SPECTRAL CONTINUITY FOR OPERATOR MATRICES

SLAVISĂ V. DJORDJEVIĆ

University of Niš, Faculty of Philosophy, Department of Mathematics, Ćirila and Metodija 2, 18000 Niš, Yugoslavia e-mail: slavdj@archimed.filfak.ni.ac.yu

and YOUNG MIN HAN

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea e-mail: ymhan@math.skku.ac.kr

(Received 21 March, 2000)

Abstract. In this paper we prove that if $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ is a 2 × 2 upper triangular operator matrix on the Hilbert space $H \bigoplus K$ and if $\sigma(A) \cap \sigma(B) = \emptyset$, then σ is continuous at A and B if and only if σ is continuous at M_C , for every $C \in B(K, H)$.

1991 Mathematics Subject Classification. Primary 47A50, 47A53.

1. Introduction. Throughout this note let H and K be Hilbert spaces, let B(H, K) denote the set of bounded linear operators from H to K, and abbreviate B(H, H) to B(H). If $T \in B(H)$ write N(T) and R(T) for the null space and range of T; $\alpha(T) = \dim N(T)$; $\beta(T) = \dim N(T^*)$; $\sigma(T)$ is the spectrum of T; $\sigma_a(T)$ is the approximate point spectrum of T; $\sigma_a(T)$ is the defect spectrum of T; $\pi_0(T)$ is the set of eigenvalues of T; $\pi_{00}(T)$ is the set of isolated points of $\sigma(T)$ that are eigenvalues of finite multiplicity. An operator $T \in B(H)$ is called *left semi-Fredholm* if it has closed range with finite dimensional null space and *right semi-Fredholm* if it has reministrate of finite reministration. If T is both left semi- and right semi-Fredholm, we call it *Fredholm*. The *index* of a left semi- and right semi-Fredholm operator $T \in B(H)$ is given by

$$i(T) = \alpha(T) - \beta(T).$$

The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\omega(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in B(H)$ are defined in [5] and [6] as follows:

$$\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm}\};\\ \omega(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\};\\ \sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\}.$$

Evidently

$$\sigma_e(T) \subseteq \omega(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T),$$

where we write accG for the accumulation points of $G \subseteq \mathbb{C}$. We say that Weyl's theorem holds for $T \in B(H)$ if there is equality

$$\sigma(T) \setminus \omega(T) = \pi_{00}(T), \tag{1.1}$$

and that Browder's theorem holds for $T \in B(H)$ if there is equality

$$\omega(T) = \sigma_b(T). \tag{1.2}$$

If (K_n) is a sequence of compact subsets of \mathbb{C} , then by the definition, its *limit* inferior is $\liminf K_n = \{\lambda \in \mathbb{C} : \text{there are } \lambda_n \in K_n \text{ with } \lambda_n \to \lambda\}$ and its *limit superior* is $\limsup K_n = \{\lambda \in \mathbb{C} : \text{there are } \lambda_{n_k} \in K_{n_k} \text{ with } \lambda_{n_k} \to \lambda\}$. If $\liminf K_n = \limsup K_n$, then $\limsup K_n$ is defined by this common limit. A mapping f, defined on B(H), whose values are compact subsets of \mathbb{C} , is said to be *upper (lower) semi-continuous* at T, provided that if $T_n \to T$ (in the norm topology) then $\limsup f(T_n) \subset f(T)$ $(f(T) \subset \liminf f(T_n))$. If f is both upper and lower semi-continuous at T, then it is said to be *continuous at* T and in this case $\liminf f(T_n) = f(T)$.

2. Main results. When $A, A_n \in B(H)$ and $B, B_n \in B(K)$ are given we denote by M_C and M_n the operators acting on $H \oplus K$ defined by

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}, \ M_n = \begin{pmatrix} A_n & C_n \\ 0 & B_n \end{pmatrix},$$

where $C, C_n \in B(K, H)$.

