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STABILITY OF WEIGHTED DARMA FILTERS

K. J. HARRISON, J. A. WARD AND L-J. EATON

ABSTRACT. We study the stability of linear filters associated with certain types
of linear difference equations with variable coefficients. We show that stability is
determined by the locations of the poles of a rational transfer function relative to
the spectrum of an associated weighted shift operator. The known theory for filters
associated with constant-coefficient difference equations is a special case.

1. Introduction. An adaptive DARMA (deterministic, autoregressive, moving av-
erage) filter is a linear operator which associates each sequence x in its domain with a
sequence y which is related to x according to the linear difference equation

rX
i=0

anÒiyn�i =
sX

j=0
bnÒjxn�j for each n 2 ZÒ(1)

where the coefficients anÒi and bnÒj, for 0 � i � r, 0 � j � s, and n 2 Z, are complex
numbers. We study certain types of stability of such filters which arise naturally when
the filters are regarded as mappings between the various ‡p spaces. Two notions, which
we call (pÒ q)-stability and (pÒ q)-boundedness, are defined precisely below.

Let S denote the vector space of doubly-infinite complex-valued sequences, and for
1 � p � 1 let ‡p denote the subspace of S consisting of p-summable sequences.
Thus x = (xn)n2Z 2 ‡p if kxkp = (

P
n2Z jxnjp)1Ûp Ú 1 for p Ú 1, and x 2 ‡1 if

kxk1 = supn2Z jxnj Ú 1. A sequence space operator is a linear operator T whose
domain D(T) and range R (T) are subspaces of S. A sequence space operator T is a filter
for (1) if x and y satisfy (1) whenever x 2 D(T) and y = Tx.

DEFINITION 1. Suppose that T is a sequence space operator, 1 � pÒ q � 1, and that
X is a subspace of S. We say that T is (pÒ q)-stable on X if ‡p \X � D(T), and Tx 2 ‡q

for each x 2 ‡p \ X , and that T is (pÒ q)-bounded on X if there exists î ½ 0 such that
kTxkq � îkxkp for each x 2 ‡p \ X .

A (pÒ q)-bounded operator is necessarily (pÒ q)-stable, but the converse does not hold
in general. However, as we shall see in Section 3, there are certain types of sequence
space operators which, if (pÒ q)-stable, are automatically (pÒ q)-bounded.
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If, for each i and j, the numbers anÒi and bnÒj are independent of n, (1) becomes a
constant-coefficient difference equation

rX
i=0

aiyn�i =
sX

j=0
bjxn�j for each n 2 ZÒ(2)

where the ai, 0 � i � r, and bj, 0 � j � s are fixed complex numbers. A standard method
of dealing with (2) is to introduce the shift operator S, which is defined by (Sx)n+1 = xn

for each n 2 Z and for each sequence x, as in [2]. Then (2) becomes

a(S)y = b(S)xÒ(3)

where a and b are the polynomials defined by

a(ê) = a0 + a1ê + Ð Ð Ð + arê
r and b(ê) = b0 + b1ê + Ð Ð Ð + bsê

sÒ

and the stability of filters associated with (3) is essentially determined by the location of
the poles of the rational transfer function

r(ê) =
b(ê)
a(ê)

(4)

There is no satisfactory general theory for the stability of adaptive filters, that is,
filters associated with the variable-coefficient difference equation (1). However Ramsey
[4] gives conditions, in terms of the norms of products of associated companion matrices,
for the (1Ò1)-stability of adaptive filters on causal sequences (as defined below). These
results may be used to investigate, for example, the stability of adaptive filters where the
coefficients are periodic or piecewise-constant [5]. In this paper we examine adaptive
filters for difference equations which can be written in the form

a(W)y = b(W)xÒ(5)

where W is the weighted shift defined on S by

(Wx)n+1 = wnxnÒ for each n 2 Z and for each x 2 SÒ

for a fixed weight sequence w = (wn) of positive numbers.
It is not difficult to show that (1) reduces to (5) if and only if the coefficients anÒi and

bnÒj satisfy relations of the form

anÒi = aiånå
�1
n�i and bnÒj = bjånå

�1
n�jÒ

where å = (ån) is a sequence of positive numbers with å0 = 1, and where a0Ò a1Ò    Ò ar

and b0Ò b1Ò    Ò bs are fixed complex numbers. The weight sequence w is then related to
å according to the formula

ån+1 = wnån for each n 2 Z
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We shall assume that ar and bs are non-zero, and that there are positive numbers ö1

and ö2 such that
0 Ú ö1 � wn � ö2 Ú 1 for all n 2 Z(6)

We shall say that T is a weighted DARMA filter if

a(W)Tx = b(W)x for each x 2 D(T)Ò

and in this case we say that T is a filter for (5). We shall see that the stability and
boundedness of such a T are determined by the locations of the non-zero poles of the
transfer function r(ê) defined by (4), relative to certain annular subsets of the complex
plane associated with the weighted shift W. If wn = 1 for all n, then (5) reduces to
(3), and so the stability theory which we shall develop for weighted filters includes the
constant-coefficient case (see [3], for example).

