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Abstract

In 1975, Symons described the automorphisms of the semigroup T (X, Y ) consisting of all total
transformations from a set X into a fixed subset Y of X . Recently Sanwong, Singha and Sullivan
determined all maximal (and all minimal) congruences on T (X, Y ), and Sommanee studied Green’s
relations in T (X, Y ). Here, we describe Green’s relations and ideals for the semigroup T (V, W )

consisting of all linear transformations from a vector space V into a fixed subspace W of V .
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1. Introduction

If X is a set, we let T (X) denote the semigroup (under composition) of all total
transformations of X . In addition, if Y ⊆ X , we let Xα = ran α denote the range
of α and write

T (X, Y ) = {α ∈ T (X) | Xα ⊆ Y }.

This is a subsemigroup of T (X). In fact, if |Y | = 1 then T (X, Y ) contains exactly one
element (namely, the constant mapping with range Y ).

In 1975, Symons [6] described all the automorphisms of T (X, Y ): this is an elegant
and significant result and, surprisingly, it depends on whether Y contains exactly two,
or more than two, elements (the former case is the much harder one to resolve). In [3]
the authors characterized the regular elements in T (X, Y ), and all maximal (and all
minimal) congruences on T (X, Y ) were described in [4]. Also, in [5] Sommanee
studied Green’s relations in T (X, Y ). Here we describe Green’s relations and ideals
for the semigroup T (V, W ) consisting of all linear transformations from a vector space
V into a fixed subspace W of V . As a consequence, we show that T (V, W ) is almost
never isomorphic to T (U ) for any vector space U , and thus it is worth studying the
algebraic properties of the semigroup T (V, W ) in its own right.
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2. Green’s relations on T (V, W)

Suppose that W is a nonzero proper subspace of a vector space V , and let T (V )

denote the semigroup (under composition) of all linear mappings from V into itself.
Our aim in this section is to consider properties of the subsemigroup of T (V ) defined
by

T (V, W ) = {α ∈ T (V ) | V α ⊆ W }.

To do this, we need some notation. For each α ∈ T (V ), we write ker α and V α = ran α

for the kernel and the range of α, respectively, and we write

n(α) = dim(ker α) and r(α) = dim(ran α).

As an abbreviation, we write a subset {ei | i ∈ I } of V as {ei }, letting the subscript
denote an (unspecified) index set I (this is comparable with [1, Volume 2, p. 241]).
We write the subspace of V generated by a linearly independent subset {ei } of V as
〈ei 〉; and, when we write U = 〈ei 〉, we tacitly assume that the set {ei } is a basis for the
subspace U .

Often it is necessary to construct some α ∈ T (V ) by first choosing a basis {ei } for
V and some subset {ui } of V , and then letting eiα = ui for each i ∈ I and extending
this action by linearity to the whole of V . To abbreviate matters, we simply say, given
{ei } and {ui } within context, that α ∈ T (V ) is defined by letting

α =

(
ei
ui

)
.

To characterize Green’s relations on T (V, W ), we need to describe all of its regular
elements. This was done in [2, Theorem 2.1], but we include a proof for completeness.

LEMMA 1. The set Q of all regular elements in T (V, W ) forms a semigroup and is
given by

Q = {α ∈ T (V, W ) | V α ⊆ Wα}.

PROOF. Clearly, if α ∈ Q and β ∈ T (V ), then V α ⊆ Wα implies that V αβ ⊆ Wαβ,
so Q is a right ideal of T (V ) and, in particular, it is a subsemigroup of T (V, W ).
Suppose that α = αβα for some β ∈ T (V, W ). Then uα = (uαβ)α ∈ Wα for all
u ∈ V , so V α ⊆ Wα and hence α ∈ Q.

Conversely, suppose that α ∈ T (V, W ) and V α ⊆ Wα = 〈w jα〉, where w j ∈ W for
each j . Then {w j } is linearly independent. Also, if v ∈ V then vα = (

∑
x jw j )α for

some scalars x j , and so V = ker α ⊕ 〈w j 〉. If ker α = 〈ui 〉 and V = Wα ⊕ 〈vk〉, we
can write

α =

(
ui w j
0 w jα

)
, β =

(
vk w jα

0 w j

)
,

and observe that Vβ = 〈w j 〉 ⊆ W , so β ∈ T (V, W ) and α = αβα. 2
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Note that Q is always nonempty: if W = V then Q = T (V ) which is regular for
all vector spaces V (see [1, Volume 1, Exercise 2.2.6]); if W = {0} then Q contains
only the zero mapping in T (V ), and hence it is trivially regular; and if W = 〈w j 〉 and
V = 〈ui 〉 ⊕ W then clearly

α =

(
ui w j
0 w j

)
∈ Q.

