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Abstract

We use bounds of mixed character sum to study the distribution of solutions to certain polynomial systems
of congruences modulo a prime p. In particular, we obtain nontrivial results about the number of solutions
in boxes with the side length below p1/2, which seems to be the limit of more general methods based on
the bounds of exponential sums along varieties.
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1. Introduction

There is an extensive literature investigating the distribution of solutions to the system
of congruences

F j(x1, . . . , xn) ≡ 0 (mod p), j = 1, . . . , m, (1.1)

with polynomials F j(X1, . . . , Xn) ∈ Z[X1, . . . , Xn], j = 1, . . . , m, in m variables with
integer coefficients, modulo a prime p; see [4, 5, 8, 11, 12].

In particular, subject to some additional condition (related to the so-called A-
number), Fouvry and Katz [5, Corollary 1.5] have given an asymptotic formula for
the number of solutions to (1.1) in a box

(x1, . . . , xn) ∈ [0, h − 1]n

for a rather small h. In fact, the limit of the method of [5] is h = p1/2+o(1).
Here we consider a very special class of systems of s + 1 polynomial congruences

x1 · · · xn ≡ a (mod p), (1.2)

and
c1, jx

k1, j

1 + · · · + cn, jx
km, j
n ≡ b j (mod p), j = 1, . . . , s, (1.3)
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where a, b j, ci, j, ki, j ∈ Z, with gcd(aci, j, p) = 1, i = 1, . . . , n, j = 1, . . . , s, and 3 ≤
ki,1 < · · · < ki,s.

The interest in the systems of congruences (1.2) and (1.3) stems from the work
of Fouvry and Katz [5], where a particular case of the congruence (1.2) and just
one congruence of the type (1.3) (that is, for s = 1) with the same odd exponents
k1,1 = · · · = kn,1 = k and b1 = 0 is given as an example of a variety to which one of
their main general results applies. In particular, in this case and for k ≥ 3, b1 = 0 (and
fixed nonzero coefficients) we see that [5, Theorem 1.5] gives an asymptotic for the
number of solutions with 1 ≤ xi ≤ h, i = 1, . . . , n, starting from the values of h of size
about max{p1/2+1/n, p3/4} log p. Here we show that a different and more specialised
treatment allows a significant lowering of this threshold, which now in some cases
reaches p1/4+κ for any κ > 0. Furthermore, this applies to the systems (1.2) and (1.3)
in full generality and is uniform with respect to the coefficients.

More precisely, we use a combination of:
• the bound of mixed character sums to due to Chang [3];
• the result of Ayyad et al. [1] on the fourth moment of short character sums;
• the bound of Wooley [14] on exponential sums with polynomials.

We note that the classical Pólya–Vinogradov and Burgess bounds of multiplicative
character sums (see [6, Theorems 12.5 and 12.6]), in combination with a result of
Ayyad et al. [1], have been used in [9, 10] to study the distribution of the single
congruence (1.2) in very small boxes, and thus go below the p1/2-threshold.

Here we show that the recent result of Chang [3] enables us now to study a much
more general case of the simultaneous congruences (1.2) and (1.3).

Throughout the paper, the implied constants in the symbols O and � can depend
on the positive parameter κ and on the degrees ki, j in (1.2) and (1.3) as well as,
occasionally, of some other polynomials involved. We recall that the expressions
A� B and A = O(B) are each equivalent to the statement that |A| ≤ cB for some
constant c.

2. Character and exponential sums

Let Xp be the set of multiplicative characters modulo p and let X∗p = Xp \ {χ0} be
the set of nonprincipal characters. We also write

ep(z) = exp(2πiz/p).

We appeal to [6] for a background on the basic properties of multiplicative characters
and exponential functions, such as orthogonality.

The following bounds of exponential sums twisted with a multiplicative character
have been given by Chang [3] for sums in arbitrary finite fields but only for intervals
starting at the origin. However, a simple examination of the argument of [3] reveals
that this is not important for the proof.
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L 2.1. For any character χ ∈ X∗p, a polynomial F(X) ∈ Z[X] of degree k and
integers u and h ≥ p1/4+κ,

u+h∑
x=u+1

χ(x)ep(F(x))� hp−η,

where

η =
κ2

4(1 + 2κ)(k2 + 2k + 3)
.

We note that we do not impose any conditions on the polynomial F in Lemma 2.1.
On the other hand, when χ = χ0, we use the following very special case of the much

more general bound of Wooley [14] that applies to polynomials with arbitrary real
coefficients.

