates the long axis of the oval shape. The thin dashed-dotted line
represents the symmetry line of the u′′

s –v′′
s plane. The contour levels 0.001, 0.01 and 0.1 are shown.
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Figure 13. The Reynolds shear stress and its decomposed components for cases with (a) Mc = 0.8 and (b)
Mc = 1.8. The legend is the same for both plots.
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Φ̂ =
∫ Ly/2

−Ly/2
p′ ∂u′′

i
∂xi

dy, (4.5c)

Σ̂ =
∫ Ly/2

−Ly/2
u′′

i

(
1

Re
∂σ̄ik

∂xk
− ∂ p̄

∂xi

)
dy. (4.5d)

The magnitude of the integrated mass flux coupling term is still negligible. The transport
equations of the integrated TKE components K̂i and the Reynolds shear stress R̂12 can be
obtained similarly, which are omitted here for brevity.

Figure 14 displays the time evolution of the normalised y-integrated TKE K̂/�U2, its
three components K̂i/�U2 and the Reynolds shear stress R̂12/�U2 at Mc = 0.2, 0.8 and
1.8. We can see that the integrated TKE and Reynolds shear stress grow linearly after
a rapid growing transition region with a slight overshoot between two regions only at
Mc = 0.8. Because of the anisotropic nature of free shear flows, it is generally observed
that the components of integrated TKE satisfy the relationship K̂1 > K̂3 > K̂2 in the
self-similar region. It is interesting for Mc = 0.2 that the vertical component K̂2 of the TKE
is larger than the spanwise component K̂3 in transition region τ < 150, and undergoes an
accelerating growth resulting in K̂2 > K̂3 again beyond the self-similar region τ > 750,
as shown in figure 14(a). This behaviour is consistent with a previous numerical study
of a spatially developing incompressible mixing layer by Attili & Bisetti (2012). We
observe that the rapid growth of K̂2 in the late stages of development at Mc = 0.2 is the
characteristic of the larger spanwise rollers generated by the Kelvin–Helmholtz instability,
which is in agreement with previous results by Rogers & Moser (1994).

Figure 15 displays the time evolution of the normalised y-integrated production P̂/�U3,
dissipation ε̂/�U3 and pressure–strain Φ̂/�U3 in the equation of K̂ at Mc = 0.2,
Mc = 0.8 and Mc = 1.8. Here, the integrated mass flux coupling and transport terms
have been neglected because their magnitude is very small, even in the large Mc case.
At Mc = 0.2, the asymptotic behaviour of P̂/�U3 and ε̂/�U3 is in good agreement
with the previous numerical results by Attili & Bisetti (2012) in a spatially evolving
incompressible mixing layer, as compared in figure 15(b) where the abscissa is a local
Reynolds number Reω = ρ∞�Uδω/μ∞, which allows a direct comparison between the
spatially and temporally evolving mixing layers. As convective Mach number increases,
both magnitudes of the integrated production and dissipation become smaller, whereas
the integrated pressure–strain term slightly increases only in the transition region. We
can see that the integrated pressure–strain term is always much smaller than the other
two terms, indicating that the net contribution of pressure dilatation to the kinetic energy
transfer is negligibly small. This is consistent with previous studies on compressible
turbulence (Wang et al. 2018, 2021). In the transition region, P̂/�U3 grows linearly for
all three convective Mach numbers. In contrast, ε̂/�U3 grows linearly only at Mc = 1.8
and it satisfies ε̂/�U3 ∝ −τ 2 at Mc = 0.2 and Mc = 0.8. An overshoot in the integrated
production and dissipation occurs near the end of the transition region, and then the
overshoot decays and becomes nearly a constant in the self-similar region. We also
observe that the dissipation overshoot clearly lags behind the production overshoot. The
ratio between the corresponding time of the dissipation overshoot τε and the production
overshoot τP is defined to measure the lag level between them. The values for τε/τP are
1.8, 1.5 and 1.2 at Mc = 0.2, Mc = 0.8 and Mc = 1.8, respectively. This result indicates
that the dissipation starts to effectively balance the production earlier for larger convective
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Figure 14. Time evolution of K̂/�U2, K̂i/�U2, 0.5R̂12/�U2 at (a) Mc = 0.2, (b) Mc = 0.8 and (c)
Mc = 1.8. The legend is the same for all plots. The dashed vertical lines mark the self-similar time periods.