In addition, although Q is always a right ideal of T (V, W ), it is almost never a left
ideal. For example, if W = 〈w〉 and V = 〈v, w〉 and

α =

(
v w

0 w

)
, λ =

(
w v

0 w

)
,

then α ∈ Q but λα = λ /∈ Q.

LEMMA 2. Let γ ∈ Q and β ∈ T (V, W ). Then β = λγ for some λ ∈ T (V, W ) if and
only if ran β ⊆ ran γ . Consequently, if α, β ∈ T (V, W ) then α L β in T (V, W ) if and
only if α = β or (ran α = ran β and α, β ∈ Q).

PROOF. Clearly, if β = λγ for some λ ∈ T (V, W ) then ran β ⊆ ran γ . Conversely,
suppose that ran β ⊆ ran γ ⊆ Wγ and write ran β = 〈viβ〉. Then, for each i , there
exists wi ∈ W such that viβ = wiγ and we let ran γ = 〈wiγ 〉 ⊕ 〈w jγ 〉. Note that,
if ker β = 〈ur 〉 and ker γ = 〈us〉, then both {ur } ∪ {vi } and {us} ∪ {wi } ∪ {w j } are
linearly independent. Also, V = ker β ⊕ 〈vi 〉 and V = ker γ ⊕ 〈wi 〉 ⊕ 〈w j 〉. Thus,
we can write

β =

(
ur vi
0 wiγ

)
, γ =

(
us wi w j
0 wiγ w jγ

)
,

and define λ ∈ T (V, W ) by

λ =

(
ur vi
0 wi

)
.

Then β = λγ , as required. Now suppose that α L β in T (V, W ), so α = λβ and
β = λ′α for some λ, λ′

∈ T (V, W )1. If λ = 1 or λ′
= 1 then α = β. On the other

hand, if λ, λ′
6= 1 then λ, λ′

∈ T (V, W ) and

α = λλ′.α and β = λ′λ.β.

Hence, V α = (V λλ′)α ⊆ Wα, and similarly Vβ ⊆ Wβ, so α, β ∈ Q, and clearly
ran α = ran β. The converse is clear by the first part of the lemma. 2

LEMMA 3. If α, β ∈ T (V, W ), then β = αµ for some µ ∈ T (V, W ) if and only if
ker α ⊆ ker β. Consequently, α R β in T (V, W ) if and only if ker α = ker β.

PROOF. Clearly, if β = αµ for some µ ∈ T (V, W ), then ker α ⊆ ker β. Conversely,
suppose that ker α ⊆ ker β. Write ker α = 〈ui 〉, ker β = 〈ui , u j 〉 and V = ker β

⊕ 〈vk〉. Then

α =

(
ui u j vk
0 w j wk

)
, β =

(
ui u j vk
0 0 w′

k

)
,
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for some w j , wk, w′

k ∈ W . Let V = ran α ⊕ 〈v`〉 and define µ ∈ T (V, W ) by

µ =

(
v` w j wk
0 0 w′

k

)
.

Then β = αµ, as required, and the remaining assertion is clear. 2

Note that, if α ∈ T (V, W ), then dim(Wα) ≤ r(α). Also, recall that the rank-nullity
theorem for arbitrary vector spaces can be proved by showing that, for each π ∈ T (V ),
the mapping

V π → V/ ker π, vπ → v + ker π,

is a well-defined (vector space) isomorphism. Hence, if ker β ⊆ ker α, then
r(β) ≥ r(α).

We also need to observe that if α ∈ T (V, W ), and we write W ∩ ker α = 〈ui 〉 and
W = 〈ui 〉 ⊕ 〈u j 〉, then dim(Wα) = |J |. This follows from the fact that {u jα} is a basis
for Wα, and the restriction α|〈u j 〉 is a (vector space) isomorphism from 〈u j 〉 onto Wα.

LEMMA 4. If α, β ∈ T (V, W ), then β = λαµ for some λ, µ ∈ T (V, W ) if and only if
r(β) ≤ dim(Wα). Consequently, α J β in T (V, W ) if and only if one of the following
equalities occurs:

(J1) ker α = ker β;
(J2) r(α) = dim(Wα) = dim(Wβ) = r(β).

