THE COEFFICIENTS OF $\frac{\sinh x}{\cos x}$

BY J. M. GANDHI ${ }^{(1)}$

1. Introduction. The purpose of the present paper is to investigate some of the properties of the coefficient $K_{2 n}$ defined by

$$
\begin{equation*}
\frac{\sinh x}{\cos x}=\sum_{n=0}^{\infty} K_{2 n} \frac{x^{2 n+1}}{(2 n+1)!} . \tag{1.1}
\end{equation*}
$$

We prove

$$
\begin{equation*}
K_{2 n} \equiv 1(\bmod 2 n+1) \quad \text { if } 2 n+1 \text { is prime. } \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
K_{4 n+2} & \equiv 4(\bmod 10), \quad K_{4 n+4} \equiv 6(\bmod 10) \tag{1.3}\\
K_{2 n} & =2^{n+1} g(n)-\frac{2^{n}}{2 n+2} \sum_{s=0}^{n}(-1)^{\frac{1}{2}(n+s)}\binom{2 n+2}{2 s} B_{2 s} \alpha(n, s) \tag{1.4}
\end{align*}
$$

where $g(n)=(-1)^{(n+1) / 2}$ if n is odd, $g(n)=(-1)^{n / 2}$ if n is even, $\alpha(n, s)=2$ if $n-s+1$ is odd, $\alpha(n, s)=0$ if $n-s+1$ is even, and $B_{2 s}$ are the well-known Bernoulli's numbers.

As corollaries to (1.4) we prove

$$
\begin{align*}
K_{4 n+2} & \equiv 0\left(\bmod 2^{2 n+2}\right), & K_{4 n+2} & \not \equiv 0\left(\bmod 2^{2 n+3}\right) \tag{1.5}\\
K_{4 n} & \equiv 0\left(\bmod 2^{2 n}\right), & K_{4 n} & \equiv 0\left(\bmod 2^{2 n+1}\right) \tag{1.6}
\end{align*}
$$

Also let

$$
\begin{equation*}
K_{4 n} / 2^{2 n}=K_{4 n}^{\prime} \quad \text { and } \quad K_{4 n+2} / 2^{2 n+2}=K_{4 n+2}^{\prime} \tag{1.7}
\end{equation*}
$$

From (1.4) we prove the following interesting special cases.

$$
\begin{align*}
K_{4 m}^{\prime} & \equiv 1(\bmod 4) \tag{1.8}\\
K_{4 m+2}^{\prime} & \equiv(-1)^{m}(\bmod 4) \tag{1.9}
\end{align*}
$$

and

$$
\begin{align*}
K_{4 m}^{\prime} & \equiv 2(-1)^{m}-\frac{(-1)^{m}}{2 m+1}(\bmod 32) \tag{1.10}\\
K_{4 m+2}^{\prime} & \equiv(-1)^{m}-\frac{(-1)^{m+1} 2(4 m+3)}{3}(\bmod 32) \tag{1.11}
\end{align*}
$$

For a large part of this paper we follow Carlitz's paper [3]. For other related coefficients, for example, $\sinh x / \sin x, \cosh x / \cos x$, etc., the papers listed may be referred to.

Received by the editors, in revised form, September 15, 1969.
${ }^{(1)}$ Supported by the Summer Research Institute of the Canadian Mathematical Congress, held at Montreal in 1969.
2. Now (1.1) can be written as

$$
\sinh x=\cos x \sum_{n=0}^{\infty} \frac{K_{2 n} x^{2 n+1}}{(2 n+1)!} .
$$

Writing the expansions of $\sinh x$ and $\cos x$, and simplifying and equating the coefficients of $x^{2 n+1}$, we have

$$
\begin{align*}
K_{2 n}= & \binom{2 n+1}{2 n+1}+\binom{2 n+1}{2 n-1} K_{2 n-2} \tag{2.1}\\
& -\binom{2 n+1}{2 n-3} K_{2 n-4}+\cdots+(-1)^{n+1} K_{0}\binom{2 n+1}{1} .
\end{align*}
$$

Using (2.1) we calculate some values of $K_{2 n}$.
table 1

$$
\begin{array}{ll}
K_{0}=1 . & K_{8}=18256 . \\
K_{2}=4 . & K_{10}=81,41,44 . \\
K_{4}=36 . & K_{12}=51,47,57,76 . \\
K_{6}=624 . &
\end{array}
$$

From (2.1) it is easy to prove that except K_{0} all other coefficients are even positive integers.