The block diagram in Figure 1 gives a physical realization of (5) in terms of adders,
gains and unit delays. (For simplicity we have assumed here that r = s and that a0 6= 0.)
It is based on the standard realization of equation (3), but includes at each node an
additional common, time-varying, gain of wn at time n.

x Ð Ð Ð

Ð Ð Ð

Ð Ð Ð

bs bs�1 b1 b0

+ S wn + S wn S wn + S wn + 1
a0

y

�as �as�1 �a1

FIGURE 1

1.1. Weighted shifts. We include some basic facts about weighted shifts. For a more
detailed discussion see the survey paper [6]. The norm of W, as an operator from ‡p

into ‡p, is the supremum of the weights wn. It follows from (6) that this supremum is
bounded. It is also independent of p, and so we write

kWk = sup
k2Z

wk = sup
k2Z

åk+1å
�1
k 

For each positive integer n, the operator norm of Wn is the supremum of the sliding
products wkwk+1 Ð Ð Ðwk+n�1, for k 2 Z, that is,

kWnk = sup
k2Z

wkwk+1 Ð Ð Ðwk+n�1 = sup
k2Z

åk+nå
�1
k 
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The spectrum of W, as an operator from ‡p into ‡p, is an annulus centred at 0 in the
complex plane. The outer radius R is equal to ö(W) the spectral radius of W, and so

R = ö(W) = lim
n!1

kWnk1Ûn = lim
n!1

�
sup
k2Z

åk+nå
�1
k

�1Ûn


The inner radius L of the annular spectrum of W is given by

L = lim
n!1

�
inf
k2Z

åk+nå
�1
k

�1Ûn


Since the weights wk are bounded away from 0, W has a bounded inverse as an
operator on ‡p. In fact,

(W�1x)n = w�1
n xn+1Ò for each n 2 Z and for each x 2 SÒ

and kW�1k = (infk2Z wk)�1. Furthermore, L�1 is the spectral radius of W�1, and so

L = ö(W�1)�1 = lim
n!1

kW�nk�1Ûn

According to the spectral mapping formula, ö(Wn) = ö(W)n for any n ½ 1. Since
kWnk ½ ö(Wn), it follows that

sup
k2Z

ån+kå
�1
k = kWnk ½ Rn for each n ½ 0(7)

We are also interested in the behaviour of W when restricted to certain subspaces of
S. Recall that a sequence x = (xn) is causal if it is supported on [0Ò1), that is, xn = 0
for all n Ú 0. The set of all causal sequences is denoted by S+. More generally, for each
subset A of Z, SA denotes the set of sequences supported on A. The set of sequences with
finite support is denoted by S00. We say a sequence x has finite past if x 2 S[kÒ1) for
some k 2 Z, and we denote the set of all finite past sequences by Sf p. Thus S+ = S[0Ò1),
and Sf p =

S
k2Z S[kÒ1). We say that a subset X of S is W-invariant if Wx 2 X for each

x 2 X . Each of the subspaces S[kÒ1), Sf p and S00 is W-invariant. The restriction of W to
S+ is called a unilateral weighted shift, and is denoted by W+. The norm of W+ is given
by

kW+k = sup
k½0

wk = sup
k½0

åk+1å
�1
k Ò

and its spectral radius ö(W+) = R+ is given by

R+ = lim
n!1

kWn
+k

1Ûn = lim
n!1

(sup
k½0

åk+nå
�1
k )1Ûn

As an operator on ‡p
+ = ‡p \ S+, W+ is not invertible, and its spectrum is the closed

disc centred at the origin and with radius R+. The analogue of (7) is the formula

sup
k½0

ån+kå
�1
k = kWn

+k ½ Rn
+ for each n ½ 0(8)
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For the unweighted shift S, R = R+ = 1. The numbers R and R+ are important to the
analysis of stability and continuity of weighted filters.

An operator T is power bounded if the numbers kTnk, n = 1Ò 2Ò 3Ò    , are bounded
above. We shall say that T is power dominated if TÛö(T) is power bounded, where ö(T)
is the spectral radius of T. Thus the weighted shift W is power dominated if the numbers
kWnkR�n, n = 1Ò 2Ò 3Ò    , are bounded above. Clearly the unweighted shift is power
dominated.

1.2. Some simplifications. The following observations will simplify the analysis of
weighted filters. The first concerns the indices p and q.

LEMMA 1. If there is a filter for (5) which is (pÒ q)-stable on S+ then p � q.

PROOF. Suppose that T is a filter for (5) which is (pÒ q)-stable on S+. Choose t Ù s
and x 2 ‡p

+. Write x =
P

n½0 xné(n), where é(n) is the sequence with 1 in the n0th place and
0 elsewhere, and let x# =

P
n½0 xné(tn). Then x# 2 ‡p

+, and so

kb(W)x#kq = ka(W)Tx#kq � ka(W)k kTx#kq Ú 1

On the other hand, b(W)x# =
Ps

j=0 bjWjx#, and since the supports of Wjx# for j =
0Ò 1Ò 2    Ò s are disjoint,

kbjW
jx#kq � kb(W)x#kq Ú 1 for each j

Since bs 6= 0 and w is bounded below, it follows that

kxkq = kx#kq � kWk�skWsx#kq � jbsj
�1kWk�skbsW

sx#kq Ú 1(9)

Since (9) holds for each x 2 ‡p
+, p � q.

The second lemma will allow us to restrict attention to cases in which the polynomials
a(ê) and b(ê) are powers of a common linear polynomial.

LEMMA 2. Suppose that X is a W-invariant linear subspace of S. Then there is a
filter for (5) which is (pÒ q)-stable (bounded) on X if and only if, for each non-zero pole
ï�1 of r(ê), there is a filter for the equation

(1 � ïW)ñ+óy = (1 � ïW)óx(10)

which is (pÒ q)-stable (bounded) on X , where ñ is the multiplicity of the pole ï�1, and
where ó ½ 0 is the multiplicity of ï�1 as a zero of b(ê).

PROOF. Let ï�1
1 Ò ï�1

2 Ò    Ò ï�1
k be the non-zero poles of r(ê) with multiplicities

ñ1Ò ñ2Ò    , ñk respectively. Each ï�1
i is a zero of a(ê) with multiplicity ñi + ói for

some ói ½ 0, and ï�1
i is a zero of b(ê) with multiplicity ói if ói Ù 0.