PROOF. If β = λαµ for some λ, µ ∈ T (V, W ), then Vβ = (V λ)αµ ⊆ (Wα)µ, so
dim(Vβ) ≤ dim(Wα). Conversely, suppose that the condition holds and write

β =

(
ui vk
0 wk

)
, α =

(
u j w′

k v`

0 w′

kα w`

)
,

where Vβ = 〈wk〉, 〈w′

k〉 ⊆ W and V α = 〈w′

kα〉 ⊕ 〈w`〉 ⊆ W . Let V = 〈w′

kα〉 ⊕ 〈vm〉

and define λ, µ ∈ T (V, W ) by

λ =

(
ui vk
0 w′

k

)
, µ =

(
vm w′

kα

0 wk

)
.

Then β = λαµ, as required.
Now, suppose that β = λαµ and α = λ′βµ′ for some λ, λ′, µ, µ′

∈ T (V, W )1. If
λ = 1 then ker α ⊆ ker β; and if λ 6= 1 then r(β) = dim(V λα)µ ≤ dim(Wα). In other
words, the supposition implies that

ker α ⊆ ker β or r(β) ≤ dim(Wα) and

ker β ⊆ ker α or r(α) ≤ dim(Wβ),

and the different combinations give the following possibilities:
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(J1) ker α = ker β;
(J2) r(α) = dim(Wα) = dim(Wβ) = r(β),;
(J3) ker α ⊆ ker β and r(α) ≤ dim(Wβ);
(J4) ker β ⊆ ker α and r(β) ≤ dim(Wα).

However, if (J3) occurs then W ∩ ker α ⊆ W ∩ ker β and r(α) ≥ r(β). Hence, if

W ∩ ker β = (W ∩ ker α) ⊕ U1 and W = (W ∩ ker β) ⊕ U2,

then Wα = U1α ⊕ U2α and Wβ = U2β. Consequently,

dim(Wβ) = dim U2 = dim(U2α) ≤ dim(Wα),

dim(Wα) ≤ r(α) ≤ dim(Wβ) and

r(β) ≤ r(α) ≤ dim(Wβ) ≤ r(β).

It follows that (J2) holds, and similarly, (J4) also implies (J2). For the converse, recall
that R⊆ J . Hence, if either (J1) or (J2) occurs then Lemma 3, and the first part of
this lemma, imply that α J β. 2

From Lemma 4, we see that, if α J β, then r(α) = r(β). However, the converse
is false, even if V has finite dimension. This differs from the situation for T (V ) and
arbitrary V , since it is well known that α J β in T (V ) if and only if r(α) = r(β):
see [1, Volume 1, Exercise 2.2.6].

EXAMPLE 1. Let V = 〈e1, e2, e3〉 and W = 〈e1, e2〉, and define α, β ∈ T (V, W ) by

α =

(
e1 e2 e3
0 e2 e1

)
, β =

(
e1 e2 e3
e1 0 e2

)
.

Then ker α 6= ker β, so (J1) does not hold. Also, r(α) = r(β) = 2, but dim(Wα)

= dim(Wβ) = 1, so (J2) does not hold. Hence, α and β are not J -related in T (V, W ).
Furthermore, V α 6⊆ Wα and Vβ 6⊆ Wβ, so α, β /∈ Q. Hence, α, β are also not L-
related in T (V, W ), even though ran α = ran β.

In fact, this example shows more: namely, even though r(β) = r(α) and
dim(Wβ) = dim(Wα) for the given α and β, nonetheless β 6= λαµ for all λ, µ

∈ T (V, W ). This is unlike the situation in T (V ), where β = λαµ for some λ, µ

∈ T (V ) if and only if dim(Vβ) ≤ dim(V α). However , by restricting our attention
to Q, we regain the normal situation.

LEMMA 5. If α, β ∈ Q, then β = λαµ for some λ, µ ∈ Q if and only if r(β)

≤ r(α). Consequently, α J β in Q if and only if r(α) = r(β), and hence J =D
on Q.

PROOF. Clearly, the given condition implies that r(β) ≤ r(α). Conversely, suppose
that α, β ∈ Q and r(β) ≤ r(α). Then V α = Wα and Vβ = Wβ, so we can write

β =

(
ur wi
0 wiβ

)
, α =

(
us w′

i w j
0 w′

iα w jα

)
.
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Now let V = 〈ut 〉 ⊕ 〈w′

iα〉 and define λ, µ ∈ T (V, W ) by

λ =

(
ur wi
0 w′

i

)
, µ =

(
vt w′

iα

0 wiβ

)
.