Now we prove (1.2). Let $2 n+1$ be a prime then $\binom{2 n+1}{\gamma}$ will always have a factor $2 n+1$ for all values of γ except when $\gamma=0$ and $\gamma=2 n+1$. Hence when (2.1) is divided by $2 n+1$, the remainder will be $\binom{2 n+1}{2 n+1}$ and hence we get $K_{2 n} \equiv 1(\bmod$ $2 n+1$) if $2 n+1$ is prime.

Proof of (1.3). Putting $2 n+1$ for n in (2.1) we get

$$
\begin{align*}
K_{4 n+2}= & \binom{4 n+3}{4 n+3}+\binom{4 n+3}{4 n+1} K_{4 n} \tag{2.2}\\
& -\binom{4 n+3}{4 n-1} K_{4 n-2}+\cdots-K_{2}\binom{4 n+3}{2}+K_{0}\binom{4 n+3}{1} .
\end{align*}
$$

Assume that

$$
\begin{align*}
K_{4 n} & \equiv 6(\bmod 10) \quad \text { and } \\
K_{4 n-2} & \equiv 4(\bmod 10) \tag{2.3}
\end{align*}
$$

for $n=1,2, \ldots, n$; then from (2.2) by elementary but lengthy discussions we can prove $(2.4) K_{4 n+2} \equiv 4(\bmod 10)$.

Now substituting $2 n$ for n in (2.1) and using (2.3) and (2.4) we can prove

$$
K_{4 n+4} \equiv 6(\bmod 10)
$$

and the result follows by the usual method of induction.
3. We have

$$
\begin{equation*}
1 / \cos x=\sum_{n=0}^{\infty}(-1)^{n} E_{2 n} x^{2 n} /(2 n)! \tag{3.1}
\end{equation*}
$$

where $E_{2 n}$ are the Euler numbers in the even suffix notation.
Using (3.1) and (1.1) it is easy to prove

$$
\begin{equation*}
\sum_{\gamma=0}^{n}(-1)^{n}\binom{2 n+1}{2 \gamma} E_{2 \gamma}=K_{2 n} \tag{3.2}
\end{equation*}
$$

Let $f(x)$ be an odd polynomial defined by

$$
\begin{equation*}
f(x)=\frac{1}{2 n+2} \sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+2}{2 \gamma+1} x^{2 \gamma+1} \tag{3.3}
\end{equation*}
$$

so that

$$
f^{\prime}(x)=\sum_{\gamma=0}^{n} \frac{(-1)^{\gamma}(2 n+1)!}{(2 \gamma)!(2 n-2 \gamma+1)!} x^{2 \gamma}
$$

Therefore,

$$
f^{\prime}(E)=\sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+1}{2 \gamma} E_{2 \gamma}=K_{2 n} \quad \text { by (3.3). }
$$

Now it was proved by Carlitz [3] that

$$
\begin{equation*}
f^{\prime}(E)=-f(4 B+1) \tag{3.4}
\end{equation*}
$$

where the B 's are the well-known Bernoulli numbers. Thus

$$
\begin{equation*}
K_{2 n}=-\frac{1}{2 n+2} \sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+2}{2 \gamma+1}(4 B+1)^{2 \gamma+1} \tag{3.5}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+2}{2 \gamma+1}(4 B+1)^{2 \gamma+1} & =\sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+2}{2 \gamma+1} \sum_{s=0}^{2 \gamma+1}\binom{2 \gamma+1}{s} 4^{s} B_{s} \\
& =\sum_{s=0}^{2 n+1}\binom{2 n+2}{s} 4^{s} B_{s} \sum_{\gamma}(-1)^{\gamma}\binom{2 n-s+2}{2 n-2 \gamma+1} .
\end{aligned}
$$

Since

$$
\sum_{\gamma=s-1}^{2 n+1}\binom{2 n-s+2}{2 n-\gamma+1} x^{\gamma}=x^{s-1}(1+x)^{2 n-s+2}
$$

it is evident that

$$
\sum_{\gamma}\binom{2 n-s+1}{2 n-2 \gamma}(-1)^{\gamma}=\frac{i^{s-1}}{2}\left[(1+i)^{2 n-s+2}+(-1)^{s-1}(1-i)^{2 n-s+2}\right] .
$$

In particular we have

$$
\begin{equation*}
\sum_{\gamma=0}^{n}\binom{2 n+1}{2 n-2 \gamma+1}(-1)^{\gamma}=\sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+1}{2 \gamma} . \tag{3.6}
\end{equation*}
$$

By elementary methods it can be shown that the right-hand side of (3.6) equals $2^{n}(-1)^{(n+1) / 2}$ when n is odd and $2^{n}(-1)^{n / 2}$ when n is even.