L 2.2. For any polynomial F(X) ∈ Z[X] of degree k > 2 with the leading
coefficient ak . 0 (mod p), and any integers u and h with h < p,

u+h∑
x=u+1

ep(F(x))� h1−1/2k(k−2) + h1−1/2(k−2) p1/2k(k−2).

Clearly, Lemma 2.2 is nontrivial only for h ≥ p1/k, which is actually the best
possible range. Furthermore, in a slightly shorter range we have the following
corollary.

C 2.3. For any polynomial F(X) ∈ Z[X] of degree k > 2 with the leading
coefficient ak . 0 (mod p), and any integers u and h with p1/(k−1) ≤ h < p,

u+h∑
x=u+1

ep(F(x))� h1−1/2k(k−2).

We make use of the following estimate of Ayyad et al. [1, Theorem 1].

L 2.4. Uniformly over integers u and h ≤ p, the congruence

x1x2 ≡ x3x4 (mod p), u + 1 ≤ x1, x2, x3, x4 ≤ u + h,

has h4/p + O(h2 po(1)) solutions as h→∞.

We note that Lemma 2.4 is a essentially a statement about the fourth moment of
short character sums; see [1, Equation (4)]. In fact, the next result makes it clearer.

C 2.5. Let ρ(x) be an arbitrary complex valued function with

|ρ(x)| ≤ 1, x ∈ R.
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Uniformly over integers 1 ≤ u ≤ u + h < p,

∑
χ∈Xp

∣∣∣∣∣ u+h∑
x=u+1

ρ(x)χ(x)
∣∣∣∣∣4 ≤ h4 + O(h2 p1+o(1)),

as h→∞.

P. Expanding the fourth power and changing the order of summation,

∑
χ∈Xp

∣∣∣∣∣ u+h∑
x=ui+1

ρ(x)χ(x)
∣∣∣∣∣4 =

∑
χ∈Xp

u+h∑
x1,...,x4=u+1

ρ(x1)ρ(x2)ρ(x3)ρ(x4)χ(x1x2x−1
3 x−1

4 )

=

u+h∑
x1,...,x4=u+1

ρ(x1)ρ(x2)ρ(x3)ρ(x4)
∑
χ∈Xp

χ(x1x2x−1
3 x−1

4 ).

Using the orthogonality of characters, we write

∑
χ∈Xp

∣∣∣∣∣ u+h∑
x=u+1

ρ(x)χ(x)
∣∣∣∣∣4 = (p − 1)

u+h∑
x1,...,x4=u+1

x1 x2≡x3 x4 (mod p)

ρ(x1)ρ(x2)ρ(x3)ρ(x4)

≤ (p − 1)
u+h∑

x1,...,x4=u+1
x1 x2≡x3 x4 (mod p)

1.

Applying Lemma 2.4, we derive the desired bound. �

3. Main result

We are now able to present our main result. Let B be a cube of the form

B = [u1 + 1, u1 + h] × · · · × [un + 1, un + h]

with some integers h, ui with 1 ≤ ui + 1 < ui + h < p, i = 1, . . . , n. We denote by N(B)
the number of integer vectors

(x1, . . . , xn) ∈B

satisfying (1.2) and (1.3) simultaneously.
As we have mentioned, the case of just one congruence (1.2) has been considered

in [9, 10], so we always assume that s ≥ 1 (and thus n ≥ 3).
Let

k = min{ki, j : i = 1, . . . , n, j = 1, . . . , s},

K = max{ki, j : i = 1, . . . , n, j = 1, . . . , s}.

Recall that, due to our assumption, K ≥ k ≥ 3.
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T 3.1. For any fixed κ > 0 and

p > h ≥min{p1/4+κ, p1/(k−1)}

we have

Np(B) =
hn

ps+1
+ O(hn p−1−η(n−4) + hn−2 p−η(n−4)),

where

η =
κ2

4(1 + 2κ)(K2 + 2K + 3)
.

P. Using the orthogonality of characters, we write

Np(B) =
∑

(x1,...,xn)∈B

1
ps

p−1∑
λ1,...,λs=0

ep

( s∑
j=1

λ j

( n∑
i=1

ci, jx
ki, j

i − b j

))
×

1
p − 1

∑
χ∈Xp

χ(x1 · · · xna−1).

Hence, changing the order of summation,

Np(B) =
1

(p − 1)ps

p−1∑
λ1,...,λs=0

ep

(
−

s∑
j=1

λ jb j

) ∑
χ∈Xp

χ(a−1)
n∏

i=1

S i(χ; λ1, . . . , λs),

where

S i(χ; λ1, . . . , λs) =

ui+h∑
x=ui+1

χ(x)ep

( s∑
j=1

λ jci, jx
ki, j

)
, i = 1, . . . , n.

