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A GENERALISATION OF THE SUMMATION FORMULA OF PLANA

CLEMENT FRAPPIER

An extension of the classical summation formula of Plana is obtained. The extension
is obtained by using the zeros of a Bessel function of the first kind.

1. INTRODUCTION

o0
Let f(z) be analytic in the half-plane Re(z) > 0 and let either the series 5 f(k) or
k=0

the integral / f(z) dz be convergent. Suppose, in addition, that
0 .
(A) h}im | flz £iN )|e‘2"N = 0 uniformly in z on every finite interval, and
—+00
(o]
(B) / |F(M + iy)|e™*¥ dy exists for every M > 0 and tends to zero

as M — oo.

Under these assumptions, we have

= fliy) — f(=1y)
(1) ;f(k) /f dz+z/ e2”y—1 dy.

Equation (1) is known as the summation formula of Plana. It has applications to
the I function, the Riemann { function and the discrete Laplace transform [4].

The aim of this paper is to present a generalisation of (1). Our results involve a
parameter a > —1, the order of a Bessel function of the first kind. We obtain (1) as the

special case o = 1/2. For a = —1/2 we shall obtain a formula similar to (1), namely
[o o]
1 ® fly) = f(-i)
k—2) =
2) gf( ) / f()d / fw v,

We examine some examples, one of which leads us to consider, in a natural way, an
extension of the Riemann ¢ function. Some fragmentary properties of this function are
given, including a functional equation.
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316 C. Frappier (2]

2. THE SUMMATION FORMULA
Before we state our results, it is convenient to recall some standard notation. Let
a > —1 be a real number. The function J, defined by the relation

3 Jalz) _ g (Dt
( 2 — 2%+ekIN(a+k +1)

is known as the Bessel function of the ﬁrst kind, of order . The function (J,(2)/2%) is
an even entire function of exponential type 1, whose zeros j, = ji(a@) are real and simple
[5, Chapter XV]. We arrange these zeros such that 0 < j; < j2 < ... and j_x = —ji.
The Bessel function of the second kind Y, (Weber’s function) is defined, whenever « is
not an integer, by

(4) Ya(2) =

This function is often denoted N, (Neumann’s function). The Bessel functions of the
third kind H{" and H (Hankel’s functions) are defined by

(T a(e) = Ja(2)

cos(am)Ja(z) — J_a(2)

sin(an)

(5) HO(2) = Ja(2) + iYa(z) = )
and |
(6) HO(2) = Jo(2) — iYa(s) = iL0me®) = a2

sin(am)
Now let f(z) be analytic for Re(z) > 0. We define a real number w = w(a) by

{Za—l if a>0
w =

(7) -1 if a<O.

Suppose that
(a) A}im (z £ iN)“f(z £ iN)e " = 0 uniformly in z on every finite interval,
00
and

(b) /w|(M +iy)f(M £ iy)|e'2y dy exists for every M > 0 and tends to zero

a;(s) M — oo.
THEOREM 1. Let o > 0 be a real number not an integer, and let f(z) be ana-
Iytic for Re(z) > 0. Suppose that the series E (_72" “2f (k) / (L (]k))z) or the integral

o0
/ z?*7! f(z) dz is convergent. If conditions (a) and (b) are satisfied then
0

i = [ & )z~ o D e DT 10)

®) ~ (Ja(k))?
i o0 Jo(iy) — eI a(iy))
" 2sin(am) /0 y*! ( Jo(iy) ) (fGy) — f(—iy)) dy
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(3] Summation formula of Plana 317

In the special case a@ = 1/2 we have Jy2(2) = v/2/(wz)sin(2), jx = km, and (8),
where f(z) is replaced by f(z/x), reduces to (1). For a = 3/2 we have J3;2(z) =

2 (nz) ((sin(z) /2) — cos(z)), tan(jx) = js, and (8) becomes

= RPN 3 [ Py + D(f(y) — f(=w))
© 0D = [ e an = T+ [T HEETEE Ly

THEOREM 2. Let —1 < a < 0 be a real number and let f(z) be analytic for
o

Re(z) > 0, with f(0) = 0. Suppose that the series Z(f(jk)/j,f(.];(jk))z) or the
k=1

o0
integral / (f(z)/z) dz is convergent. If conditions (a) and (b) are satisfied then
0

. PACH
2
kz:ljk J/ ]k /

/ (J (iy) — e J_o (1)) (e f(iy) — e*™ f(~1y))
251n (ar) Ja(1y) 1y

The particular case a = —1/2 of (10) gives, since J_1s2(2) = /2/(nz)cos(z) and
jr = (2k — 1)(n/2), the summation formula

" i (’f“ [l [T U,

from which (2) follows 1f we replace f(2) by zf(z/n). Of course, a small modification to
the hypothesis of Theorem 2 must then be made.

(10)

dy.

3. PROOFS OF THE THEOREMS

For the various properties of Bessel functions used in the proofs, we refer the reader
to [5].

