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A GENERALISATION OF THE SUMMATION FORMULA OF PLANA

CLEMENT FRAPPIER

An extension of the classical summation formula of Plana is obtained. The extension
is obtained by using the zeros of a Bessel function of the first kind.

1. INTRODUCTION
oo

Let f(z) be analytic in the half-plane Re(z) ^ 0 and let either the series £ f(k) or

the integral / f(x) dx be convergent. Suppose, in addition, that
Jo

(A) lim \f(x ± iN)\e~2irN = 0 uniformly in x on every finite interval, and
AT-+OO ' '

/•oo

(B) / \f(M ± iy)\e~2ny dy exists for every M ^ 0 and tends to zero
Jo
as M —> oo.

Under these assumptions, we have

(1)

*=o

Equation (1) is known as the summation formula of Plana. It has applications to
the F function, the Riemann ( function and the discrete Laplace transform [4].

The aim of this paper is to present a generalisation of (1). Our results involve a
parameter a > —1, the order of a Bessel function of the first kind. We obtain (1) as the
special case a = 1/2. For a = - 1 / 2 we shall obtain a formula similar to (1), namely

(2)

We examine some examples, one of which leads us to consider, in a natural way, an
extension of the Riemann £ function. Some fragmentary properties of this function are
given, including a functional equation.
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316 C. Frappier [2]

2. T H E SUMMATION FORMULA

Before we state our results, it is convenient to recall some standard notation. Let
a > — 1 be a real number. The function Ja defined by the relation

f (-1)**2*
*• ' za f^Q 22k+ak\T{a + k + l)

is known as the Bessel function of the first kind, of order a. The function (Ja(z)/za) is
an even entire function of exponential type 1, whose zeros jk = jk(<*) are real and simple
[5, Chapter XV]. We arrange these zeros such that 0 < ji < j2 < • • • and j _ f c = -jk.
The Bessel function of the second kind Ya (Weber's function) is defined, whenever a is
not an integer, by

= cos(an)Ja(z) - J_a(z)
K ' sin(aTr)

This function is often denoted Na (Neumann's function). The Bessel functions of the
third kind Ha^ and Ha

2^ (Hankel's functions) are defined by

and

(6)

Now let f(z) be analytic for Re(z) ^ 0. We define a real number u> = w(a) by

_ ( 2a - 1 if a > 0
^ ' W ~ | - 1 if a < 0.

Suppose that

(a) lim (a; ± iN)w f{x ± iN)e~2N = 0 uniformly in x on every finite interval,

and
/•oo

(b) / |(M ±iy)wf{M ±iy)\e~2y dy exists for every M ^ 0 and tends to zero
JO

as M -> oo.

THEOREM 1 . Let a > 0 be a real number, not an integer, and let f(z) be ana-

lytic for Re(z) ^ 0. Suppose that the series 52 [Jla~2f(Jk)/(J'aUk)) ) or the integral
k-\ V '

/»OO

/ a;2Q~1/(a;) dx is convergent. If conditions (a) and (b) are satisfied then
Jo

2 E T F F W = r x2a~lfWdx - 2to-xr(a + i)r(a)/(o)
x J I ft [ fl. 1 ) i /

(8) "

2 sin (aw) "
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[3] Summation formula of Plana 317

In the special case a = 1/2 we have J\ii{z) — ^2/(7rz)sin(z), jk = hit, and (8),

where f(z) is replaced by f(z/tr), reduces to (1). For a — 3/2 we have ^3/2(2) =

,/2/(7rz)nsin(z)/z) - cos(z)J, tan(j t ) = j k , and (8) becomes

THEOREM 2 . Let - 1 < a < 0 be a reaJ number and 7et /(z) be analytic for

Re(z) ^ 0, with /(0) = 0. Suppose that the series J2(fUk)/jk(J'a(Jk))) or the
/•OO

integral / (f(x)/x) dx is convergent. If conditions (a) and (b) are satisfied then
Jo