Mach number, and partly reveals some reasons for reduction of growth rate with increased
convective Mach number in the transition region.

In order to better understand the effect of compressibility, we plot the time evolution
of transport terms for K̂i in figure 16. In all cases, we can see that the production
terms associated with K̂2 and K̂3, namely P̂2 and P̂3, are negligible concerning the K̂1
production P̂1. As is well known, on average, the pressure–strain correlation components
Φ̂i redistribute energy from K̂1 to the other components K̂2 and K̂3. Figure 16(a) shows
that Φ̂2 > Φ̂3 for τ < 100 and τ > 700, leading to the preferential transfer of energy into
the vertical velocity fluctuation, as shown in figure 14(a). It is interesting to note that all
pressure–strain correlation components Φ̂i and production almost reach their peak values
at the same time for all three convective Mach numbers.

For the case with Mc = 0.2, the three components of viscous dissipation ε̂i always
overlap perfectly with each other, as shown in figure 16(a), suggesting local isotropy of
the flow at small scales. As the convective Mach number increases, the viscous dissipation
occurs more anisotropically and is dominated by the streamwise component ε̂1 in the
transition region. As is clearly presented in figure 16(c) for Mc = 1.8, the magnitude of
streamwise component ε̂1 is found to be even larger than Φ̂1, whereas the ε̂2 and ε̂3

components are still proportional to −τ 2, resulting in linear growth of the total viscous
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Figure 15. Time evolution of P̂/�U3, ε̂/�U3, Φ̂/�U3 at (a),(b) Mc = 0.2, (c) Mc = 0.8 and (d) Mc = 1.8.
The legend is the same for (a), (c) and (d). The black solid lines correspond to ε̂/�U3 ∝ −τ 2. The dashed
vertical lines mark the self-similar time periods.

dissipation ε̂ in figure 15(d). We depict the PDF of three instantaneous viscous dissipation
components εi/�U3 at τ = 250 in figure 17 for the convective Mach number Mc = 0.2
and 1.8, where εi is defined as (avoiding summation convention)

εi = − 1
Re

σ ′
ik

∂u′′
i

∂xk
. (4.6)

The PDFs of εi/�U3 always collapse into the same curve for Mc = 0.2. At convective
Mach number Mc = 1.8, we observe that the left tail of PDF of ε1/�U3 is much longer
than that of ε2/�U3 and ε3/�U3, suggesting that stronger events of viscous dissipation
occur in the transport of K̂1 during the transition region. This is further studied from aspect
of vortical structures in § 4.4.

We also plot the time evolution of transport terms for R̂12 in figure 18. For all cases, we
can see that the transfer of the Reynolds shear stress is dominated by the pressure–strain
term Φ̂12 and production term P̂12 with peaks occurring at nearly the same time with the
production P̂. The viscous dissipation ε̂12 is negligibly small and increases slightly as the
convective Mach number increases.
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Figure 16. Time evolution of P̂i/�U3, ε̂i/�U3, Φ̂i/�U3 at (a) Mc = 0.2, (b) Mc = 0.8 and (c) Mc = 1.8.
The legend is the same for all plots. The black solid lines correspond to ε̂i/�U3 ∝ −τ 2.
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Figure 17. PDF of viscous dissipation components εi/�U3 at τ = 250 for cases with (a) Mc = 0.2 and (b
Mc = 1.8.