Consider the following example: let $U \in B(l_2)$ be the unilateral shift, $A_n = U$, $B_n = U^*$, and $C_n = \frac{1}{n}(I - UU^*)$. Then on $l_2 \oplus l_2$ we have

$$M_n = \begin{pmatrix} A_n & \frac{1}{n}(I - UU^*) \\ 0 & B_n \end{pmatrix} \to M = \begin{pmatrix} U & 0 \\ 0 & U^* \end{pmatrix},$$

as $n \to \infty$. For operator matrices M_n and M we have $\sigma(M_n) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and $\sigma(M) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$. Therefore $\sigma(M_n) \nrightarrow \sigma(M_n)$.

However, we have the following result.

THEOREM 2.1. Let $A \in B(H)$ and $B \in B(K)$ be such that $\sigma(A) \cap \sigma(B) = \emptyset$. Then σ is continuous at A and B if and only if σ is continuous at M_C , for every $C \in B(K, H)$.

Proof. Since $\sigma(A) \cap \sigma(B) = \emptyset$, there exists $\delta > 0$ such that $d(\sigma(A), \sigma(B)) > 3\delta$. Now, by the upper semi-continuity of the spectrum at A and B [11], for every sequence (A_n) in B(H) and every sequence (B_n) in B(K) such that $A_n \to A$ and $B_n \to B$ there exists a natural number n_0 such that $n \ge n_0 \Rightarrow \sigma(A_n) \subset (\sigma(A))_{\delta}$ and $\sigma(B_n) \subset (\sigma(B))_{\delta}$. Since $\sigma(A_n) \cap \sigma(B_n) = \emptyset$, for every $n \ge n_0$, we have that $\sigma(M_n) = \sigma(A_n) \cup \sigma(B_n)$.

 (\Rightarrow) Suppose that σ is continuous at A and B. Then

 $\sigma(M_c) = \sigma(A) \cup \sigma(B) \subset \liminf(\sigma(A_n) \cup \sigma(B_n)) = \liminf \sigma(M_n).$

Therefore σ is lower semi-continuous at M_C , and hence σ is continuous at M_C for every $C \in B(K, H)$.

(\Leftarrow) Suppose that σ is continuous at M_C for every $C \in B(K, H)$. We shall show that σ is continuous at A. Let $\lambda \in \sigma(A)$. Then $\lambda \notin \sigma(B)$ and

$$\lambda \in \sigma(A) \subset \sigma(M_C) \subset \liminf \sigma(M_n).$$

Therefore there exists a sequence (λ_n) such that $\lambda_n \in \sigma(M_n)$ and $\lambda_n \to \lambda$. But $\sigma(A_n) \cap \sigma(B_n) = \emptyset$, for every $n \ge n_0$; hence we have $\sigma(M_n) = \sigma(A_n) \cup \sigma(B_n)$. If there exists a subsequence (λ_{n_k}) of (λ_n) such that $\lambda_{n_k} \in \sigma(B_{n_k})$, then we have $\lambda \in \limsup \sigma(B_n) \subset \sigma(B)$. This is a contradiction. Therefore $\lambda_n \in \sigma(A_n)$, for every $n \ge n_0$. Thus $\lambda \in \liminf \sigma(A_n)$, and hence σ is continuous at A. Similarly, σ is continuous at B.

If $A \in B(H)$ and $B \in B(K)$ such that $\omega(A) \cap \omega(B) = \emptyset$, then we have $\omega(M_C) = \omega(A) \cup \omega(B)$ [10, Theorem 4]. Now, we have the following theorem.

THEOREM 2.2. Let $A \in B(H)$ and $B \in B(K)$ such that $\omega(A) \cap \omega(B) = \emptyset$. Then ω is continuous at A and B if and only if ω is continuous at M_C , for every $C \in B(K, H)$.

Proof. Since ω is upper semi-continuous, the proof is similar to that of Theorem 2.1.

 α and β can be viewed as functions assigning $\alpha(T)$ and $\beta(T)$ to each $T \in B(H)$, respectively.

THEOREM 2.3. Let $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$ such that (1) $\sigma(M_C) = \sigma_a(A) \cup \sigma_d(B) \cup \{\lambda \in \mathbb{C}; \alpha(B - \lambda) \neq \beta(A - \lambda)\};$ (2) σ_a is continuous at A; (3) σ_d is continuous at B. Then σ is continuous at M_C .

Proof. It is sufficient to show that σ is lower semi-continuous at M_C . Let $\lambda \in \sigma(M_C)$. We shall divide the proof into three cases.