2Y
 f{jk) - ni^-dx

(10) tifMh))2 Jo *
1 r00 (J,(»y) ~ e°" J-o(»»)) ( e - ^ / f a ) - e^'f(-iy)) rf

70 J(«y) «/
2sin(a7r)

The particular case a = - 1 / 2 of (10) gives, since J-\/2(z) = \/2/(7r2)cos(z) and
jit = (2A; - 1)(TT/2), the summation formula

'Jo x dX Jo
2>

from which (2) follows if we replace f(z) by Z/(Z/TT). Of course, a small modification to
the hypothesis of Theorem 2 must then be made.

3. P R O O F S O F T H E THEOREMS

For the various properties of Bessel functions used in the proofs, we refer the reader

to [5].
Let £ be a small positive number and let M, N be large positive numbers with

M := m7r+a(7r/2) + (7r/4) for some positive integer m. We consider, in the complex plane,
the closed curve F = F(M, N, e) which is the union of the intervals [M - iN, M + iN],
[M + iN,iN], [iN,ie], [-ie,-iN], [-iN,M- iN] and the semicircle C(e) = {z : \z\ =
e,Re(z) ^ 0}. Thus, F is a rectangular curve, in the right half-plane, with corners
M ± iN,±iN, except that the interval [ie,-ie] is replaced by C(e). The curve Y is
oriented positively. Let also Tx := {z S F : Im(z) ^ 0} and F2 := {z e T : Im(z) ^ 0},
so that F = F! UF2.

The function zw j(z)(YQ{z)/Ja{z)) is analytic on and inside F, except for simple poles
at z = jk, 1 ^ k ^ m. By the residue theorem, we have

https://doi.org/10.1017/S0004972700032925 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032925


318 C. Frappier [4]

The relation Ya(jk) = —J-a(jk)/sm(air) = —2/(irjkJ'a(Jk)) has been used to compute
the residue at z = j k . It follows from (12) that

(13) = --L / ?>m!!2Mdz+±[ z»f(z)dz
27r7ri Ja(z) 27ryFl

Cauchy's theorem, applied to the closed curves r\ U [e, M] and F2 U [M, e], gives

(14) f z"f(z)dz = - f x"f{x)dx.
JVi Je

and

(15) f zuf(z)dz= f x"f{x)dx.

Substituting in (13), we obtain

(16)

In (16), the integral along r \ may be written explicitly as

f\x + i
JM

N

7T/2

The asymptotic expansions

+i (£e'Br+1f(ee18) y d9.
Jn/2 Ja\te )

(18) HW(z) ~ jAe*(*-»(*/2)-('/«)), |Z| -> 00,1 arg(z)| < n,

(19) •/„(*)- J — c o s ( z - o - - - ) , |*|-+oo,|arg(*)|<7r,
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[5] Summation formula of Plana 319

and the hypothesis (a) show that

(20) lim A s + iNYJ{x + iN) "f^^ dx = 0.

The same asymptotic expansions and the hypothesis (b) imply then that

(21) lim f°°{M + iyrf(M + iy)H°' ( 5 . + J } dy = 0.
M^>OOJ0 Ja(M +iy)

Thus, (17) becomes

(22) & r » " JK" UZ) "" 'J* *"" ^ " " J " ( < y )

- z / {eel6)u+1f\
Jo

In a similar manner, using the asymptotic expansion

(23) Hj?\z) ~ «/Xe-^-°("/2)-(W4))] | z | ^ 00) I
V 7T2

instead of (18), we obtain

Using now the asymptotic expansion

(26) J^-2^

(24)

l-K/2

We infer from (16) that

dy
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we obtain

( 2 7 ) f 2 2 a - 2 r ( a + l ) r ( a ) / ( 0 ) if a > 0

if a < 0 ,

and

( 2 8 ) f - 2 2 Q - 2 r ( a + l ) r ( a ) / ( 0 ) if a > 0

K o < 0 .