4.4. Turbulence structure and length scale
As already mentioned, the contribution of dilatational component to overall Reynolds
stress is quite limited. We therefore believe that the transportation of TKE is dominated by
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Figure 18. Time evolution of P̂12/�U3, ε̂12/�U3, Φ̂12/�U3 at (a) Mc = 0.2, (b) Mc = 0.8 and (c)
Mc = 1.8. The legend is the same for all plots. The dashed vertical lines mark the self-similar time periods.

the solenoidal velocity field which is characterised by small-scale vortical structures and
energetic large-scale velocity structures. According to Kolmogorov’s turbulence theory
(Kolmogorov 1941), the characteristic length scale of the smallest eddies is given by the
Kolmogorov length scale η where most of the kinetic energy is dissipated by viscosity.
Figure 19(a) shows the temporal evolution of the normalised centreline Kolmogorov length
scale ηy0/�x for cases with convective Mach numbers Mc = 0.2, 0.8 and 1.8. We observe
that ηy0/�x at y = 0 reaches a minimum value during the transition region and then
gradually increases as the development of turbulent flow. As the convective Mach number
increases, the centreline Kolmogorov length scale ηy0/�x at Mc = 1.8 becomes twice as
large as that at Mc = 0.2. From figure 19(b), it can be seen that the η/�x extracted in the
self-similar region is approximately constant inside the turbulent mixing region, which is
consistent with the previous results of compressible turbulent mixing layer by Vaghefi &
Madnia (2015) and incompressible planar jet by Watanabe et al. (2018). Outside the mixing
layer, η/�x decreases as the convective Mach number increases, due to the fluctuations
induced by the shocklets here.

In figure 20, we compare the visualisations of small-scale vortical structures in transition
region at Mc = 0.2 and 1.8, where the structures are displayed by the iso-surfaces of the
second invariant of the instantaneous velocity gradient tensor Q. At lower convective
Mach number Mc = 0.2, the vortices are highly three-dimensional, with their diameter
of the same order of the Kolmogorov scale. There are plentiful shapes of small-scale
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Figure 19. (a) Time evolution of the centreline Kolmogorov length scale ηy0/�x and (b) mean profile of
η/�x at Mc = 0.2, 0.8 and 1.8. The dashed vertical lines mark the self-similar time periods in (a).

vortices, including hairpin vortices, rib vortices and complex helical vortices, giving rise
to much random orientation of vortical structures. In contrast, the flow field is dominated
by more regular and smooth streamwise elongated vortices at Mc = 1.8 and τ = 250.
This phenomenon is consistent with previous studies of small-scale vortical structures
in compressible mixing layer, where it is generally believed that the vortical structures are
more aligned in the streamwise direction at higher Mc, particularly in the transition region
(Balaras et al. 2001; Fathali et al. 2008; Arun et al. 2019; Li et al. 2021).

The effects of the small-scale vortical structures on the anisotropy of viscous dissipation
are further investigated by scrutinising flow variables in the y–z planes, as shown
in figure 21. In these y–z slices at x = 0.5Lx, the black solid lines represent the
iso-lines of viscous dissipation, whereas the contours show the velocity fluctuation.
For case M02, the distribution of streamwise viscous dissipation ε1 is chaotic and
fragmental, as shown in figure 21(a). Here ε2 and ε3 are not shown because they
resemble ε1. For case M18, the mixing region is packed with mushroom-like structures
of positive and negative streamwise velocity fluctuations, with strong streamwise viscous
dissipation regions wrapping around them. Comparing figures 21(b) and 21(c), the lift-up
of low-speed fluid and the drop-down of high-speed fluid are clearly presented. The
prominent mushroom-like structures are created by the interaction of a pair of streamwise
counter-rotating vortices, as presented in a enlarged view in figure 21(e), with the vectors
showing the velocity fluctuations in the vertical v′′ and spanwise w′′ directions. This is
similar to several previous studies on flat-plate boundary layers (Strand & Goldstein 2011;
Buffat et al. 2014; Zhao & Sandberg 2020). From figures 21(c) and 21(d), we can see that
the iso-lines of ε2 = 0.005 and ε3 = 0.005 are more sparse, with smaller length scales
in the y–z plane, as compared with the iso-lines of ε1 = 0.01, revealing that the viscous
dissipation of K2 and K3 is much weaker than that of K1 for Mc = 1.8 in the transition
region, which confirms the results in figure 16.