Separating the term hn/(p − 1)ps, corresponding to χ = χ0 and λ1 = · · · = λs = 0, we
derive

Np(B) −
hn

(p − 1)ps
�

1
ps+1

(R1 + R2), (3.1)

where

R1 =

p−1∑
λ1,...,λs=0

∑
χ∈X∗p

n∏
i=1

|S i(χ; λ1, . . . , λs)|,

R2 =

p−1∑
λ1,...,λs=0

(λ1,...,λs),(0,...,0)

n∏
i=1

|S i(χ0; λ1, . . . , λs)|.

To estimate R1, we use Lemma 2.1 and write

R1 ≤ hn−4 p−η(n−4)
p−1∑

λ1,...,λs=0

∑
χ∈X∗p

4∏
i=1

|S i(χ; λ1, . . . , λs)|.
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Using the Hölder inequality and Corollary 2.5,

∑
χ∈X∗p

4∏
i=1

|S i(χ; λ1, . . . , λs)| ≤
( 4∏

i=1

∑
χ∈X∗p

|S i(χ; λ1, . . . , λs)|4
)1/4

� h4 + h2 p1+o(1).

Therefore,
R1� hn ps−η(n−4) + hn−2 ps+1−η(n−4). (3.2)

Furthermore, for R2 we use Corollary 2.3 to derive

R2 ≤ h(n−2)(1−1/2K(K−2))
p−1∑

λ1,...,λs=0
(λ1,...,λs),(0,...,0)

2∏
i=1

|S i(χ0; λ1, . . . , λs)|.

Using the Hölder inequality and the orthogonality of exponential functions (similarly
to the proof of Corollary 2.5),

p−1∑
λ1,...,λs=0

(λ1,...,λs),(0,...,0)

2∏
i=1

|S i(χ0; λ1, . . . , λs)| ≤
( 2∏

i=1

p−1∑
λ1,...,λs=0

|S i(χ0; λ1, . . . , λs)|2
)1/2

� psh.

Thus
R2� hn−1−(n−2)/2K(K−2) ps. (3.3)

Substituting the bounds (3.2) and (3.3) in (3.1),

Np(B) −
hn

ps+1
� hn p−1−η(n−4) + hn−2 p−η(n−4) + hn−1−(n−2)/2K(K−2) p−1.

Clearly,

4η <
1

2K(K − 2)
.

Thus we see that
pη(n−4) < h4η(n−4) < h(n−2)/2K(K−2).

Hence the second term always dominates the third term and the result follows. �

4. Comments

Clearly, for any κ > 0, k ≥ 5 and p > h ≥ p1/4+κ, Theorem 3.1 implies that

Np(B) = (1 + o(1))
hn

ps+1
,

as p→∞, provided that
n ≥ (s + 1/2)η−1 + 4.
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For k = 3 and 4 the range of Theorem 3.1 becomes h ≥ p1/2 and h ≥ p1/3, respectively.
However, it is easy to see that using the full power of Lemma 2.2 instead of
Corollary 2.3 one can derive nontrivial results in a wider range. Namely, for any κ > 0
there exists some γ > 0 (independent of n and other parameters in (1.2) and (1.3)) such
that, for h ≥ p1/3+κ if k = 3 and for h ≥ p1/4+κ if k = 4,

Np(B) =
hn

(p − 1)ps
+ O(h(1−γ)n).

We also recall that for polynomials of small degrees stronger versions of Lemma 2.2
are available; see [2] and references therein.

Note that the same method can be applied (with essentially the same results) to the
systems of congruences where instead of (1.2) we have a more general congruence

xm1
1 · · · x

mn
n ≡ a (mod p)

for some integers mi with gcd(mi, p − 1) = 1, i = 1, . . . , n.
Moreover, we recall that the Weil bound [13, Appendix 5, Example 12] (see also [7,

Ch. 6, Theorem 3]) and the standard reduction between complete and incomplete sums
(see [6, Section 12.2]) imply that

u+h∑
x=u+1

χ(G(x))ep(F(x))� p1/2 log p,

where G(x) is a polynomial that is not a perfect power of any other polynomial in the
algebraic closure Fp of the finite field of p elements. Thus for h ≥ p1/2+κ, using this
bound instead of Lemma 2.1 allows us to replace (1.2) with the congruence

G1(x1) · · ·Gn(xn) ≡ a (mod p)

for arbitrary polynomials G1(X), . . . ,Gn(X) ∈ Z[X] such that their reductions modulo
p are not perfect powers in Fp. In fact, even for G1(X) = · · · = Gn(X) = X (that is,
for the congruence (1.2)) this leads to a result which is sometimes stronger that those
of [5] and Theorem 3.1.
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