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Abstract

Assume that G is a finite group and H is a 2-nilpotent Sylow tower Hall subgroup of G such that if x and
y are G-conjugate elements of H ∩G′ of prime order or order 4, then x and y are H-conjugate. We prove
that there exists a normal subgroup N of G such that G = HN and H ∩ N = 1.
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1. Introduction
All groups considered in this note will be finite.

We say that a subgroup H of a group G has a normal complement in G if there
exists a normal subgroup N of G such that G = HN and H ∩ N = 1. If H is a Sylow
p-subgroup of G, p a prime, then we say that G has a normal p-complement or G is
p-nilpotent.

If a subgroup H of a group G has a normal complement in G, then every pair of G-
conjugate elements of H are H-conjugate. If H is a nilpotent Hall subgroup of G, then
the converse is also true. This is a consequence of a well-known result of Wielandt
(see [6, Corollary 10.41]).

On the other hand, a well-known theorem due to Brauer and Suzuki, whose proof
makes use of character theory, established sufficient conditions for a (not necessarily
nilpotent) Hall subgroup of a group G to have a normal complement in G.

Theorem 1.1 [5, Theorem 8.22]. Let H be a Hall π-subgroup of G and suppose that
whenever two elements of H are conjugate in G, then they are already conjugate in
H. Assume for every elementary subgroup E ⊆ G, that if E is a π-subgroup, then E is
conjugate to a subgroup of H. Then H has a normal complement in G.
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Also, as González-Sánchez showed in [3], if H is a Sylow p-subgroup of G, we
need only consider elements of prime order or order 4.

Theorem 1.2 [3, Main Theorem]. Let H be a Sylow subgroup of a group G. Suppose
that every pair of G-conjugate elements of prime order or order 4 of H are
H-conjugate. Then H has a normal complement in G.

Theorem 1.2 is a consequence of the following result, which can be proved using
the same arguments as those used in the proof of [1, Remark].

Theorem 1.3. Let p be a prime and H be a Sylow p-subgroup of a group G. Suppose
that every pair of G-conjugate elements of prime order or order 4 of H ∩ G′ are
H-conjugate. Then H has a normal complement in G.

The main goal of this note is to prove that Theorem 1.3 holds not only for Sylow
subgroups but also for 2-nilpotent Sylow tower Hall subgroups.

We say that a group G is a Sylow tower group if, for some ordering of the distinct
primes p1, p2, . . . , pr, there exists a series of normal subgroups of G,

1 = G0 ≤ G1 ≤ · · · ≤ Gr = G,

such that Gi/Gi−1 is a Sylow pi-subgroup of G/Gi−1 for i = 1, . . . , r (see [2,
Example IV.3.4(c)].

We can now state the main theorem of this note.

Theorem 1.4. Let H be a 2-nilpotent Sylow tower Hall subgroup of a group G. Suppose
that every pair of G-conjugate elements of prime order or order 4 of H ∩ G′ are
H-conjugate. Then H has a normal complement in G.

As an immediate deduction we have the following result.

Corollary 1.5. If H is a Sylow tower group and an odd order Hall subgroup of a
group G, and every pair of G-conjugate elements of prime order or order 4 of H ∩G′

are H-conjugate, then H has a normal complement in G.

Theorem 1.4 does not hold for a soluble Hall subgroup H of a group G in
which every pair of G-conjugate elements of prime order or order 4 of H ∩ G′ are
H-conjugate.

Example 1.6. Let G = S 5 be the symmetric group of degree 5 and let H be the stabiliser
of the letter 5. Then H = S 4 is a {2, 3}-Hall subgroup of G.

Observe that G′ = A5 and H ∩G′ = {(1)} ∪ aH ∪ bH = A4, where a = (12)(34) and
b = (123).

Let x ∈ H ∩G′ be an element of prime order or order 4. Then x ∈ aH or x ∈ bH .
It is not difficult to see that xG ∩ H ∩G′ = xH . Therefore, every pair of G-conjugate
elements of prime order or order 4 of H ∩G′ are H-conjugate. However, H has no
normal complement in G.
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2. Proof of Theorem 1.4

Assume, arguing by contradiction, that (G, H) satisfies the hypotheses of the
theorem but H fails to have a normal complement in G. Choose such a pair (G,H)
with |G| + |H| as small as possible.