Let € be a small positive number and let M, N be large positive numbers with
M := mm+a(n/2)+(r/4) for some positive integer m. We consider, in the complex plane,
the closed curve T' = T'(M, N, &) which is the union of the intervals (M ~ iN, M + iN],
[M +iN,iN), [iN,ig], [-ie, —iN], [-iN, M — iN] and the semicircle C(e) = {2z : |z| =
€,Re(z) > 0}. Thus, T is a rectangular curve, in the right half-plane, with corners
M + iN,+iN, except that the interval [ic, —ie] is replaced by C(g). The curve I is
oriented positively. Let also 'y := {z € ' : Im{z) > 0} and T’y := {z € T : Im(z) < 0},
sothat ' =T, UTls.

The function 2* f{2)(Y.(2)/Ja(2)) is analytic on and inside I", except for simple poles
at 2 = jg, 1 € k € m. By the residue theorem, we have
1 Ya(2) . _ 2930

(12) 27 “’f( Ja(2) - = (Jc'x(jk))T
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The relation Y,(ji) = —J_a(jk)/sin(an) = —2/(mjkJ,(jk)) has been used to compute
the residue at z = ji. It follows from (12) that

__Z ]k , f ]k — L/ wf( ) ) +%{ zwf(z)ya(z) dz

211 ) I Ja(z)
1 W 01)(z) 1 w

(13) = —3- FIZ f(2) A dz+§;r— I‘lz f(2)dz
L[ wp HEOE 1,

+% Pzz f(2) 7.0 dz—ﬁ Fzz f(2)d=.

Cauchy’s theorem, applied to the closed curves 'y U [, M] and ', U [M, €], gives

M
(14) /r‘ 2Y f(2) dz=—/ ¥ f(z) dz.
and
M
(15) /r 2Y f(2) dz=/ z¥ f(z) dz.
Substituting in (13), we obtain
oG 1M, 1 H(2)
(16) _;k=1 (I}&(jk))2 - _;/E T )dz_% #1@ Ja(2) “
1 w £(2) d
+57-r- Fzz f(2) 7.0 zZ.

In (16), the integral along I'y may be written explicitly as

2 N (1) )
/ 29 f(2) Hy'(2) dz = Z/ (M +iy)“'f(M+iy)H° (M +.’Ly) dy
| 39 0

bl Jo(M + iy)
0 e W HO(z +iN)
- + [y s 2 )

e (1) ¢,
+i /N (1)” f (iy) Iiz(z(;l;) dy

0 (1) 10
. if\w+1 i0 (e€®)
+z/ﬂ/2(ee ) flee )_—Ja(se“’) dé.

The asymptotic expansions

2 .
(18) HV(2) ~ 1/7r—ze’(z'°("/2)_("/4)), |z] = o0, | arg(2)| <,
2 T
(19) Jo(2) ~ — cos (z —as - Z) 2l = o0, |arg(z)| <,
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and the hypothesis (a) show that

(1)
(20) im [ (z+ NP f(e + i) e EHN)

e A Ja(.’E*f—ZN) r = (.

The same asymptotic expansions and the hypothesis (b) imply then that

o0 HO(M + i)
. - W .
Thus, (17) becomes
Auu [ W H(l)( ) .,,Z = '.‘, rool’_‘:"‘\w (I'_‘:m\ Hgl)(zy) dn,
-/1"1 ( ) js \*Y) J\*¥/ Ja(iy) L

(22)

In a similar manner, using the asymptotic expansion

2 .
(23) HP(2) ~ \/-ﬁe"("u(”ﬂ)'(”/“)), |z] = o0, | arg(z)| < m,

instead of (18), we obtain

@y, e ey
lim [ 2f(2)=F (2) 4= /_ (iy)* f (i) ) 4

Moo Jr, a(2) % Ja(y)

(24) N-ooo o )
. oy HO (eei®)
— 10w+l 8 a
2/_,/2(66 )t f(ee )_——_Ja(se“’) de

We infer from (16) that
2 3 ];—:_lf(jk) = /co d:c+hm (y)wdy
R AT I Tuliy)
HO (s y)
dy

Joli)
: w[2 ) " (1) i0
5 [ e T a

+%/__ (i) f (iy)

() (e€®)

i f° ;
+§[l(eezﬂ)u+lf(€e:9) Ja(s ) da}

2
Using now the asymptotic expansion

ZO

(26) Ja(2) ~ FTat1)’

z—0,
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we obtain
. anf2 H(l)(se'g)
i0\yw+1
lgn2 | (ee”)" f(ee! )Ja(e )
(27) { 920-2T(q + DI()f(0) if a>0
= e o™ £(0) .
4 sin(an) it a<0,
and
.40 (2) (. i0
G i0\w+1 i\ Ha (e€”)
25%2 _1/2(66 )* (e )Ja(eeio)
(28) { —222"2T(a + 1)I'(a) f(0) if a>0
=4 we™f(0) :
Zsin(an) if a<0.