Then β = λαµ. Moreover, since V = 〈ur 〉 ⊕ 〈wi 〉, we know that V λ = 〈wiλ〉 ⊆ Wλ,
and so λ ∈ Q. Similarly, V µ = 〈(w′

iα)µ〉 ⊆ Wµ (since w′

iα ∈ W for each i) and hence
µ ∈ Q.

Finally, if β = λαµ and α = λ′βµ′ for some λ, λ′, µ, µ′
∈ Q1 then, regardless of

whether λ = 1 or µ = 1,

dim(Vβ) = dim(V λ)αµ ≤ dim(V α)µ ≤ dim(V α).

That is, r(β) ≤ r(α), and similarly r(α) ≤ r(β). The converse is clear from the first
part of this lemma. Finally, since Q is a regular subsemigroup of T (V, W ), T. E. Hall’s
theorem allows us to deduce that the L and R relations on Q are the restrictions of
those on T (V, W ) to Q. Thus, by Lemmas 2 and 3, if α, β ∈ Q then α L β in Q if
and only if ran α = ran β, and α R β in Q if and only if ker α = ker β. Consequently,
a standard argument shows that, if r(α) = r(β), then α D β, and we conclude that
J =D on Q. 2

LEMMA 6. If α, β ∈ T (V, W ), then α D β in T (V, W ) if and only if either ker α

= ker β or (r(α) = r(β) and α, β ∈ Q).

PROOF. If α D β in T (V, W ), then α R γ L β for some γ ∈ T (V, W ). Hence,
ker α = ker γ , and either γ = β or (ran γ = ran β and γ, β ∈ Q). If ker α = ker γ and
γ = β then ker α = ker β, as required. On the other hand, suppose that ker α = ker γ ,
ran γ = ran β and γ, β ∈ Q. Then α = γµ for some µ ∈ T (V, W ), so V γ ⊆ Wγ

implies that V α ⊆ Wα, and hence α ∈ Q. Similarly, β ∈ Q. Also,

r(β) = r(γ ) = dim(V/ ker γ ) = dim(V/ ker α) = r(α).

Conversely, if ker α = ker β then α R β, and so α D β (since R⊆D). On the other
hand, if α, β ∈ Q and r(α) = r(β), then V α = Wα and Vβ = Wβ, so we can write

α =

(
ur w j
0 w jα

)
, β =

(
us w′

j
0 w′

jβ

)
,

where 〈w j 〉 ⊆ W and 〈w′

j 〉 ⊆ W . If γ ∈ T (V, W ) is defined by

γ =

(
ur w j
0 w′

jβ

)
,

then ker γ = ker α, ran γ = ran β and γ ∈ Q, so α R γ L β. 2
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Recall that D ⊆ J on any semigroup, and it is well known that D = J on any
T (V ) (see [1, Volume 1, Exercise 2.2.6]). However, this fails for T (V, W ), as we now
show.

EXAMPLE 2. If α D β in T (V, W ) then either ker α = ker β (so (J1) holds) or
r(α) = r(β) and α, β ∈ Q (hence dim(Wα) = dim(Wβ) and (J2) holds). However,
J \D can be nonempty. For example, suppose that V = 〈u0, u1, u2, w1, wk〉 and
W = 〈w1, wk〉, where K is infinite. In this event, we can define α, β ∈ T (V, W ) by

α =

(
u0 u1 {u2, w1, wk}

0 w1 wk

)
, β =

(
u0 u1 u2 {w1, wk}

0 0 w1 wk

)
.

Then u2 − w1 ∈ ker α, so ker α ( ker β; and r(α) = |K | = dim(Wβ), so α, β satisfy
(J2). But, although r(α) = r(β), we observe that Wα = 〈wk〉 = Wβ, so Wα ( V α

and Wβ ( Vβ. Therefore, α, β /∈ Q, and hence α, β are not D-related in T (V, W ).

COROLLARY 7. If dim W < ℵ0 then D = J on T (V, W ).