Also

$$
\begin{aligned}
\sum_{\gamma=s}^{n}(-1)^{\gamma}\binom{2 n-2 s+2}{2 n-2 \gamma+1} & =i^{(2 s-1) / 2}\left[(1+i)^{2 n-2 s+2}+(-1)^{2 s-1}(1-i)^{2 n-2 s+2}\right] \\
& =2^{n-s}(-1)^{1 / 2(n+s)} \alpha(n, s)
\end{aligned}
$$

where $\alpha(n)=2$ if $n-s+1$ is odd and $\alpha(n)=0$ if $n-s+1$ is even.
It follows that

$$
\sum_{\gamma=0}^{n}(-1)^{\gamma}\binom{2 n+2}{2 \gamma+1}(4 B+1)^{2 \gamma+1}=\sum_{s=0}^{2 n+1}\binom{2 n+2}{s} 4^{s} B_{s} \sum_{\gamma}(-1)^{\gamma}\binom{2 n-s+2}{2 n-2 \gamma+1} .
$$

Since $B_{2 n+1}=0$ we have

$$
\begin{aligned}
& =-2^{n+1}(2 n+2) g(n)+\sum_{s=0}^{n}\binom{2 n+2}{2 s} 2^{4 s} B_{2 s^{2}} 2^{n-s}(-1)^{(n+s) / 2} \alpha(n, s) \\
& =-2^{n+1}(2 n+2) g(n)+2^{n} \sum_{s=0}^{n}(-1)^{(n+s) / 2}\binom{2 n+2}{2 s} 2^{3 s} B_{2 s} \alpha(n, s),
\end{aligned}
$$

where $g(n)=(-1)^{(n+1) / 2}$ if n is odd and $g(n)=(-1)^{n / 2}$ if n is even.
Then (3.5) becomes

$$
\begin{equation*}
K_{2 n}=2^{n+1} g(n)-\frac{2^{n}}{2 n+2} \sum_{s=0}^{n}(-1)^{(n+s) / 2}\binom{2 n+2}{2 s} 2^{3 s} B_{2 s} \alpha(n, s) . \tag{3.7}
\end{equation*}
$$

Substituting $n=2 m$ and $n=2 m+1$ we respectively get

$$
\begin{equation*}
K_{4 m}=2^{2 m+1} g(2 m)-\frac{2^{2 m}}{4 m+2} \sum_{s=0}^{2 m}(-1)^{(2 m+s) / 2}\binom{4 m+2}{2 s} 2^{3 s} B_{2 s} \alpha(2 m, s) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
K_{4 m+2}= & \binom{2 m+2}{2} g(2 m+1) \tag{3.9}\\
& -\frac{2^{2 m+1}}{4 m+4} \sum_{s=0}^{2 m+1}(-1)^{(2 m+1+s) / 2}\binom{4 m+4}{2 s} 2^{3 s} B_{2 s} \alpha(2 m+1, s) .
\end{align*}
$$

From (3.8) we have

$$
\frac{K_{4 m}}{2^{2 m}}=2(-1)^{m}-\frac{1}{4 m+2} \sum_{s=0}^{2 m}(-1)^{(2 m+s) / 2}\binom{4 m+2}{2 s} 2^{3 s} B_{2 s} \alpha(2 m, s)
$$

since all terms on right are even except the term with $s=0$, which is $-1 /(2 m+1)$, and hence

$$
K_{4 m} \equiv 0\left(\bmod 2^{2 m}\right) \quad \text { and } \quad K_{4 m} \not \equiv 0\left(\bmod 2^{2 m+1}\right)
$$

Similarly from (3.9) we get

$$
K_{4 m+2} \equiv 0\left(\bmod 2^{2 m+2}\right) \quad \text { and } \quad K_{4 m+2} \not \equiv 0\left(\bmod 2^{2 m+3}\right)
$$

Now letting

$$
\begin{equation*}
\frac{K_{4 n}}{2^{2 n}}=K_{4 n}^{\prime} \quad \text { and } \quad \frac{K_{4 n+2}}{2^{2 n+2}}=K_{4 n+2}^{\prime} \tag{3.10}
\end{equation*}
$$