Suppose that T is a filter for (5) which is (pÒ q)-stable on X . Choose any one of the
poles ï�1

i of r(ê) and polynomials ui(ê) and vi(ê) such that

ui(ê)(1 � ïiê)ñi +ói + vi(ê)b(ê) = (1 � ïiê)ói 
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Let ai(ê) = a(ê)(1 � ïiê)�ñi�ói , and let

Ti = ui(W) + ai(W)vi(W)T(11)

Then, since X is W-invariant and T is (pÒ q)-stable on X , for each x 2 X \ ‡p

(1 � ïiW)ñi+ói Tix =
�
(1 � ïiW)ñi +ói ui(W) + vi(W)a(W)T

�
x = (1 � ïiW)ói xÒ

and so Ti is a filter for (10) corresponding to the pole ï�1
i . Furthermore, if T is (pÒ q)-

bounded on X then so too is Ti.
Now suppose that, for i = 1Ò    Ò k, Ti is a filter for (10) corresponding to the pole

ï�1
i which is (pÒ q)-stable on X . Let ãi(ê) = a(ê)(1�ïiê)�ñi for each i. Since the greatest

common divisor of the polynomials ãi(ê), i = 1Ò 2Ò    Ò k, is also a divisor of êúb(ê), for
some ú ½ 0, there are polynomials c1(ê)Ò c2(ê)Ò    Ò ck(ê) such that

êúb(ê) =
kX

i=1
ci(ê)ãi(ê)

Let

T = W�ú
kX

i=1
ci(W)Ti(12)

Then

a(W)Tx = W�ú
kX

i=1
ci(W)a(W)Tix = W�ú

kX
i=1

ci(W)ãi(W)x = b(W)x

for each x 2 X \ ‡p. So T is a filter for (5) which is (pÒ q)-stable on X . Furthermore, if
each Ti is (pÒ q)-bounded on X then so too is T.

2. Finite past filters. There is a unique filter for (5) which leaves invariant the
subspace Sf p. It can be defined in terms of a Laurent series of the transfer function r(ê).
Since r(ê) is meromorphic, it has an expansion

P1
j=ö hjêj which converges in a punctured

neighbourhood of ê = 0. The operator r(W)+, which is called the finite past filter for (5),
is defined on Sf p by

r(W)+x =
1X
j=ö

hjW
jx for each x 2 Sf p(13)

This sum converges pointwise for each x 2 Sf p. In fact, if x 2 S[kÒ1) then r(W)+x 2

S[k+öÒ1) and

(r(W)+x)n = ån

n�kX
j=ö

hjå
�1
n�jxn�j for each n ½ k + ö

The reason why r(W)+ is a filter for (5) is best explained in terms of convolution
products. For any two sequences u and v, the (weighted) convolution product u Ł v is
defined by

(u Ł v)n = ån
X

i+j=n
uivjå

�1
i å�1

j for each n 2 ZÒ(14)
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provided that each of the sums in (14) converges absolutely.
The convolution product u Ł v is not defined for all pairs of sequences u and v, but

when it is, it is commutative and distributive over pointwise addition. It is not, in general,
associative. However, the subspace Sf p is a field under the operations of convolution and
pointwise addition, and it is not difficult to check that

a�1
f p Ł b = hÒ

where b = (bn) is the sequence of coefficients of b(ê), h = (hn) is the sequence of
coefficients in the Laurent series for r(ê), and where a�1

f p is the unique finite past inverse
of a = (an), the coefficient sequence of a(ê). (We define an = 0 if n Û2 [0Ò r], bn = 0 if
n Û2 [0Ò s], and hn = 0 if n Ú ö.) Therefore

r(W)+x = h Ł x for each x 2 Sf p

It follows that h = r(W)+é(0), and for this reason h is known as the impulse response
of the filter r(W)+. Since (5) can be expressed as the convolution equation a Ł y = b Ł x,
we have, for each x 2 Sf p,

a Ł r(W)+x = a Ł h Ł x = a Ł a�1
f p Ł b Ł x = b Ł x

The uniqueness of r(W)+ follows from the fact that if T is another filter for (5) with
domain Sf p, then

�
T � r(W)+

�
x 2 ker a(W), the kernel of a(W). It is easy to check that

ker a(W)\ Sf p = f0g, and so if Sf p is invariant under T then Tx = r(W)+x for all x 2 Sf p.

2.1. Stability on causal sequences. In this section we study the (pÒ q)-stability and
(pÒ q)-boundedness of r(W)+ on S+. It turns out that these are equivalent because of the
special nature of r(W)+. We say a sequence space operator T is causal if, for each integer
k and each x 2 S[kÒ1)\D(T), Tx 2 S[kÒ1). The following automatic continuity result for
causal sequence space operators is well known [1].

LEMMA 3. If C is a sequence space operator which is causal and (pÒ q)-stable on S+,
then C is (pÒ q)-bounded on S+.

COROLLARY 1. The finite past filter r(W)+ for (5) is (pÒ q)-bounded on S+ if and only
if it is (pÒ q)-stable on S+.

PROOF. Clearly W is causal, and since W�ör(W)+ is a linear combination of non-
negative powers of W, it too is causal. So by Lemma 3, W�ör(W)+ is (pÒ q)-bounded on
S+. The same is true of r(W)+, since r(W)+ = WöW�ör(W)+, and Wö is (qÒ q)-bounded.

We now obtain a necessary and sufficient condition for the (pÒ q)-boundedness on S+

of the operator r(W)+. First we assume that the rational function r(ê) has a single pole,
in which case r(W)+ = (1 � ïW)�ñ+ for some ñ Ù 0.

LEMMA 4. The finite past operator (1�ïW)�ñ+ is (pÒ q)-bounded on S+ if and only if
1 � p � q � 1 and jïjR+ Ú 1, or p = 1, q = 1, ñ = 1, jïjR+ = 1 and W+ is power
dominated.
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PROOF. First suppose that (1�ïW)�ñ+ is (pÒ q)-bounded on S+. Since (1�ïW)�ñ+ is
a filter for the equation (1 � ïW)ñy = x, Lemma 1 implies that p � q.