Substituting in (25) we get, for a > 0,

x 20— 2f o0 o o
QZJ’“ (]k]k —/0 27! f(z) dz — 22271 (o 4+ 1)T(c) £(0)

(29) 1 2
L (™ act [ gari p(gy B ) | ami g\ H (=)
_z 1 o™i f (3 ' +eomif( g dy,
5[ ( O fein Tl ) dy
from which Theorem 1 follows since J,(e™"z) = e~ J,(z) for Im(z) > 0. 0

Theorem 2 is obtained similarly. In that case (@ < 0) we have necessarily f(0) = 0.

4. EXAMPLES AND REMARKS

4.1. A GENERALISED RIEMANN { FUNCTION. An interesting application of Theorem 1
arises if we apply it, in appropriate circumstances, to a function of the form f(z) =
1/(z+¢€)¥, e >0, v:=s5+2a -~ 1. We obtain the relation

i j2e-? T'2a)(s — 1) (e + 1)T(a)
— _ 220—1 i Sl el et
(30) 2 Zl J' .71: + 6) F(S + 200 — 1)63—1 63+2a—1
L e /°° (iey)?® (Ja(iey) — ™ J_4(iey)) ( 1 1 )
2 sin(am)est2e-1 iy Ja(iey) +w)y (d-w)r) Y

where @ > 0 and Re(s) > 1. In the left hand side of (30), we can easily let € — 0. We
are led to consider the function (, defined (for all @) by

(31) Cals) = 2n°~ IZ <

R J' o) Re(s) > 1.
k=1
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We readily see that (y/2(s) = ((s) and (_1/2(s) = (2° — 1){(s). Also,

_ 1+ JE)
(3/2 - s+2
k=1

where tan(ji) = jx. If we were able to represent suitably a corresponding I'y function
then {, would satisfy a practical functional equation analogous to [1, p.259]

(32) ¢(s) = 2(2n)*"'T(1 — 8)sin (?) C(1—s).

More precisely, we have

(33)  sin(7a — 27) Cals) = —ie®™2- (/D (2m)* sin(ms)Ta(1 - 5)Ca(l — 5),

where T, is an extension of the classical I function. The relation T'(s)T'(1 — s) =
(m/sin(ns)) becomes the particular case o = 1/2 of

7re—2u1n'(

sin(2ra) — sin(ws))
22a-1gin?(7s)

?

(34) Fa(s)ra(l - 5) =

which follows from (33).
We don’t give details concerning the function {, because there is a difficulty in
representing [', in explicit form. We have only the representation

()
dr,

(35) Ta(s) = 2°+(1/2)<u s)/ ( )

with Re( ) > 2a if @ > 0 and Re(s) > 0 if @ < 0. We have I'y/5(s) = I'(s) and
r_ (1/2) —2( 21 ’-—1)/(2’—1))1"(3).
The analytic continuation form of (31) is

ims=! 1 (Ja(—i2) — e2™J_o(—12))
4sin(ar) sin((2a — s)7/2) /c 2* Ja(—zz) dz,

(36)  Cals) =

where C is a curve starting at —oo on the negative real axis, surrounding the origin in
such a way that the numbers ij;, £ = £1,%2,..., are excluded from its interior, and
returning at —oo along the negative real axis. The zeros of (, remain to be studied.

4.2. Let f(2) = (z +¢€)"e™%, ¢ > 0, with Re(v) > 0, Re(8) > 0 and |Im(5)| < 2. By
letting € — 0 we obtain, from Theorem 1,
5 f: j,f‘””'.ze“‘j" _T@2a+v)
(Ja(5x))? 2oty

(37) k=1 1 . (J ( ) am'J ( ))
204+v—1\Ve\llY) — €7 Jo2Y v
/0 sm( ) dy.

" sin(am) Ja (1Y) 8y - 2
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The same example, with v = 0, gives

=, jiete b _ T(2a)

— 220 4 1)[(a)

1 (4 2 20

(38) ko (Ja(e)) 6 .

1 ® a1 (Ja(ty) — €™ J_o(iy)) .

sin(ar) /0 y To(iy) sin(dy) dy

4.3.  As a numerical example related to (2), we take f(z) = 1/(1+2)2. The neat result
is

* ydy 5 g2
(39) /0 Q+y)2(ev+1) 4 8

4.4. EXACT QUADRATURE FORMULA. If f(z) is even then, according to our assump-
tions, it is necessarily analytic in the whole complex plane. In that case, the last integral
appearing in (8) is zero, so that

(40) /0 221 (3 dz—Qi]za 2f(7’°) + 222710 (o + 1)T(a) £(0),

which is a consequence of [3, Theorem 1]

(41) /0005620‘“( () + f(— 17) 7-2a+2 Z J, ( (]_k) +f(_]?k)> ’

with 7 = 1. In fact, (40) follows from (41) where f(r) is replaced by
(1/2?) (f(z) — (2°T(a + 1)(Ja(2)/2%)) £(0)). Note that (41) is valid for Re(a) > —1.
See also [2, Theorem 2] for a more general result of the form (40).
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