We are now going to focus on the large-scale flow structures of the mixing shear layer.
Figures 22 and 23 show the instantaneous fields of the streamwise velocity u′′ and density
fluctuations ρ′ in the horizontal plane at the centre of the shear layer (y = 0) at different
time instants for cases M02 and M18, respectively. For the nearly incompressible case
with Mc = 0.2, the density fields exhibit a typical pattern of spanwise Kelvin–Helmholtz
rollers that merge and eventually fill up the whole computational domain, which is similar
to the situation reported in incompressible (Rogers & Moser 1994; Balaras et al. 2001)
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Figure 20. Small-scale vortical structures are visualised by the iso-surfaces of the second invariant Q of the
velocity gradient tensor and coloured based on local values of u′′: (a) Q = 20, τ = 125 and Mc = 0.2; (b)
Q = 2, τ = 250 and Mc = 1.8.

and weakly compressible (Mungal 1995; Pirozzoli et al. 2015) mixing shear layers. The
streamwise elongated large-scale structures of u′′ with an imposed low-frequency spanwise
meander can also be observed in the transition region at τ = 375. At late time τ = 750, we
can see that the high-speed regions tend to propagate abreast along the spanwise direction.
For the strongly compressible case with Mc = 1.8, no clear hints of spanwise rollers can
be observed both in the fields of the streamwise velocity u′′ and density fluctuations
ρ′. Although large-scale low- and high-speed regions form at an early time of τ = 125,
they are highly elongated in the streamwise direction and more slender in the spanwise
direction.

To quantify the features of streamwise elongated large-scale structures in the mixing
shear layer, the two-point correlation Ruu (defined in (2.19)) at three different time instants
in the self-similar region is shown in figure 24 at Mc = 0.2 and 1.8. Ten contour levels
ranging from 0.1 to 1 with increments of 0.1 are shown and each direction is normalised
by the local vorticity thickness δω. The undulation of the lower Ruu level is caused by the
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Figure 21. Contours of instantaneous velocity fluctuations u′′
i along with stronger events of viscous dissipation

indicated by black solid lines: (a) ε1/�U3 = 0.03, −0.3 < u′′ < 0.3 at Mc = 0.2 and τ = 125; (b) ε1/�U3 =
0.01, −0.3 < u′′ < 0.3, (c) ε2/�U3 = 0.005, −0.2 < v′′ < 0.2, and (d) ε3/�U3 = 0.005, −0.2 < w′′ < 0.2
at Mc = 1.8 and τ = 250. (e) Enlarged view of the region in red-lined rectangular box in plot (b), showing the
velocity vectors of v and w.

decreasing sample size away from the origin. We find that the three sets of contours (at
three different time instants) in the self-similar region show very good collapse when
scaled by vorticity thickness δω for both Mc = 0.2 and 1.8, which confirms that the
self-similar state of the mixing layer is dominated by large-scale structures (Vreman et al.
1996; Pantano & Sarkar 2002). In figures 24(a) and 24(b), the correlation decays to a value
of 0.1 at a distance larger than δω, which indicates that there is significant streamwise
elongated spatial coherence. The fusiform-like correlation contours are inclined with
respect to the local streamwise direction with an inclination angle decreasing from 18◦
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Figure 22. Instantaneous fields of (a),(c),(e) u′′ and (b),(d),(f ) ρ′ in the central x–z plane for case M02:
(a),(b) τ = 100; (c),(d) τ = 375; and (e),(f ) τ = 750.

at Mc = 0.2 to 12◦ at Mc = 1.8, which is similar to the experimental results reported by
Messersmith & Dutton (1996) and Kim, Elliott & Dutton (2020). Figures 24(c),(d) and
24(e),(f ) show Ruu in the x–z and y–z planes, respectively. We find that the correlation
contours are compact in spanwise direction and moderately elongated in the vertical
direction, indicating a relatively small spanwise length scale.