Let ú denote the (pÒ q) norm of (1 � ïW)�ñ+ restricted to S+. Then for any x 2 ‡p
+,

k(1 � ïW)�ñ+ xkq � úkxkp(15)

Now (1 � ïê)�ñ =
P1

n=0

�
ñ+n�1

n

�
ïnên, where

�
n
j

�
is the generalised binomial coefficient,

defined for integers n and j ½ 0, by
0
@n

j

1
A =

n + 1
1

ð
n + 2

2
ð Ð Ð Ð ð

n + j
j

for j Ù 0Ò and

0
@n

0

1
A = 1

So for each x 2 Sf p, (1 � ïW)�ñ+ x =
P1

n=0

�
ñ+n�1

n

�
ïnWnx, and in particular

(1 � ïW)�ñ+ é(k) =
1X

n=0

0
@ñ + n � 1

n

1
Aïnån+kå

�1
k é(n+k)(16)

for each k ½ 0. So by (15),
�
ñ+n�1

n

�
jïjnån+kå�1

k � ú for each n ½ 0 and k ½ 0. Therefore

0
@ñ + n � 1

n

1
AjïjnRn

+ �

0
@ñ + n � 1

n

1
AjïjnkWn

+k � ú(17)

for each n ½ 0 by (8), and hence jïjR+ � 1.
Now suppose that jïjR+ = 1. Then (17) implies that ñ = 1, and hence

jïjnån+kå
�1
k � jïjnkWn

+k = kWn
+kR�n

+ � ú(18)

for each k ½ 0 and each n ½ 0. So W+ is power dominated. Furthermore, (16) becomes
(1 � ïW)�1

+ é(k) =
P1

n=0 ï
nån+kå�1

k é(n+k), and so by (15)

ú ½ k(1 � ïW)�1
+ é(k)kq ½


mX

n=0
ïnån+kå

�1
k é(n+k)


q

(19)

for each m ½ 0 and each k ½ 0. Now (18) implies that jïjnån+kå�1
k ½ ú�1jïjmåm+kå�1

k

for 0 � n � m. So by (19)

ú ½ ú�1jïjmåm+kå
�1
k


mX

n=0
é(n+k)


q

= ú�1jïjmåm+kå
�1
k (m + 1)1Ûq

for each m ½ 0 and each k ½ 0 (where 1Û1 = 0). Therefore, since jïjR+ = 1, it follows
from (8) that ú2 ½ (m + 1)1Ûq. Also since (m + 1)1Ûq !1 as m !1 if q Ú 1, q = 1.

Now choose k ½ 0, m ½ 1 and let

x =
1
m

m�1X
n=0

ïnWné(k) =
1
m

(1 � ïW)�1
+ (1 � ïmWm)é(k)
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Then

(1 � ïW)�1
+ x =

m�1X
n=0

n + 1
m

ïnån+kå
�1
k é(n+k) +

1X
n=m

ïnån+kå
�1
k é(n+k)Ò

and so k(1 � ïW)�1
+ xk1 ½ jïjmåm+kå�1

k . Since jïjR+ = 1, it follows from (8) that
k(1 � ïW)�1

+ xk1 ½ 1. On the other hand,

kxkp =


m�1X
n=0

1
m
ïnån+kå

�1
k é(n+k)


p
� ú


m�1X
n=0

1
m
é(m+k)


p

= úm�1+1Ûp

by (18). So for each m ½ 1,

1 � k(1 � ïW)�1
+ xk1 � úkxkp � ú2m�1+1ÛpÒ

and since m�1+1Ûp ! 0 as m !1 if p Ù 1, it follows that p = 1.
To prove the converse, first suppose that 1 � p � q � 1 and that jïjR+ Ú 1. Then

by (8)

k(1 � ïW)�ñ+ kp �
1X

n=0

0
@ñ + n � 1

n

1
AjïjnkWn

+k Ú 1

So (1 � ïW)�ñ+ is (pÒ p)-bounded, and hence (pÒ q)-bounded, on S+.
Now suppose that jïjR+ = 1 and that W+ is power dominated. Let ú =

supn½0 kWn
+kR�n

+ . Then k(1�ïW)�1
+ é(k)k1 = supn½0 jïj

nån+kå
�1
k � supn½0 jïj

nkWn
+k = ú

for each k ½ 0. Hence for each x = (xn) 2 ‡1
+,

k(1 � ïW)�1
+ xk1 �

1X
n=0

jxnjk(1 � ïW)�1
+ é(n)k1 � úkxk1

So (1 � ïW)�1
+ is (1Ò1)-bounded on S+.

We turn now to the general case, where r(ê) has possibly more than one non-zero
pole. The following result is a modification of Lemma 2.

LEMMA 5. Suppose that X is a W-invariant linear subspace of S. Then r(W)+ is
(pÒ q)-bounded on X if and only if, for each non-zero pole ï�1 of r(ê) of multiplicity ñ,
(1 � ïW)�ñ+ is (pÒ q)-bounded on X .

PROOF. First suppose that r(W)+ is (pÒ q)-bounded on X , and that ï�1 is a pole of r(ê)
of multiplicity ñ. Then the operator T = v(W)a(W)r(W)+ + u(W), as given by (11) in the
proof of Lemma 2 is a filter for (10) which is (pÒ q)-bounded on X . But Sf p is invariant
under T, and so by the uniqueness of finite past filters, T = (1 � ïW)�ñ+ .

Conversely, if (1 � ïW)�ñ+ is (pÒ q)-bounded on X for each non-zero pole ï�1 of r(ê)
(with multiplicity ñ), then the operator T = W�ú Pk

i=1 ci(W)(1 � ïiW)�ñi
+ , as given by

(12) in the proof of Lemma 2, is a filter for (5) which is (pÒ q)-bounded on X . Therefore,
since T leaves Sf p invariant, T = r(W)+.

