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Counting Rational Points
on Ruled Varieties

David McKinnon

Abstract. In this paper, we prove a general result computing the number of rational points of bounded

height on a projective variety V which is covered by lines. The main technical result used to achieve

this is an upper bound on the number of rational points of bounded height on a line. This upper

bound is such that it can be easily controlled as the line varies, and hence is used to sum the counting

functions of the lines which cover the original variety V .

1 Introduction

In algebraic geometry, the general notion of studying an algebraic variety by studying

families of curves which cover it is a very old and fruitful one. However, it has not

been much used to study the density of rational points on algebraic varieties, because

there has not been the necessary uniformity in the results for lower-dimensional va-

rieties and their counting functions.

Heath-Brown suggests in [HB1] that the technique could be quite widely used,

and gives an example of how to compute the counting function of a certain cubic

surface by studying families of cubic curves lying on it. He has recently improved

these results dramatically in an excellent paper [HB2], in which he derives a mul-

titude of uniform bounds on the number of rational points on algebraic varieties.

Broberg generalises these results still further in [Br].

In the spirit of Heath-Brown’s idea, we will describe in this paper a method for

obtaining upper bounds (and in many cases, asymptotic formulae) for the counting

functions for rational points with respect to height on projective varieties which are

covered by lines.

In particular, we consider an algebraic variety V defined over a number field K,

embedded in projective space Pn for some n, and consider the usual (multiplicative)

height function, not normalised to be independent of the field K. We define the

counting function thus:

NL(B) = card{P ∈ V (k) | H(P) ≤ B}

The counting function counts the number of K-rational points of V whose height is

at most B. (That this is well defined is an immediate consequence of a theorem of

Northcott—see for example [Vo], Proposition 1.2.9.(g).)
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If V is covered by a set L of lines, then we might hope to compute the counting

function of V by summing the respective counting functions for the lines in L:

NV (B) =

∑

L∈L

NL(B).

There are several excellent estimates for NL(B) in the literature. The first of these was

that of Schanuel [Sch], in which Schanuel calculates very precisely the asymptotics

of the counting function for P1 over a number field K. The chief drawback of this is

that the constant in the leading term depends on the specific embedding of the line

into Pn, so for our purposes we will need a more specific calculation.

This, too, has been done, by Thunder [Th], in which he calculates the asymptotics

of the counting function for an arbitrary line in Pn over an arbitrary number field.

Thunder makes clear that the leading term in the counting function for a line L is

cK

H(L)
B2,

where H(L) denotes the height of the Plücker point corresponding to L and cK is a

constant depending only on the number field K. However, for our purposes, we will

want strict control of how many points of small height lie on lines of large height, so

the presence of an unbounded error term of any kind (which is definitely necessary

in all theorems of the sort that Schanuel and Thunder sought) is fatal to our line of

reasoning.

Thus, we must prove yet another result about heights of rational points on lines,

one which allows such a strict control—this result is Theorem 2.1. To get this con-

trol, we sacrifice the quality of the constant cK , and we obtain only an upper bound,

rather than a lower one. However, Theorem 2.1 is still good enough to give exactly

the right exponent on B in the counting function for many algebraic varieties (see

Theorem 3.1), so our sacrifices are certainly outweighed by our gains.

Theorem 3.1 fits into the extensive literature which computes the counting func-

tions of algebraic varieties, which is too large to summarise in a satisfactory fashion

here. Suffice it to say that it is compatible with the conjectures of Batyrev and Manin,

and that a more comprehensive overview of the history of the subject can be found

in [Si].

2 Rational Points on Lines

Let K be an algebraic number field with ring of integers OK , and let L be a line in Pn
K .

We wish to compute an upper bound for the counting function

NL(B) = card{P ∈ L | H(P) ≤ B},

where H(P) denotes the standard height in projective space:

H([x0 : · · · : xn]) =

∏

v

max
i
{|xi |v},
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where v ranges over all (isomorphism classes of) valuations on K. Note that we do

not normalise the height to be independent of the field K.

Schanuel [Sch] derived some very precise asymptotics for NL(B):

NL(B) = cB2 + E(B)

where c is a specific constant and E(B) is an error term which is o(B2). Schanuel

computes both of these quite precisely in the case that L = P1
K .

However, this estimate will not suffice for our present purpose, since we wish to

control the set of points of small height on our lines as well. Furthermore, since our

lines will not generally be identical to P1, we wish to explore the dependence of c on

the height H(L) of the line L, which we define to be the height of the corresponding

Plücker point in the Grassmannian G(1, n). An asymptotic version of this has been

derived by Thunder [Th], but like Schanuel’s result, does not control the behaviour

of the points of small height.

Thus, say L corresponds to a 2-dimensional subspace of Kn+1, spanned by the

vectors (a0, . . . , an) and (b0, . . . , bn). We define:

H(L) = H
(

(a0dx0 + · · · + andxn) ∧ (b0dx0 + · · · + bndxn)
)

where the result of the wedge product is interpreted as a point in P
(n2+n)/2
K with ho-

mogeneous coordinates {dxi ∧ dx j} for i 6= j.

We can now state the main result of this section:

Theorem 2.1 The counting function for L satisfies the following inequalities:

NL(B) ≤
cK

H(L)
B2 + 1,

where cK is a positive real constant depending only on the field K.