In general, the streamwise and spanwise length scales of large-scale structures are
extracted from the two-point correlation functions of the streamwise velocity fluctuations
with a nominal threshold. A higher threshold leads to smaller and more stable coherence
length (Ganapathisubramani et al. 2005; Sillero, Jiménez & Moser 2014). Here, it is found
that the threshold strongly influences the streamwise correlation length, so it is difficult to
determine the compressibility effect on the length scale. For example, when we chose a
larger value of the threshold, Ruu ≥ 0.3, the streamwise length scale was found to be larger
at Mc = 0.2, in contrast to the situation of the threshold value 0.1. The compressibility
effect on the length scale of large-scale structures is further investigated by inspecting
the integral length scales, as shown in figure 25. We can see that the normalised integral
length scales lx/δω and lx/δω rapidly decrease in the transition region from a very large
initial value, then followed by a nearly constant length scale until the end of the simulation,
confirming again the self-similarity of large-scale structures. This observation indicates
that the current computational domain is large enough to solve the large-scale turbulence.
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Figure 23. Instantaneous fields of (a),(c),(e) u′′ and (b),(d),(f ) ρ′ in the central x–z plane for case M18:
(a),(b) τ = 125; (c),(d) τ = 500; and (e),(f ) τ = 2000.

Otherwise, the growth of large-scale structures would be restricted resulting in the
decrease of integral length scale (Vreman et al. 1996; Vadrot et al. 2021). In the self-similar
region, the streamwise length scale lx/δω increases significantly with the convective Mach
number, indicating that the large-scale structures of Ruu became increasingly elongated
in the streamwise direction. As the convective Mach number increases, the spanwise
integral length scale is almost unchanged with lz/δω ≈ 0.3, whereas a clear decrease of
the spanwise size of large scale structures can be found in figure 24. We also find that the
spanwise integral length scale agrees very well with the previous study of a compressible
spatially developing mixing layer (Pirozzoli et al. 2015).

In the stratified shear layer, the turbulent structures and flow dynamics have been found
to resemble those in wall turbulence (Watanabe et al. 2019; Watanabe & Nagata 2021).
The universality of the elongated large-scale structures can be examined in compressible
temporally evolving mixing layers and turbulent boundary layers. The spanwise integral
length scale is comparable to that observed in the logarithmic region of turbulent boundary
layers (Pirozzoli & Bernardini 2011; Pirozzoli 2012), where lz/δ ≈ 0.2–0.3 (δ is the
thickness of the wall boundary layer). Figure 26 compares the two-point correlation of
u′′ in the present mixing shear layer with results reported in previous studies of the
flat-plate boundary layers. We find that the two-point correlation at Mc = 0.2 is in excellent
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Figure 24. Two-point correlations of the streamwise velocity fluctuation u′′ in the (a),(b) x–y, (c),(d) x–z and
(e),(f ) y–z planes at three different time instants: (a),(c),(e) Mc = 0.2 and (b),(d),(f ) Mc = 1.8. The contour
levels range from 0.1 to 1 with increments of 0.1.
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agreement with the outer part of subsonic flat-plate boundary layers experimentally
studied by Bross et al. (2021) with the centre of the contours located at y/δ = 0.2. Near
the wall (indicated by a red solid line), the contour line is stretched forming an extended
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Figure 26. Comparisons of the two-point correlation of u′′ in the mixing shear layer with that in the boundary
layers (Pirozzoli & Bernardini 2011; Bross et al. 2021). The red solid lines indicate the wall of the boundary
layer. The red + symbols show the centre points located with a distance of (a) 0.2δ and (b) 0.3δ away from the
wall. The levels of contour lines are 0.2, 0.4, 0.6 and 0.8.

tail on the left side and compacted toward the centre of the structures. For the case with
Mc = 1.8, the two-point correlation at lower level decays faster than that in supersonic
flat-plate boundary layers measured by Pirozzoli & Bernardini (2011) with the centre of
the contours located at y/δ = 0.3, and the contour lines collapse well at high level of
Ruu ≥ 0.6. We infer that the disparity of the two-point correlation at Mc = 1.8 is caused
by the arbitrary selection of the wall-normal location at which the correlation is computed
in the boundary layer, due to the three-dimensional geometric properties of the large scale
structures (Sillero et al. 2014; Kevin, Monty & Hutchins 2019b). As suggested by Kevin,
Monty & Hutchins (2019a), the centre height y/δ = 0.2 corresponds to the centre of the
mean large-scale structures in the boundary layer, so we can expect a better comparison
than that in figure 26(b).