PROOF. Suppose that α, β ∈ T (V, W ) and α J β. By Lemma 3, if ker α = ker β then
α D β; and, by Lemma 4, if ker α 6= ker β then r(α) = dim(Wα) = dim(Wβ) = r(β).
Consequently, in this case, if dim W < ℵ0 then r(α), r(β) < ℵ0, and it follows that
V α = Wα and Vβ = Wβ. Thus, α, β ∈ Q and r(α) = r(β), so α D β. 2

3. Ideals in T (V, W)

In what follows, Y = A ∪̇ B means that Y is a disjoint union of A and B, and r ′

denotes the successor of a cardinal r . Also, as an abbreviation, we sometimes write
T = T (V, W ).

As might be expected, the ideals of Q are easy to describe.

THEOREM 8. The ideals of Q are precisely the sets

Qr = {α ∈ Q | r(α) < r},

where 1 ≤ r ≤ dim W . In addition, Qr is principal if and only if r = s′, where
1 ≤ s ≤ dim W .

PROOF. If α ∈ Qr and β ∈ Q, then dim(V α)β ≤ dim(V α) and V (βα) ⊆ V α, so
αβ ∈ Qr and βα ∈ Qr , and hence Qr is an ideal of Q. Conversely, suppose that I
is an ideal of Q and let r be the least cardinal greater than r(α) for all α ∈ I . Then
I ⊆ Qr . Let β ∈ Qr and suppose that r(β) = s < r . Then there exists α ∈ I with
r(α) ≥ s: otherwise, r(α) < s for all α ∈ I , contradicting the choice of r . That is,
r(β) ≤ r(α), and Lemma 5 implies that β = λαµ for some λ, µ ∈ Q. That is, Qr ⊆ I ,
and equality follows.

Finally, if r = s′ for some s such that 1 ≤ s ≤ dim W , then Lemma 5 implies
that Qr ⊆ Q1αQ1 for each α ∈ Qr with rank s, and it follows that Qr is principal.
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Conversely, suppose that Qr = Q1αQ1 for some α ∈ Qr . Let r(α) = s and assume
there is a cardinal t such that s < t < r . Since r ≤ dim W , there exists β ∈ Q with
r(β) = t . For example, we can write W = 〈ei , e j 〉 and V = 〈ei , e j , ek〉 where |I | = t ,
and let

β =

(
{e j , ek} ei

0 ei

)
.

Now β ∈ Qr , so β = λαµ for some λ, µ ∈ Q1. But this implies that r(β) ≤ r(α),
which is a contradiction. Therefore, t does not exist and thus r = s′. 2

To determine the ideals of T = T (V, W ), we let 1 ≤ r ≤ dim W and write

Tr = {α ∈ T | r(α) < r}.

If α ∈ Tr and λ, µ ∈ T then V λα ⊆ V α and dim(V αµ) ≤ dim V α, so Tr is an ideal
of T .

Let Y ⊆ T (V, W ) be nonempty and let

r(Y ) = min{r | r > dim(Wα) for all α ∈ Y },

K (Y ) = {β ∈ T (V, W ) | ker β ⊇ ker α for some α ∈ Y }.

Note that r(Y ) always exists since the cardinals are well ordered.

LEMMA 9. With the above notation, both Tr(Y ) ∪ K (Y ) and Tr(Y )′ ∪ K (Y ) are ideals
of T (V, W ).

PROOF. Since ker β ⊆ ker βµ for each µ ∈ T (V, W ), K (Y ) is a right ideal of
T (V, W ). On the other hand, if λ ∈ T (V, W ) and β ∈ K (Y ) then Lemma 3 implies
that β = αµ for some α ∈ Y and µ ∈ T (V, W ), hence

dim(V λβ) ≤ dim(Wβ) = dim(Wαµ) ≤ dim(Wα) < r(Y ).

Therefore λβ ∈ Tr(Y ). The result now follows since Tr(Y ) and Tr(Y )′ are themselves
ideals of T (V, W ). 2

EXAMPLE 3. Let V = 〈u1, u2, u3, w1, w2, w3〉, W = 〈w1, w2, w3〉 and

α =

(
u1 {w1, w2, w3} u2 u3
0 0 w2 w3

)
.

If T = T (V, W ) then αT is not only a right ideal but also a left ideal of T since
λα = 0 for each λ ∈ T . Let Y = {α}. Then r(Y ) = 1 and Tr(Y ) = {0}, and clearly
αT = K ({α}).
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EXAMPLE 4. Let V = 〈u1, u2, u3, w1, w2, w3〉, W = 〈w1, w2, w3〉 and

α =

(
u1 {w2, w3} w1 u2 u3
0 0 w1 w2 w3

)
,

λ1 =

(
{w1, w2, w3} u1 u2 u3

0 w1 w2 w3

)
.