Lemma 4 and Lemma 5 provide a necessary and sufficient condition for the (pÒ q)-
boundedness of r(W)+ on S+.
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THEOREM 1. The finite past filter r(W)+ is (pÒ q)-bounded on S+ if and only if 1 �
p � q � 1, the non-zero poles of r(ê) lie on or outside the circle jêj = R+, and, if r(ê)
has poles on the circle jêj = R+, then each such pole is simple, p = 1, q = 1, and W+ is
power dominated.

PROOF. Suppose that ï�1
1 Ò ï�1

2 Ò    Ò ï�1
k are the non-zero poles of r(ê) with multi-

plicities ñ1Ò ñ2Ò    Ò ñk respectively. By Lemma 4, the conditions in the theorem are
the conditions under which each of the single-pole factors (1 � ïW)�ñ+ of r(W)+ is
(pÒ q)-bounded on S+, and by Lemma 5 this is both necessary and sufficient for the
(pÒ q)-boundedness on S+ of r(W)+.

Since R+ = 1 for the unweighted shift S+, and S+ is power dominated, it is easy
to recover the known conditions [3] for stability of unweighted finite past filter from
Theorem 1.

COROLLARY 2. The unweighted finite past filter r(S)+ is (pÒ q)-bounded on S+ if and
only if 1 � p � q � 1, the non-zero poles of r(ê) lie on or outside the unit circle jêj = 1,
and, if r(ê) has poles on the unit circle, then each such pole is simple, p = 1, and q = 1.

2.2. Stability on finite past sequences. The natural domain of the finite past filter r(W)+

is Sf p, the linear space of all sequences with finite past. In this section we give necessary
and sufficient conditions for the (pÒ q)-stability and boundedness of r(W)+ on Sf p,

LEMMA 6. The finite past filter r(W)+ is (pÒ q)-stable on Sf p if and only if it is (pÒ q)-
stable on S+.

PROOF. Clearly stability on Sf p implies stability on the subspaceS+. For the converse,
assume that r(W)+ is (pÒ q)-stable on S+, and that x 2 S[kÒ1) \ ‡p for some k 2 Z. Then
W�kx 2 ‡p

+, and since r(W)+ commutes with W,

r(W)+x = r(W)+WkW�kx = Wkr(W)+W�kx 2 ‡q

THEOREM 2. The finite past filter r(W)+ is (pÒ q)-bounded on Sf p if and only if 1 �
p � q � 1, the non-zero poles of r(ê) lie on or outside the circle jêj = R, and, if r(ê) has
poles on the circle jêj = R, then each such pole is simple, p = 1, q = 1, and W is power
dominated.

PROOF. The theorem can be proved by extending the range of k from Z+ to Z in the
proofs of Lemma 4 and Theorem 1.

Necessary and sufficient conditions for the stability of unweighted finite past on Sf p

follow immediately from Theorem 2.

COROLLARY 3. The unweighted finite past filter r(S)+ is (pÒ q)-bounded on Sf p if and
only if 1 � p � q � 1, the non-zero poles of r(ê) lie on or outside the unit circle jêj = 1,
and, if r(ê) has poles on the unit circle, then each such pole is simple, p = 1, and q = 1.

Because the necessary and sufficient conditions in Theorems 1 and 2 are different,
there is no automatic continuity result for arbitrary weighted finite past operators on Sf p.
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EXAMPLE 1. Let W be the weighted shift with weights (wn) given by

wn = 1Û2 for n ½ 0 and wn = 2 for n Ú 0

Then R = 2 and R+ = 1Û2. So (1 � W)�1
+ is (pÒ q)-stable on Sf p by Theorem 1 and

Lemma 6. But (1 � W)�1
+ is not (pÒ q)-bounded on Sf p by Theorem 2.

3. Finite future filters. Equation (13) defines the finite past operator r(W)+ in terms
of a Laurent series expansion of the rational function r(ê). Other Laurent series expansions
of r(ê) determine other operators, which are also filters for (5) but on different domains.
In particular, the expansion of r(ê) in a neighbourhood of1 determines a filter which in
a natural sense is a dual of r(W)+.

We say that a sequence x is anticausal if it is supported on (�1Ò 0], and that x has
a finite future if x 2 S(�1Òk] for some k 2 Z. We denote by S� the set of all anticausal
sequences, and by Sf f the set of all finite future sequences. Thus S� = S(�1Ò0], and
Sf f =

S
k2Z S(�1Òk]. The finite future operator r(W)� is defined on Sf f by

r(W)�x =
1X

j=r�s
gjW

�jx for each x 2 Sf f Ò

where
P1

j=r�s gjê�j is the Laurent series expansion of the transfer function r(ê), which
is valid in a neighbourhood of ê = 1. This expansion converges pointwise for each
x 2 Sf f . In fact, if x 2 S(�1Òk] then r(W)�x 2 S(�1Òk�r+s], and

�
r(W)�x

�
n

= ån

k�nX
j=r�s

gjå
�1
n+jxn+j for each n � k � r + s

It is not difficult to verify that

r(W)�x = g Ł x for each x 2 Sf f Ò

where g = a�1
f f Ł b, and where a�1

f f is the unique finite future inverse of a in the field Sf f .
So

a Ł r(W)�x = a Ł g Ł x = a Ł a�1
f f Ł b Ł x = b Ł x for each x 2 Sf f Ò

and hence r(W)� is a finite future filter for (5).
The uniqueness of r(W)� as a finite future filter for (5) follows from the fact that

ker a(W) \ Sf f = f0g.
The analysis of r(W)� is simplified by a natural correspondence between finite past

and finite future sequences. Let H be the reversal mapping, defined on S by

(Hx)n = x�n for each n 2 Z and each x = (xn) 2 S

The map H is isometric on each ‡p space, H2 = 1, and HSf p = Sf f .
Let W̃ = HW�1H. Then W̃ is a weighted shift whose weight sequence (w̃n) is given

by
w̃n = w�1

�n�1 for each n 2 Z
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Let ã and b̃ be the polynomials defined by

ã(ê) = êr+sa(ê�1) and b̃(ê) = êr+sb(ê�1)Ò

and let

r̃(ê) = b̃(ê)Ûã(ê) = r(ê�1)

It is easy to check that

ã(W̃)Hr(W)�Hx = Hã(W�1)r(W)�Hx = HW�r�sa(W)r(W)�Hx

= HW�r�sb(W)Hx = b̃(W̃)xÒ

for each x 2 Sf p, and so Hr(W)�H is a filter for the equation

ã(W̃)y = b̃(W̃)x(20)

Furthermore Sf p is invariant under Hr(W)�H, and so by the uniqueness of finite past
filters, Hr(W)�H = r̃(W̃)+, the finite past filter for (20).