In wall-bounded turbulence, the large-scale structures interact with the small-scale
structures in two ways, namely the superposition and amplitude-modulation effects
(Marusic et al. 2010; Mathis, Hutchins & Marusic 2011; Agostini & Leschziner 2014). A
top view of high- and low-speed large-scale structures and small-scale vortical structures
in the upper half-domain is given in figure 27 for Mc = 1.8. It is easy to identify two
highly elongated low-speed (blue) regions flanked on either side in the spanwise direction
by high-speed (red) regions, as shown in figure 27(b). Comparing figures 20(b) and 27(a),
it is clear that the tendency of the vortical structures to align in the streamwise direction
at high convective Mach number are much weaker at later times, which is consistent with
the previous numerical analysis by Arun et al. (2019). We can see that the small-scale
vortical structures have an apparent preference for clustering into the low-speed regions,
and are more sparse in the high-speed regions. The iso-surface of low-speed regions acts as
an envelope of the clustering small-scale structures. The observations are consistent with
previous studies on wall turbulence (Marusic et al. 2010; Pirozzoli & Bernardini 2011;
Chan & Chin 2022).

Moreover, we examined the conditionally averaged flow fields, 〈u′′
i | u′′ < 0〉 and

〈ω | u′′ < 0〉, obtained by ensemble averaging u′′
i and ω around any point in the low-speed

regions and at the centreplane y = 0, where ω is the vorticity magnitude. Figure 28
displays the conditionally averaged flow field in the x–y and y–z planes for Mc = 0.2
and 1.8. For both low and high convective Mach numbers, the large-scale low-speed
structures are lifted upwards by a pair of counter-rotating quasi-streamwise vortices
flanking the large-scale structures, as shown in figures 28(b) and 28(d), resembling the
typical counter-rotating roll modes found in wall turbulence (Marusic et al. 2010; Kevin
et al. 2019a). These quasi-streamwise roll modes in the mixing shear layer are inclined
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Figure 27. Top view of coherent structures in the upper half-domain y > 0 for Mc = 1.8 at τ = 1250. (a)
Small-scale vortical structures visualised by the iso-surfaces of the second invariant of the velocity gradient
tensor Q = 2 and coloured based on local values of u′′. (b) The high- and low-speed large-scale structures
presented by the iso-surfaces of u′′ = 0.3 (blue) and −0.3 (red), respectively.

slightly to the horizontal, which can be inferred from the orientation of velocity vectors
in large-scale low-speed structures, as depicted in figures 28(a) and 28(c). The spanwise
distance between two centres of the counter-rotating quasi-streamwise vortices clearly
decreases as the convective Mach number increases, which is consistent with previous
study of a compressible spatially developing mixing layer (Pirozzoli et al. 2015). At
Mc = 0.2, we can see a clear sign of flow organisation into spanwise rollers located at
both ends of conditionally averaged low-speed structures, which almost disappear at the
highest convective Mach number Mc = 1.8, indicating that the effect of compressibility
can suppress the Kelvin–Helmholtz instability.

Figure 28 also shows the distribution of the conditionally averaged vorticity intensity,
〈ω | u′′ < 0〉. We find that, in the large-scale low-speed structures, the local maximum of
〈ω | u′′ < 0〉 occurs at a higher distance from the centreline, confirming the clustering of
small-scale vortical structures within the upper part of large-scale low-speed structures,
as shown in figure 27. From figures 28(a) and 28(c), we can see that the clustering of
small-scale vortical structures is directly associated with high-shearing motions presented
by the longer arrow there. Taking into account the antisymmetry of the base flow
ũi( y) = −ũi(−y), the large-scale high- and low-speed structures statistically exhibit
central symmetry patterns, therefore, the results on high-speed structures are not shown
for brevity.