Now αT is not a left ideal of T since

λ1α =

(
{w1, w2, w3} u1 {u2, u3}

0 w1 0

)
/∈ αT .

Let Y = {α}. Then r(Y ) = 2 and T 1αT 1
⊆ T2 ∪ K ({α}): for example, if λ, µ ∈ T

then dim(V λα) ≤ dim(Wα) < 2 and αµ ∈ K ({α}). In fact, if β ∈ T2 then dim(Vβ)

≤ 1 = dim(Wα), so β ∈ T αT by Lemma 4. And, if β ∈ K ({α}) then β = αµ

for some µ ∈ T , so β ∈ T 1αT 1. Hence T 1αT 1
= T2 ∪ K ({α}). On the other

hand, T αT ⊆ T2 since dim(V λαµ) ≤ dim(Wα)µ ≤ dim(Wα) for all λ, µ ∈ T , and
T2 ⊆ T αT by Lemma 4.

For our main result, we need a technical lemma.

LEMMA 10. If β ∈ T and r < dim(Wβ) = dim(Vβ) = s, then there exists λ ∈ T such
that dim(Wλβ) = r and dim(V λβ) = s.

PROOF. If s is finite then Wβ = Vβ, so we write

β =

(
u p w1 . . . wr wr+1 . . . ws
0 w′

1 . . . w′
r w′

r+1 . . . w′
s

)
.

Choose u ∈ V \ W and note that u + w j /∈ W for each j = r + 1, . . . , s. Also, the set
{w1, . . . , wr , u + wr+1, . . . , u + ws} is linearly independent: for example, if there
are scalars such that

r∑
i=1

xiwi +

s∑
j=r+1

y j (u + w j ) = 0,

then
∑r

i=1 xiwi +
∑s

j=r+1 y jw j ∈ 〈u〉 and this implies that xi = y j = 0 for each i
and j . Write V = 〈u`〉 ⊕ 〈w1, . . . , wr , u + wr+1, . . . , u + ws〉 and let

λ =

(
u` w1 . . . wr u + wr+1 . . . u + ws
0 w1 . . . wr wr+1 . . . ws

)
.

Then dim(Wλβ) = r and dim(V λβ) = s, as required.
If s is infinite, write

β =

(
u p w j vk
0 w′

j wk

)
,
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where |J | + |K | = |J | = s ≥ ℵ0. This implies that |K | ≤ |J |, and clearly there exist
λ1 ∈ T and uq ∈ V such that

λ1β =

(
uq w j
0 w′

j

)
∈ Q.

Since r < |J |, we can write J = M ∪̇ N where |M | = r and |N | = |J |. Then, as
before, if u ∈ V \ W then {wm} ∪̇ {u + wn} is linearly independent and we let

λ2 =

(
u` wm u + wn
0 wm wn

)
.

Then dim(Wλ2λ1β) = r and dim(V λ2λ1β) = s, as required. 2

The proper ideals of T (W ) are well known: in fact, they are in one-to-one
correspondence with the cardinals r such that 1 ≤ r ≤ dim W (see [1, Volume 1,
Exercise 2.2.6]). However, the result for T (V, W ) is very different.

THEOREM 11. The ideals of T (V, W ) are precisely the sets Tr ∪ K (Y ) and
Tr ′ ∪ K (Y ), where r = r(Y ) and Y is a nonempty subset of T (V, W ).

PROOF. Let I be an ideal of T . If I = {0}, we let Y = I , so r(Y ) = 1, T1 = {0};
and, if β ∈ K ({0}) then ker β = V , so β = 0 and thus K ({0}) = {0}. That is, {0}

= T1 ∪ K ({0}).
Suppose that α ∈ I is nonzero and write

α =

(
u p w j vk
0 w′

j wk

)
,

where vk /∈ W for each k. If J = ∅ then K 6= ∅ and dim(Wα) < dim(V α). On
the other hand, if J 6= ∅, choose 1 ∈ J and u ∈ V \ W , write V = 〈u〉 ⊕ 〈v`〉 where
W ⊆ 〈v`〉, and let

λ =

(
v` u
0 w1

)
.