Since H is an isometry on each ‡p, the stability and boundedness properties of r(W)�
on S� and on Sf f match those of r̃(W̃)+ on S+ and on Sf p, respectively, and by the results
of the previous section these are determined by the location of the non-zero poles of r̃(ê)
relative to the spectra of W̃+ and W̃. The spectrum of W̃, as an operator from ‡p into ‡p,
is an annulus centred at 0 in the complex plane. The outer radius R̃ is given by

R̃ = lim
n!1

�
sup
k2Z

åk�nå
�1
k

�1Ûn
= lim

n!1

�
inf
k2Z

åkå
�1
k�n

��1Ûn
= L�1

Similarly, the spectrum of W̃+ is a disc centred at the origin, whose radius R̃+ is given by

R̃+ = lim
n!1

�
sup
k�0

åk�nå
�1
k

�1Ûn
= lim

n!1

�
inf
k�0

åkå
�1
k�n

��1Ûn
= L�1

�

Clearly ê0 is a pole of multiplicity ó of r̃(ê) if and only if ê�1
0 is a pole of multiplicity

ó of r(ê). So we have the following necessary and sufficient conditions for the (pÒ q)-
boundedness of the finite future filter r(W)� on S� and Sf f .

THEOREM 3. The finite future filter r(W)� is (pÒ q)-bounded on S� if and only if
1 � p � q � 1, the poles of r(ê) lie on or inside the circle jêj = L�, and, if r(ê) has
poles on the circle jêj = L�, then each such pole is simple, p = 1, q = 1, and W�1

� is
power dominated.

THEOREM 4. The finite future filter r(W)� is (pÒ q)-bounded on Sf f if and only if
1 � p � q � 1, the poles of r(ê) lie on or inside the circle jêj = L, and, if r(ê) has poles
on the circle jêj = L, then each such pole is simple, p = 1, q = 1, and W�1 is power
dominated.
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4. Two-sided filters. In the previous two sections we have studied the behaviour of
the ‘one-sided’ finite past and finite future filters for (5). We turn now to the problem of
finding stable two-sided filters for (5), that is, filters whose domains include ‡p for some
p ½ 1. In view of Lemma 2, we may restrict attention to the case in which r(ê) has a
single pole, and so we look for stable two-sided filters for equation (10).

One way of obtaining such a filter is by using continuity to extend the domain of either
(1 � ïW)�ñ+ or (1 � ïW)�ñ� . Suppose, for example, that (1 � ïW)�ñ+ is (pÒ q)-bounded
on Sf p. (By Theorem 1 this will occur if jï�1j Ù R, or possibly if jï�1j = R in the
exceptional (1Ò1) case). If p Ú 1, then Sf p \ ‡

p is dense in ‡p, and so there is a unique
(pÒ q)-bounded extension of (1 � ïW)�ñ+ which is a filter for (10) and whose domain
includes ‡p. On the other hand, if (1�ïW)�ñ+ is (1Ò1)-bounded on Sf p, then jï�1j Ù R
by Theorem 1, and so the series for (1�ïW)�ñ+ converges in operator norm and defines
a filter for (10) whose domain includes ‡1.

Similarly, if (1 � ïW)�ñ� is (pÒ q)-bounded on Sf f then its domain can be extended
to include ‡p. (This will occur if jï�1j Ú L, or possibly if jï�1j = L in the exceptional
(1Ò1) case).

If L Ú jï�1j Ú R, then (1�ïW)�ñ+ and (1�ïW)�ñ� do not have bounded extensions.
However it may still be possible to construct a (pÒ q)-bounded filter for (10) using both
(1�ïW)�ñ+ and (1�ïW)�ñ� . Suppose that L � R+ Ú jï�1j Ú L� � R. Then (1�ïW)�ñ+

and (1 � ïW)�ñ� are (pÒ q)-stable on S+ and S� respectively, and we can define

T0 = (1 � ïW)�ñ+ P+ + (1 � ïW)�ñ� P�Ò

where P+ is the projection of S onto S+ defined, for any x 2 S, by (P+x)n = xn if n ½ 0
and (P+x)n = 0 if n Ú 0, and where P� = 1 � P+. Then P+x 2 ‡p

+ for any x 2 ‡p, and
because (1�ïW)�ñ+ is (pÒ q)-stable on S+, it follows that (1�ïW)�ñ+ P+x 2 ‡q. Similarly,
(1�ïW)�ñ� P�x 2 ‡q. Furthermore, since (1�ïW)ñ+ó(1�ïW)�ñ+ P+x = (1�ïW)óP+x
and (1 � ïW)ñ+ó(1 � ïW)�ñ� P�x = (1 � ïW)óP�x, it follows that

(1 � ïW)ñ+óT0x = (1 � ïW)ó(P+x + P�x) = (1 � ïW)óx

So T0 is a (pÒ q)-stable filter for (10). In fact, since (1 � ïW)�ñ+ and (1 � ïW)�ñ� are
automatically (pÒ q)-bounded on S+ and S� respectively, T0 is (pÒ q)-bounded (on S).