(3.8) and (3.9) respectively become

$$
\begin{align*}
K_{4 m}^{\prime}= & 2(-1)^{m}-\frac{1}{4 m+2} \sum_{s=0}^{2 m}(-1)^{(2 m+s) / 2}\binom{4 m+2}{2 s} 2^{3 s} B_{2 s} \alpha(2 m, s) \tag{3.11}\\
K_{4 m+2}^{\prime}= & (-1)^{m+1}-\frac{1}{2(4 m+4)} \sum_{s=0}^{2 m+1}(-1)^{(2 m+1+s) / 2} \tag{3.12}\\
& \times\binom{ 4 m+4}{2 s} 2^{3 s} B_{2 s} \alpha(2 m+1, s) .
\end{align*}
$$

From (3.12) it follows that

$$
\begin{aligned}
K_{4 m+2}^{\prime} & \equiv(-1)^{m+1}-\frac{(-1)^{m+1}}{2(4 m+4)}\binom{4 m+4}{2} 2^{3} \times \frac{1}{6} \times 2(\bmod 4) \\
& \equiv-(-1)^{m+1} \equiv(-1)^{m}(\bmod 4) .
\end{aligned}
$$

whereby (1.9) is being proved.
From (3.10) we have

$$
K_{4 m}^{\prime} \equiv 2(-1)^{m}-\frac{1}{4 m+2}(-1)^{m} \times 2(\bmod 4)
$$

or

$$
(2 m+1) K_{4 m}^{\prime} \equiv(-1)^{m}(\bmod 4)
$$

from which it follows that if m is even then $K_{4 m}^{\prime} \equiv 1(\bmod 4)$, while if m is odd then $3 K_{4 m}^{\prime} \equiv-1(\bmod 4)$ or $K_{4 m}^{\prime} \equiv 1(\bmod 4)$, i.e. $K_{4 m}^{\prime} \equiv 1(\bmod 4)$ for all values of m, whereby (1.8) is being proved. Since in (3.11) and (3.12), the terms in summations are divisible by 32 except the first, and hence

$$
K_{4 m}^{\prime} \equiv 2(-1)^{m}-\frac{(-1)^{m}}{2 m+1}(\bmod 32)
$$

and

$$
K_{4 m+2}^{\prime} \equiv(-1)^{m+1}-\frac{(-1)^{m+1} 2(4 m+3)}{3}(\bmod 32)
$$

Before concluding we remark that using (1.7) and the fact that the last digit of $K_{4 n+2}$ is 4 and the last digit of $K_{4 n+4}$ is 6 it can be easily proved that $K_{8 n+2}^{\prime} \equiv 1(\bmod$ $10), K_{8 n}^{\prime} \equiv 1(\bmod 10), K_{8 n+4}^{\prime} \equiv 9(\bmod 10)$ and $K_{8 n+6}^{\prime} \equiv 9(\bmod 10)$. We list some values of K^{\prime}.

table 2

$$
\begin{array}{ll}
K_{0}^{\prime}=1 . & K_{8}^{\prime}=11,41 . \\
K_{2}^{\prime}=1 . & K_{10}^{\prime}=12,721 . \\
K_{4}^{\prime}=9 . & K_{12}^{\prime}=80,43,09 \\
K_{6}^{\prime}=39 . &
\end{array}
$$

Acknowledgement. I am grateful to Professor L. Carlitz for many helpful discussions.

References

1. L. Carlitz, The coefficients of $\frac{\sinh x}{\sin x}$, Math. Mag. 29 (1956), 193-197.
2. -_, Note on coefficients of $\frac{\cosh x}{\cos x}$, Math. Mag. 32 (1955), 132 and 136.
3. The coefficients of $\frac{\cosh x}{\cos x}$, Monatsh. Math. 69 (1965), 123-135.
4. J. M. Gandhi, The coefficients of $\frac{\cosh x}{\cos x}$ and a note on Carlitz's coefficients of $\frac{\sinh x}{\sin x}$, Math. Mag. 31 (1958), 185-191.
5. J. M. Gandhi and A. Singh, Fourth interval formula for the coefficients of $\frac{\cosh x}{\cos x}$, Monatsh. Math. (4) 70 (1966), 327-330.
6. N. E. Norlund, Vorlesungen uber Differenzenrechung, Berlin, 1924.
7. H. Salie, Arithmetische Eigenschaffen der koeffizienten speziellen Hurwitzchen Potenzreihen, Wissenchaftliche Zeitschrift der Karl Marx Universitat, Leipzig 12 Jahrgung (1963) Math. Naturwiss Reihe, Heft 3, 617-618.

York University,
Toronto, Ontario
Western Illinois University, Macomb, Illinois