Then λα ∈ I and dim(Wλα) = 0 < 1 = dim(V λα). That is, in each case, if

Y = {α ∈ I | dim(Wα) < dim(V α)},

then Y 6= ∅. We assert that I equals Tr ∪ K (Y ) or Tr ′ ∪ K (Y ), where r = r(Y ).
First suppose that dim(Wβ) < r for all β ∈ I . In this case, if β ∈ I and r(β) < r

then β ∈ Tr and, if dim(Wβ) < r ≤ r(β), then β ∈ Y and so β ∈ K (Y ). Thus, in
this case, I ⊆ Tr ∪ K (Y ). Conversely, suppose that β ∈ Tr . If dim(Wα) < r(β) < r
for all α ∈ Y , we contradict the choice of r = r(Y ). Hence, r(β) ≤ dim(Wα) for
some α ∈ Y ⊆ I , hence β ∈ I by Lemma 4. Clearly, K (Y ) ⊆ I , so we conclude that
I = Tr ∪ K (Y ).
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Next suppose that r ≤ dim(Wπ) for some π ∈ I . In this case, if dim(Wπ)

< dim(V π) then π ∈ Y and we contradict the choice of r . Hence dim(Wπ)

= dim(V π). Now, if r < dim(Wπ) = dim(V π) = s, then Lemma 10 implies that
dim(Wλπ) = r < s = dim(V λπ) for some λ ∈ T , which contradicts the choice of
r (since λπ ∈ I ). Hence, in this case, r = dim(Wπ) = dim(V π) and thus π ∈ Tr ′ .
Clearly this conclusion holds for any β ∈ I such that r ≤ dim(Wβ). On the other hand,
if β ∈ I and dim(Wβ) < r , then we have already seen that β ∈ Tr ∪ K (Y ). So, in this
case, I ⊆ Tr ′ ∪ K (Y ). Conversely, if β ∈ Tr ′ then r(β) ≤ r = dim(Wπ) = dim(V π)

for some π ∈ I , so β ∈ I by Lemma 4. As before, K (Y ) ⊆ I , and now we conclude
that I = Tr ′ ∪ K (Y ). 2

EXAMPLE 5. Let 1 ≤ r ≤ dim W and write

Jr = {α ∈ T | dim(Wα) < r}.

If α ∈ Jr and λ, µ ∈ T , then Wλα ⊆ Wα and dim(Wαµ) ≤ dim(Wα), so Jr is an
ideal of T . Clearly Tr ⊆ Js if r ≤ s ≤ dim W , and the containment can be proper. For
example, suppose that s is finite and u ∈ V \ W . Write W = 〈wi 〉 with |I | = s and
V = 〈vp〉 ⊕ 〈u, wi 〉. Let 1 ∈ I and J = I \ {1}, and note that

α =

(
{vp, w1} w j v

0 w j w1

)
∈ Js \ Ts . (1)

More generally, let Y = {α ∈ Jr : dim(Wα) < dim(V α)}. Since dim(Wα) < r for all
α ∈ Jr , we know that r(Y ) ≤ r . Suppose that r(Y ) < r . If r is finite then the α defined
in (1) with s = r(Y ) satisfies r(Y ) = dim(Wα), hence it belongs to Jr . However,
it also satisfies dim(Wα) < dim(V α), so it contradicts the choice of r(Y ), and we
conclude that r(Y ) = r . Likewise, if r is infinite, we write W = 〈wi , w j 〉 where
|I | = r(Y ) < r ≤ |J | and let V = 〈vq〉 ⊕ 〈wi , v + w j 〉. Now consider

α =

(
vq wi v + w j
0 wi w j

)
∈ Jr .

Since this also contradicts the choice of r(Y ), we again conclude that r(Y ) = r .
Therefore Jr = Tr ∪ K (Y ) by Theorem 11. 2

Recall that, for any vector space U , the ideals of T (U ) form a chain under
containment. The next result shows that T (V, W ) is almost never isomorphic to any
T (U ).

COROLLARY 12. If dim V ≥ 3, then T (V, W ) is not isomorphic to T (U ) for any
vector space U.

PROOF. By our assumption at the start, dim W ≥ 1 and W 6= V .
Suppose that dim W = 1. In this case, codim W ≥ 2 and we can write V

= 〈v1, v2, vm〉 ⊕ 〈w1〉 where W = 〈w1〉. Define nonzero π1, π2 ∈ T (V, W ) by

π1 =

(
{vm, v2, w1} v1

0 w1

)
, π2 =

(
{vm, v1, w1} v2

0 w1

)
.
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Let Y1 = {π1} and Y2 = {π2}. If β ∈ K (Y1) then ker β ⊇ ker π1 ⊇ W . Hence, if
λ ∈ T (V, W ) then V λβ ⊆ Wβ = {0}, so λβ = 0 ∈ K (Y1). That is, K (Y1) and K (Y2)

are ideals of T (V, W ), where π1 ∈ K (Y1) \ K (Y2) and π2 ∈ K (Y2) \ K (Y1). In other
words, K (Y1) and K (Y2) are ideals of T (V, W ) which are not comparable under
containment, so the ideals of T (V, W ) do not form a chain in this case.