For each j ½ 1 and each complex number ï, we denote by Φ(jÒ ï) the sequence
whose n’th term is

�
n

j�1

�
ånïn. The sequences Φ(jÒ ï)Ò j = 1Ò 2Ò    Ò ñ form a basis of

ker(1 � ïW)ñ, and

(1 � ïW)Φ(jÒ ï) = Φ(j � 1Ò ï) for j Ù 1 and (1 � ïW)Φ(1Ò ï) = 0

There is also a simple connection between the sequence Φ(ñÒ ï) and the impulse
responses of (1�ïW)�ñ+ and (1�ïW)�ñ� . Let Φ+(ñÒ ï) = P+Φ(ñÒ ï), and let Φ�(jÒ ï) =
P�Φ(jÒ ï). Then

Φ+(jÒ ï) = (1 � ïW)�j
+ é(0) and Φ�(jÒ ï) = �(1 � ïW)�j

� é
(0)
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EXAMPLE 2. Suppose that wn = 1Û2 for all n ½ 0 and wn = 2 for all n Ú 0, as in
Example 1. Then R = R� = L� = 2 and L = L+ = R+ = 1Û2, and the spectrum of W, as
a bounded linear operator from ‡p into ‡p, is the closed annulus fê : 1Û2 � jêj � 2g.
For any 1 � p � q � 1, (1 � W)�1

+ is not (pÒ q)-bounded on Sf p and (1 � W)�1
� is not

(pÒ q)-bounded on Sf f . However

T0 = (1 � W)�1
+ P+ + (1 � W)�1

� P�(21)

is a two-sided (pÒ q)-bounded filter for the equation (1 � W)y = x. Furthermore, if T
is any other (pÒ q)-stable filter for this equation, then Tx = T0x + †(x)Φ(1Ò 1), for some
linear functional † on ‡p.

We now show that the three constructions of a (pÒ q)-stable filter for (10) just given
essentially exhaust the possibilities. For this we need some preliminary results. The first
two are extensions of Lemma 3. Proofs based upon the closed graph theorem can be
found in [1].

LEMMA 7. Suppose that C is causal on S+, and that for each x 2 ‡p
+, Cx 2 ‡q + E,

where E is a finite-dimensional subspace of S. Then C is (pÒ q)-stable on C�1‡q = fx 2
‡p

+ : Cx 2 ‡qg.

LEMMA 8. Suppose that C is causal and T is (pÒ q)-stable on S+, and suppose that
T � C has finite rank. Then if C is (pÒ q)-stable on S+ \ S00, then C is (pÒ q)-bounded on
S+.

The third result concerns the boundedness of (1 � ïW)�ñ+ and (1 � ïW)�ñ� . It shows
that, in the presence of a (pÒ q)-stable filter for (10), (1�ïW)�ñ+ is (pÒ q)-bounded on S+

if and only if its impulse response is in ‡q, and similarly for (1 � ïW)�ñ� .

LEMMA 9. Suppose that (10) has a (pÒ q)-stable filter. Then (1 � ïW)�ñ+ is (pÒ q)-
bounded on S+ if and only (1 � ïW)�ñ+ é(0) 2 ‡q, and (1 � ïW)�ñ� is (pÒ q)-bounded on
S� if and only if (1 � ïW)�ñ� é(0) = Φ�(ñÒ ï) 2 ‡q.

PROOF. Clearly (1 � ïW)�ñ+ é(0) = Φ+(ñÒ ï) 2 ‡q if (1 � ïW)�ñ+ is (pÒ q)-bounded
on S+. So suppose that T is a (pÒ q)-stable filter for (10) and that Φ+(ñÒ ï) 2 ‡q. Then
(1 � ïW)�ñ+ g(W)é(0) = g(W)Φ+(ñÒ ï) 2 ‡q for each polynomial g(ê). So (1 � ïW)�ñ+

is (pÒ q)-stable on S+ \ S00. Now T and (1 � ïW)�ñ+ are both filters for (10), and so
(T � (1 � ïW)�ñ+ )x 2 ker(1 � ïW)ñ+ó, for each x 2 ‡p

+. Since ker(1 � ïW)ñ+ó is
finite-dimensional, it follows from Lemma 8 that (1 � ïW)�ñ+ is (pÒ q)-bounded on S+.

Similar arguments work for (1 � ïW)�ñ� .

We are now able to prove the general result concerning the existence of (pÒ q)-stable
filters for (5).

THEOREM 5. There is a (pÒ q)-stable filter for (5) if and only if, for each non-zero pole
ï�1 with multiplicity ñ of the transfer function r(ê), either

1. (1 � ïW)�ñ+ is (pÒ q)-bounded on Sf p, or
2. (1 � ïW)�ñ� is (pÒ q)-bounded on Sf f , or
3. (1 � ïW)�ñ+ is (pÒ q)-bounded on S+ and (1 � ïW)�ñ� is (pÒ q)-bounded on S�.
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PROOF. It follows from Lemma 2 that it is sufficient to prove the theorem for filters
for equation (10). So suppose that T is a (pÒ q)-stable filter for (10) and that (1 � ïW)�ñ+

is not (pÒ q)-bounded on S+. We must show that (1 � ïW)�ñ� is (pÒ q)-bounded on Sf f .
Since (1 � ïW)�ñ+ is not (pÒ q)-bounded on S+, Φ+(ñÒ ï) Û2 ‡q by Lemma 9, and

jïR+j ½ 1 by Lemma 4. Suppose that Φ+(1Ò ï) 2 ‡q. Then by the same lemmas
(1 � ïW)�1

+ is (pÒ q)-bounded on S+ and jïR+j � 1. So jïR+j = 1, and ñ = 1 by
Lemma 4. But this is a contradicts Φ+(ñÒ ï) Û2 ‡q, and so Φ+(1Ò ï) Û2 ‡q.