Substituting in (25) we get, for a > 0,

2 £ f^£)F = /°° ̂ "VW dx -(29) '=1 i :
from which Theorem 1 follows since Ja(e~"'z) = e~an'Ja(z) for Im(z) > 0. D

Theorem 2 is obtained similarly. In that case (a < 0) we have necessarily /(0) — 0.

4. EXAMPLES AND REMARKS

4 . 1 . A GENERALISED R I E M A N N £ FUNCTION. An interesting application of Theorem 1
arises if we apply it, in appropriate circumstances, to a function of the form f(z) =
1/(2 + e)u, e > 0, v := s + 2a - 1. We obtain the relation

{iey)2a {Ja{iey) - e™J-a{iey)) t 1 l ^ \
\{l + iyy {l-iy)"J y 'ly

where a > 0 and Re(s) > 1. In the left hand side of (30), we can easily let e —> 0. We
are led to consider the function CQ defined (for all a) by

rc i
(31) Ca(s) = 2TTS~1 > —
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We readily see that Ci/2(s) = C(«) and C-i/2(s) = (2s - l)C(s). Also,

*=1

where tan(j/t) = j ^ . If we were able to represent suitably a corresponding r Q function
then CQ would satisfy a practical functional equation analogous to [1, p.259]

(32) C(s) - 2(27r)s-1r(l - s) sin ( y ) C(l - s).

More precisely, we have

(33) sin (na - ™ ) Us) = -ie™2a-W2\2*y-1 sin(7rs)rQ(l - s)Co(l - s),

where Ta is an extension of the classical T function. The relation F(s)F(l - s) =
(n/sin(ns)) becomes the particular case a = 1/2 of

f*A\ r w u w i ^ ^~2'"r'(sin(27ra) - sin(7rs))
(34) ro( , )ro( i - . ) = 2 2 o _ l s i n 2 ( 7 r 5 ) '-,

which follows from (33).

We don't give details concerning the function CQ because there is a difficulty in
representing FQ in explicit form. We have only the representation

with Re(s) > 2a if a > 0 and Re(s) > 0 if a < 0. We have T1/2(s) = T(s) and
r_(1/2)(S) = 2 ( ( 2 1 - - l ) / ( 2 s - l ) ) r ( S ) .

The analytic continuation form of (31) is

(36) C h)
( ) ° Ja(-iz)

where C is a curve starting at —oo on the negative real axis, surrounding the origin in
such a way that the numbers ijk, k — ±1 ,±2 , . . . , are excluded from its interior, and
returning at —oo along the negative real axis. The zeros of £Q remain to be studied.

4.2. Let f{z) = (z + e)"e-Sz, e > 0, with Re{v) > 0, Re(6) > 0 and |/m(<5)| < 2. By
letting e —> 0 we obtain, from Theorem 1,

(37) jt=i

—~(—T / V FT^ -smlSy- —) dy.
sin(a?r) Jo Ja^y) \ 2 )
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The same example, with v = 0, gives

_

(38) 4=1

sin(aTr) ./„ "

4.3. As a numerical example related to (2), we take f(z) — 1/(1 + z)2. The neat result
IS

ydy 5 _ TT2

/o u -r w2)2(e2*i' + l) ~ 4 ~ ~ "
(39) /

4.4. EXACT QUADRATURE FORMULA. If f(z) is even then, according to our assump-
tions, it is necessarily analytic in the whole complex plane. In that case, the last integral
appearing in (8) is zero, so that

(40) / x2a-lf(x)dx = 2Y /

which is a consequence of [3, Theorem 1]

(4.)

with r = 1. In fact, (40) follows from (41) where f(x) is replaced by
(1/x2) (f(x) - (2°T{a+ l){Ja(x)/xa))2f{Q)). Note that (41) is valid for Re(a) > - 1 .
See also [2, Theorem 2] for a more general result of the form (40).
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