Now suppose that dim W ≥ 2. If w1, w2 ∈ W are linearly independent, and u
∈ V \ W , then v1 = u + w1 and v2 = u + w2 are linearly independent in a
complement of W in V . Write V = 〈vm〉 ⊕ 〈wn〉, where {vm} = {v1, v2} ∪̇ {vp} and
{wn} = {w1, w2} ∪̇ {wq}. Define nonzero α, β ∈ T (V, W ) by

α =

(
{vp, wn} v1 v2

0 w1 w2

)
, β =

(
{vm, {wn} \ {w1}} w1

0 w1

)
.

Clearly, α ∈ J1 \ T2 and β ∈ T2 \ J1. That is, J1 and T2 are ideals which are not
comparable under containment, so the ideals of T (V, W ) do not form a chain, and
the result follows. 2

It is not hard to see that part (b) of the next result also holds if Y = αT 1, which
clearly also equals βT 1 for some β 6= α. So, it is unlikely that there are conditions
which determine precisely when Tr ∪ K (Y ) is principal.

THEOREM 13. Let α ∈ T (V, W ) = T , say. Then:

(a) T αT = Tr ∪ K (Y ), where Y = T αT , r = r(Y ) = s′ and s = dim(Wα);
(b) T 1αT 1

= Tr ∪ K (Y ), where Y = {α}, r = r(Y ) = s′ and s = dim(Wα).

PROOF. (a) Let s = dim(Wα) and, with our usual choice of bases, write

α =

(
ui w j vk
0 w′

j wk

)
.

Let V = 〈u′

`〉 ⊕ 〈w′

j 〉 ⊕ 〈w′

k〉 and define δ, ε ∈ T by

δ =

(
{ui , vk} w j

0 w j

)
, ε =

(
{u′

`, wk} w′

j
0 w′

j

)
.

Clearly, if π = δαε, then dim(Wπ) = s. Now, if λ, µ ∈ T then dim(Wλαµ)

≤ dim(Wα)µ ≤ dim(Wα) = s (note that possibly α /∈ T αT ). Hence, if Y = T αT and
r = r(Y ) then r ≥ s′. Suppose that r > s′. Then, by the definition of r(Y ), there
exists λ, µ ∈ T such that s′

≤ dim(Wλαµ) ≤ dim(Wα) = s, which is a contradiction
(regardless of whether s is finite or infinite). Hence, r ≤ s′, and equality follows.
Next, if β ∈ K (Y ) then β = γµ′ for some γ ∈ Y and µ′

∈ T . That is, β = λαµ.µ′

for some λ, µ ∈ T and so β ∈ T αT . Moreover, for each λ, µ ∈ T , dim(V λαµ)

≤ dim(Wα)µ ≤ s. In other words, K (Y ) ⊆ T αT ⊆ Ts′ . In fact, if β ∈ Ts′ then
r(β) ≤ s = dim(Wα), so β ∈ T αT by Lemma 4. Thus, we obtain T αT = Ts′ ∪ K (Y ),
as required.
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(b) If λ, µ ∈ T and λ 6= 1 then r(λαµ) ≤ dim(Wα)µ ≤ s, so λαµ ∈ Ts′ , and clearly
αµ ∈ K (Y ) when Y = {α}. Thus, T 1αT 1

⊆ Ts′ ∪ K (Y ). Conversely, if β ∈ Ts′ then
r(β) ≤ s = dim(Wα), so β ∈ T αT by Lemma 4; and, if β ∈ K (Y ) then β ∈ αT 1 by
Lemma 3. Therefore, T 1αT 1

= Ts′ ∪ K (Y ) where r(Y ) = s′ (since Y = {α}). 2

In passing, we note that if 1 ≤ r ≤ dim W , Y = Tr and β ∈ K (Y ), then r(β)

≤ r(α) < r , so β ∈ Tr and thus K (Y ) ⊆ Tr . Also, r(Y ) = r since Qr ⊆ Tr . That is,
the ideal Tr takes the form Tr(Y ) ∪ K (Y ), when Y = Tr .
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