Since Té(0) � Φ+(ñÒ ï) = (T � (1 � ïW)�ñ+ )é(0) 2 ker(1 � ïW)ñ+ó , there are scalars
ã1Ò ã2Ò    Ò ãñ+ó such that Té(0) = Φ+(ñÒ ï) +

Pñ+ó
j=1 cjΦ(jÒ ï). Applying the projection P+

gives

P+Té(0) = Φ+(ñÒ ï) +
ñ+óX
j=1

cjΦ+(jÒ ï) 2 ‡qÒ

and since the sequences Φ+(jÒ ï), j = 1Ò 2Ò    Ò ñ + ó are linearly independent over ‡q,
it follows that cj = 0 for j 6= ñ and cñ = �1. Therefore, Té(0) = Φ+(ñÒ ï) � Φ(ñÒ ï) =
�Φ�(ñÒ ï). So by Lemma 9, (1 � ïW)�ñ� is (pÒ q)-bounded on S�.

It remains to be shown that (1 � ïW)�ñ� is (pÒ q)-bounded on S+ \ Sf f . Let S0+ =
S+\Sf f = S+\S00. Then S0+ = S[0Òñ)ý (1�ïW)ñS0+. We shall show that (1�ïW)�ñ� is
(pÒ q)-bounded on S[0Òñ) and on (1 � ïW)ñS0+, and that the projection of S0+ onto S[0Òñ)

along (1 � ïW)S0+ is (pÒ p)-bounded.
Since (1 � ïW)�ñ� é(k) 2 ‡q for k = 0Ò 1Ò    Ò ñ � 1, (1 � ïW)�ñ� is (pÒ q)-bounded on

S[0Òñ). For each u 2 S0+,

(1 � ïW)�ñ� (1 � ïW)ñu = (1 � ïW)�ñ+ (1 � ïW)ñu = u 2 ‡q(22)

By Lemma 7 (1 � ïW)�ñ+ is (pÒ q)-bounded on X+ = fx 2 ‡p
+ : (1 � ïW)�ñ+ x 2 ‡qg.

Equation (22) shows that (1 � ïW)ñS0+ � X+, and since (1 � ïW)�ñ� and (1 � ïW)�ñ+

agree on (1 � ïW)ñS0+, it follows that (1 � ïW)�ñ� is (pÒ q)-bounded on (1 � ïW)ñS0+.
Each x 2 S0+ uniquely determines polynomials g(ê) and h(ê) such that

x =
�
(1 � ïW)ñg(W) + h(W)

�
é(0)Ò

where deg h(ê) Ú ñ. Let E be the projection of S0+ onto S[0Òñ) along (1�ïW)ñS0+ defined
by

Ex = E
�
(1 � ïW)ñg(W) + h(W)

�
é(0) = h(W)é(0)

Suppose that E is not (pÒ p)-bounded on S0+. Then there are sequences x(n)Ò n =
1Ò 2Ò 3Ò    , in S0+ such that kEx(n)kp = 1 for each n, and kx(n)kp ! 0 as n ! 1. Since
S[0Òñ) is finite-dimensional we may assume, by taking a subsequence if necessary, that
Ex(n) ! y 2 S[0Òñ), where kykp = 1. Write x(n) =

�
(1 � ïW)ñg(n)(W) + h(n)(W)

�
é(0) and

y =
Pñ

j=1 cj(1 � ïW)ñ�jé(0). Then

k(1 � ïW)ñg(n)(W)é(0) + ykp ! 0 as n !1Ò(23)

and so g(n)(W)é(0) + (1 � ïW)�ñ+ y ! 0 pointwise as n !1.
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Now (1�ïW)�ñ+ y =
Pñ

j=1 cjΦ+(jÒ ï) 6= 0, and since the Φ+(jÒ ï), for j = 1Ò 2Ò    Ò ñ, are
linearly independent over ‡q, it follows that (1� ïW)�ñ+ y Û2 ‡q. So kg(n)(W)é(0)kq !1
as n !1. But g(n)(W)é(0) = (1�ïW)�ñ+ (1�ïW)ñg(n)(W)é(0), and since (1�ïW)�ñ+ is
(pÒ q)-bounded on (1 � ïW)ñS0+, k(1 �ïW)ñg(n)(W)é(0)kp !1. Since this contradicts
(23), we conclude that E is (pÒ p)-bounded and the proof of the theorem is complete.

EXAMPLE 3. Suppose that wn = 1Û2 for all n ½ 0 and wn = 2 for all n Ú 0, as in
Examples 1 and 2, let a(ê) = (1�3ê)(1�ê)(1�êÛ3) and let b(ê) = 16. Then the transfer
function r(ê) has poles at 1Û3, 1, and 3. Since r(ê) = 27(1� 3ê)�1 � 12(1� ê)�1 + (1 �
êÛ3)�1, the operator T defined by

T = 27(1 � 3W)�1
� � 12T0 + (1 � WÛ3)�1

+ Ò

where T0 is as given in (21), is a filter for

(1 � 3W)(1 � W)(1 � WÛ3)y = 16x(24)

which, for any 1 � p � q � 1, is (pÒ q)-bounded on S00. Since (1 � WÛ3)�1
+ and

(1 � 3W)�1
� have bounded extensions to ‡p, and since T0 is (pÒ q)-bounded on ‡p, T has

an extension to ‡p which is a two-sided (pÒ q)-bounded filter for (24).

REMARK. The conditions given in Theorem 5 for the existence of a (pÒ q)-stable filter
for (5) can be expressed in terms of the positions of the non-zero poles of the transfer
function. For 1 � p � q � 1 and (pÒ q) 6= (1Ò1), there is a (pÒ q)-stable filter for
(5) if and only if each non-zero pole ï�1 satisfies one of the inequalities jï�1j Ú L,
jï�1j Ù R, or R+ Ú jêj Ú L�. The first and second of these inequalities place ï�1 outside
the spectrum of W. However the third possibility, namely that R+ Ú jêj Ú L�, allows for
a (pÒ q)-stable filter even if the transfer function has poles inside the spectrum.
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