According to the present results, we propose a conceptual model for higher convective
Mach number Mc ≥ 0.8 to qualitatively depict the dynamics of the streamwise elongated
large-scale structures and their interaction with small-scale vortical structures in the
self-similar region, as illustrated in figure 29 viewed on a y–z plane. This conceptual model
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Figure 28. Conditional average of flow field conditioned to the low-speed structures, u′′ < 0, in the (a),(c)
x–y and (b),(d) y–z planes: (a),(b) Mc = 0.2 and (c),(d) Mc = 1.8. The colour contours display 〈ω | u′′ < 0〉
and 〈u′′ | u′′ < 0〉 is plotted with solid black contour lines representing levels range from −0.2 to −0.05 (from
inside to outside) with increments of 0.05. Vectors represent conditional-averaged velocity components with
the longest arrow measuring 0.2. The + (red) symbols show the centre location of roll modes.

resembles the outer part of the well-known model of wall-bounded turbulent flow proposed
by Marusic et al. (2010). In this conceptual model, the high- (red) and the low-speed
(blue) large-scale structures alternatively arrange in the spanwise direction with the
associated counter-rotating roll modes (black circles) inducing the rising of the low-speed
structures and the sinking of the high-speed structures. The embedding of the low-speed
structures into the high-speed free stream results in a high-shear region promoting the
small-scale vortical structures on top of the low-speed structures. Similarly, the small-scale
vortical structures are activated at the bottom of high-speed large-scale structures. In the
mixing layer, the large-scale high- and low-speed structures exhibit central symmetry
about their symmetric centre on centreplane, whereas in the wall-bounded turbulence the
near-wall part of the large-scale structures interact with the near-wall turbulence, through
superposition and modulation effects (Mathis, Hutchins & Marusic 2009; Marusic et al.
2010; Mathis et al. 2011). It should be noted that, at low convective Mach number, the
large-scale high- and low-speed structures and the spanwise rollers coexist, which deserves
further study.

5. Conclusion

We have carried out the DNS of a temporal compressible shear layer to investigate the
compressibility effects on statistical properties and coherent structures at the convective
Mach numbers Mc ranging from 0.2 to 1.8. The Reynolds number based on the momentum
thickness and the free-stream velocity is initially set to 320 and becomes as large as 5200
in the self-similar region. We have given detailed comparisons of various flow statistics,
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Figure 29. Schematic of large-scale coherent structures and its interaction across the mixing shear layer
for higher convective Mach number Mc ≥ 0.8. The red and blue regions indicate the high- and low-speed
large-scale structures, respectively. The black circles is the counter-rotating roll modes. The gray contours
show the clustering of small-scale vortical structures. The red and black dashed lines represent centreplane and
boundaries of mixing layer, respectively.

including the mean velocity, momentum thickness, the Reynolds stresses and the balance
of the TKE equation, with those in the previous experimental and numerical studies, and
have validated our DNS data of a compressible mixing layer.

The local compressibility is investigated employing Helmholtz decomposition. As the
convective Mach number increases, the magnitudes of three dilatation-related components
of the Reynolds shear stress become larger, but still several orders of magnitude smaller
than the solenoidal component. The physical mechanism of the suppression of layer
growth rate due to compressibility is further examined by analysing the integrated
statistics of the TKE budget. All integrated energy transfer terms undergo an overshoot
in the transition region and approach an equilibrium state in the self-similar region. In
the transition region, the vertical and spanwise components of viscous dissipation, ε̂2
and ε̂3, vary as approximately −τ 2 at all convective Mach numbers. The streamwise
component ε̂1 varies like −τ 2 at Mc = 0.2, and grows much faster than the other two
components at Mc = 1.8 resulting in linear growth of the total dissipation. We found that
the rapid increasing of ε̂1 is strongly correlated with the streamwise elongated vortical
structures at a higher level of compressibility. The lag of dissipation overshoot behind
the production overshoot becomes smaller at higher convective Mach number Mc = 1.8.
These observations indicate that the dissipation starts to effectively balance the production
earlier at Mc = 1.8, revealing the compressibility effect on the reduction of growth rate.