Let H2′ be a normal 2-complement of H. Then H2′ is a Sylow tower group. Let S
be a Sylow p-subgroup of H2′ such that S E H2′ . Then p > 2. Note that S is a Sylow
p-subgroup of G which is normal in H. If H = S , then H has a normal complement in
G by Theorem 1.3, which is not the case. Hence, S < H.

According to [6, Theorem 10.30], H has a Hall p′-subgroup, Hp′ say. We will
show that Hp′ satisfies the hypothesis of the theorem. First of all, note that Hp′ is a
2-nilpotent Sylow tower Hall subgroup of G. Let x, y ∈ Hp′ ∩ G′ be two elements
of prime order or order 4 such that x, y are G-conjugate. By hypothesis, x, y are
H-conjugate. Since Hp′ has a normal complement S in H, it follows that x, y are
Hp′-conjugate in Hp′ . The choice of the pair (G,H) implies that Hp′ has a normal
complement M in G. Then S = H ∩ M.

Assume that M is p-nilpotent and let C be the normal complement of S in M.
Then G = Hp′M = Hp′(S C) = HC and H ∩ C = 1. Clearly C is normal in G since C
is a characteristic subgroup of M. Therefore, C is the normal complement of H in G
and, since this contradicts the choice of the pair (G,H), we conclude that M is not
p-nilpotent. We will reach a contradiction through the following steps.

Step 1. Let X be an Hp′-invariant subgroup of M such that S ≤ X < M. Then X is
p-nilpotent.

Let Y = Hp′X. Then Y is a proper subgroup of G containing H. It is clear that the
pair (Y,H) satisfies the hypotheses of the theorem. The choice of (G,H) implies that
H has a normal complement, A say, in Y . Also, A is a Hall π-subgroup of Y = HA
for some set of primes π. Let B = Hp′A ∩ X. Then B is a π-subgroup of X and so
B is contained in A. Moreover, X = BS , Hp′A = Hp′B and Hp′ ∩ A = Hp′ ∩ B = 1.
Consequently, B = A is a normal subgroup of X and so X is p-nilpotent.

Step 2. Let N = Op(M). Then M/N is p-nilpotent.
Note that N is a subgroup of S . If N = S , then M/N is a p′-group, so that M/N

is p-nilpotent. Suppose that N < S . Let Z/N = Z(J(S/N)) , 1 be the Thompson
subgroup of S/N. Since N is a proper subgroup of Z and Z is normal in S , we see that
S ≤ NM(Z) < M. Also, since S and M are both Hp′-invariant, it follows that NM(Z)
is Hp′-invariant. By Step 1, NM(Z) is p-nilpotent, so that NM/N(Z/N) = NM(Z)/N is
p-nilpotent. Since p is odd, we can apply [4, Theorem 8.3.1] to conclude that M/N is
p-nilpotent.

Step 3. We reach a contradiction.
First, recall that M/N has a normal p-complement T/N by Step 2. Then N is a

Sylow p-subgroup of T and M/T is a p-group. Assume that N ∩ T ′ = 1. Then T ′ is
a p′-subgroup of T , so that T is p-nilpotent. Since a normal p-complement of T is
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also a normal p-complement of M, it would follow that M is p-nilpotent, which is not
the case. Consequently, N ∩ T ′ , 1. Let x ∈ N ∩ T ′ have order p. Note that N ∩ T ′

is a subgroup of H ∩G′ and so by hypothesis the G-conjugacy class xG of x and the
H-conjugacy class xH of x coincide. Since N and T ′ are normal subgroups of G, we
have xG ⊆ N ∩ T ′.

Since T EG, it follows that |xT | divides |xG | = |xH |, which implies that |T : CT (x)|
divides (|T |, |H|), which is a power of p. Thus, T = N CT (x), since N is a Sylow
p-subgroup of T , and so xT = xN . We have proved that every pair of T -conjugate
elements of prime order of N ∩ T ′ are N-conjugate. Applying Theorem 1.3, T is
p-nilpotent. Consequently, M is p-nilpotent and this is our final contradiction.
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