Case 1. If $\lambda \in \sigma_a(A)$, then since σ_a is continuous at A there exists a natural number n_0 such that for every $n > n_0$ we have $\lambda \in \sigma_a(A_n) \subset \sigma(M_n)$.

Case 2. If $\lambda \in \sigma_d(B)$, then by continuity of σ_d at *B* there exists a natural number n_1 such that for every $n > n_1$ we have $\lambda \in \sigma_d(B_n) \subset \sigma(M_n)$.

Case 3. Suppose that $\lambda \in \sigma(M_C) \setminus (\sigma_a(A) \cup \sigma_d(B))$. Then we have $\alpha(B - \lambda) \neq \beta(A - \lambda)$, $\alpha(A - \lambda) = 0$, and $\beta(B - \lambda) = 0$. Therefore $i(A - \lambda) \neq i(B - \lambda)$, and hence it follows from the continuity of the index that there exists n_2 such that for $n > n_2$, $i(A_n - \lambda) \neq i(B_n - \lambda)$. Since functions α and β are continuous at A and B [3, Corollary 2.3], respectively, we have that $\alpha(B_n - \lambda) \neq \beta(A_n - \lambda)$. Therefore $\lambda \in \sigma(M_n)$ for every $n > n_2$. It follows that in all three cases σ is continuous at M_C .

If M_C obeys Browder's theorem, then the Weyl spectrum, the Browder spectrum and the spectrum are continuous at M_C .

THEOREM 2.4. Let $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$ such that (1) $\sigma(M_C)$ obeys Browder's theorem; (2) σ_a is continuous at A; (3) σ_d is continuous at B.

Then σ , ω , and σ_b are continuous at M_C , respectively.

Proof. Let $\lambda \in \sigma(M_C)$. If $\lambda \in \sigma_a(A) \cup \sigma_d(B) \cup \{\lambda \in \mathbb{C}; \alpha(B - \lambda) \neq \beta(A - \lambda)\}$, then it follows from Theorem 2.3 that $\lambda \in \liminf \sigma(M_n)$. Suppose now that

$$\lambda \in \sigma(M_C) \setminus [\sigma_a(A) \cup \sigma_d(B) \cup \{\lambda \in \mathbb{C}; \alpha(B - \lambda) \neq \beta(A - \lambda)\}].$$

Then $\alpha(A - \lambda) = \beta(B - \lambda) = 0$, $\alpha(B - \lambda) = \beta(A - \lambda)$, and so $i(A - \lambda) = -i(B - \lambda)$. By [1, Lemma 1.2], $i(M_C - \lambda) = 0$. Since M_C obeys Browder's theorem, $\lambda \notin \sigma_b(M_C)$. Therefore λ is an isolated point of $\sigma(M_C)$, and so $\lambda \in \liminf \sigma(M_n)$. Hence σ is continuous at M_C . It follows from [2, Theorem 2.2] that ω and σ_b are continuous at M_C .

REFERENCES

1. J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity II, *Integral Equations and Operator Theory* **4** (1981), 459–503.

2. S. V. Djordjević and Y. M. Han, Browder's theorems and spectral continuity, *Glasgow Math. J.* **42** (2000), 479–486.

3. Fernando Galaz-Fantes, Approximation by semi-Fredholm operators, *Proc. Amer. Math. Soc.* **120** (1994), 1219–1222.

4. J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, *Proc. Amer. Math. Soc.* **128** (1999), 119–123.

5. R. E. Harte, *Invertibility and singularity for bounded linear operators* (Marcel Dekker, New York, 1988).

6. R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, *Trans. Amer. Math. Soc.* 349 (1997), 2115–2124.

7. Du Hong-Ke and Pan Jin, Perturbation spectrum of 2×2 operator matrices, *Acta Sci. Math. (Szeged)* 64 (1998), 259–269.

8. T. Kato, Perturbation theory of linear operators (Springer-Verlag, 1976).

9. W. Y. Lee, Weyl's theorem for operator matrices, *Integral Equations Operator Theory* **32** (1998), 319–331.

10. W. Y. Lee, Weyl spectra of operator matrices, *Proc. Amer. Math. Soc.* 129 (2001), 131–138.

11. J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 166-176.