Our numerical results confirm the existence of the large-scale high- and low-speed
structures in the self-similar region, which accompany the spanwise Kelvin–Helmholtz
rollers at low convective Mach number Mc = 0.2 and dominate the mixing layer solely
at high convective Mach number Mc = 1.8. The two-point correlations of streamwise
velocity fluctuation u′′ are significantly elongated in the streamwise direction and
compact in the spanwise direction, and are self-similar in the self-similar region. As
the convective Mach number increases, the streamwise integral length scale lx/δω

increase significantly and the spanwise integral length scale lz/δω is almost unchanged.
The two-point correlations of u′′ are in good agreement with those obtained in the
logarithmic region of the compressible turbulent boundary layers. Moreover, in the
conditionally averaged flow field, the large-scale low-speed structures are lifted upwards
by a pair of counter-rotating quasi-streamwise rollers flanking the large-scale structures,
resembling the typical counter-rotating roll modes found in wall turbulence. The spanwise
Kelvin–Helmholtz rollers are located at both ends of the low-speed structures and strongly
suppressed at the highest convective Mach number Mc = 1.8. The small-scale vortical
structures have an apparent preference for clustering into the top of the low-speed regions,
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Case Mc Lx × Ly × Lz Nx × Ny × Nz Lb

G128 0.8 314 × 314 × 157 256 × 256 × 128 15.0
G256 0.8 314 × 314 × 157 512 × 512 × 256 15.0
G512 0.8 314 × 314 × 157 1024 × 1024 × 512 15.0

B1 0.8 314 × 314 × 157 1024 × 1024 × 512 7.5
B2 0.8 314 × 314 × 157 1024 × 1024 × 512 30.0

Table 2. Parameters for the additional simulations: Lb denotes the buffer layer width; Lx, Ly, Lz and Lb are
measured in terms of initial momentum thickness δ0

θ .

15

10

5

0

15

10

5

0500 1000 500 1000

t�U/δθ0
t�U/δθ0

G512 G512: Lb = 15

B1:     Lb = 7.3

B2:     Lb = 30
G256

G128

δ θ
/
δ θ

0

(a) (b)

Figure 30. Temporal evolution of normalised momentum thickness at Mc = 0.8 for (a) different
computational grid sizes and (b) different buffer layer width.

which is directly associated with high-shearing motions on top of the low-speed structures.
These observations reveal the universality of the large-scale high- and low-speed structures
in free shear and wall-bounded turbulent flows. Based on the present numerical results, the
large-scale high- and low-speed structures are reconstructed by a conceptual model which
resembles the outer part of the well-known model of wall-bounded turbulent flow proposed
by Marusic et al. (2010).
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Figure 31. The Reynolds normal stresses and their decomposed components for case with Mc = 1.8: (a) R11;
(b) R22; and (c) R33.

Appendix A. Effect of resolution and buffer layer width

Several additional simulations have been performed at Reθ = 320 and Mc = 0.8 in order
to explicitly investigate the effects of resolution and buffer layer width. The computational
parameters corresponding to these simulations are summarised in table 2.

The grid resolution is examined on three sets of grids, namely, 256 × 256 × 128, 512 ×
512 × 256 and 1024 × 1024 × 512. The evolution of the normalised momentum thickness
is shown in figure 30(a) for the three grid resolutions. It can be seen that clearly converged
results are obtained for grids finer than 512 × 512 × 256. Unless indicated otherwise,
the results shown in the paper are based on the finest resolution 1024 × 1024 × 512.
Simulations B1 and B2 were performed with different buffer layer width Lb = 7.5 and
30.0, respectively, to ascertain the effect of buffer layer width. The turbulent field was
initialised with the initial flow field of simulation G512 with Lb = 15.0. As shown in
figure 30(b), the evolution of the normalised momentum thickness from three buffer layer
widths overlap at all times, implying that the buffer layer width Lb = 15.0 is large enough
to sufficiently damp disturbance at vertical boundary.

Appendix B. Helmholtz decomposition of Reynolds normal stresses

In figure 31, we plot the Reynolds normal stresses and their decomposed components
for cases with Mc = 1.8. Similar to R12 in figure 13, the Reynolds normal stresses are
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dominated by the solenoidal component in the turbulent region and by the dilatational
component in the non-turbulent region. We find that ρu′′

d,2u′′
d,2 has two peaks at y/δω ≈

±0.6, and ρu′′
d,1u′′

d,1 and ρu′′
d,3u′′

d,3 are single-peaked at y = 0. It is interesting to

observe that the solenoidal-dilatational component ρu′′
s,1u′′

d,1 is positive, and ρu′′
s,2u′′

d,2 and

ρu′′
s,3u′′

d,3 are negative in the turbulent region.
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