Proof Our first step will be to identify the K-rational points of L with a set of lat-

tice points in a finite-dimensional Euclidean space. Let [x0 : · · · :xn] be a K-rational

point on L. By clearing denominators, we can ensure that xi ∈ OK for all i. In fact,

by choosing a fixed set J of representatives for the class group of K, we can ensure

that the coordinates xi generate an ideal in J. This representation for [x0 : · · · :xn] is

unique up to multiplication by a unit of OK .

Let M be the rank two OK -module M in Kn+1 consisting of all the vectors in L
whose coordinates all lie in OK . Let d = [K : Q], and denote by σ1, . . . , σr1

the embed-

dings of K into R, and by τ1, . . . , τr2
the embeddings of K into C, where d = r1 + 2r2.

Using these embeddings, we can embed M as a lattice of rank 2d in V = (Rn+1)r1 ⊕
(Cn+1)r2 . We will abuse notation by hereafter identifying M with its image in V .

Define:

|(a0, . . . , an)|i =

{

max j

(

|σi(a j)|
)

if i ≤ r1

max j

(

|τi−r1
(a j)|

2
)

if i > r1
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Thus, we can view [x0 : · · · :xn] as a point in M whose coordinates generate an ele-

ment of the fixed set J of ideals. Thus, there exists a positive constant c1 depending

only on the field K such that:

(1)
1

c1

∏

i

|(x0, . . . , xn)|i ≤ H([x0 : · · · :xn]) ≤ c1

∏

i

|(x0, . . . , xn)|i .

We also define:

(2) ‖(x0, . . . , xn)‖ = max
i
{|(x0, . . . , xn)|di

i },

where di is 1 or 1/2, depending on whether i corresponds to a real or complex em-

bedding, respectively.

If ε ∈ O∗
K is a unit, then we have the relation:

|ε(x0, . . . , xn)|i = |ε|i |(x0, . . . , xn)|i ,

where |ε|i represents the absolute value of ε with respect to the embedding σi (if i is

at most r1) or τ 2
i−r1

(if i is greater than r1). Thus, by the Dirichlet Unit Theorem (see

for example [Ne], Theorem 7.3), there is a positive real constant c2 depending only

on K such that for any element v = (v1, . . . , vr1+r2
) ∈ Rr1 ⊕ Cr2 , there exists a unit

ε ∈ O∗
K such that |εvi |

di ≤ c2|εv j |
d j for all i and j, where di and d j are as in (2).

Applying this to v = (|(x0, . . . , xn)|1, . . . , |(x0, . . . , xn)|r1+r2
) reveals that there is a

positive real constant c3 depending only on K such that through multiplication by a

suitable unit, we may assume that for all i and j:

|(x0, . . . , xn)|di

i ≤ c3|(x0, . . . , xn)|
d j

j .

Thus, by equations (1) and (2), we may find a positive real constant c4 depending

only on K such that for all K-rational points P ∈ L, we can find a representation

P = [x0 : · · · :xn] as above such that:

1

c4

H(P) ≤ ‖(x0, . . . , xn)‖d ≤ cK H(P)

Thus, when calculating an upper bound for NL(B), it will suffice to compute an upper

bound for the following function:

N ′
L(B) =

{

v = (x0, . . . , xn) ∈ M ′
∣

∣ ‖v‖ ≤ B
}

where M ′ denotes the set of vectors in M, counted modulo the action of K∗. In

particular, we have:

N ′
L(B) ≥ NL(B)d

We will use the following well known result (it follows, for example, from work of

Thunder [Th]):
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Lemma 2.2 There is a positive real constant α depending only on K such that the
determinant of M is equal to αH(L).

We therefore have reduced to showing that there is a positive real constant c, de-

pending only on the field K, such that:

N ′
L(B) ≤

c

det(M)
B2d + 1.

Thus, fix a positive real number B. If NL(B) ≤ 1, then the result is clear, so assume

that NL(B) ≥ 2. Then we can find two K-linearly independent lattice points P1 and

P2 in M with H(Pi) ≤ B, since K-linearly dependent points in M contribute only one

point to NL(B).

Choose a basis {α1, . . . , αd} for OK over Z, and consider the set:

{α1P1, . . . , αdP1, α1P2, . . . , αdP2}.

There is a positive real constant α depending only on K such that the height of α jPi

is at most αH(Pi).

For any real number H, consider the set

VM(H) =

{

v ∈ M ⊗ R
∣

∣ ‖v‖ ≤ H
}

.

This set is convex and centrally symmetric, so by the previous arguments, it follows

that the real simplex spanned by the vectors α jPi is contained in VM(αB). In particu-

lar, we conclude that every element of L with height at most B corresponds to a point

of M which is a vertex of a 2d-dimensional real simplex which is entirely contained

in VM(αB) and whose vertices are all elements of M.

The number of such simplexes is at most Vα2d

det(M)
B2d, where V is the volume of the

standard 2d-dimensional real simplex. Each such simplex has 2d + 1 vertices, so we

conclude that:

N ′
L(B) ≤

V (2d + 1)α2d

det(M)
B2d + 1

and hence the theorem follows.

3 Ruled Varieties

In the spirit of Heath-Brown’s remark in [HB1], Theorem 2.1 enables us to give easy

upper bounds for the counting functions for rational points on ruled varieties. For

instance, consider the following situation.

Let V ⊂ Pn be a projective variety defined over a number field K. Assume that

V admits a K-rational morphism φ : V → X to a projective variety X over K such

that the fibres of φ are lines. Then we can define a morphism ψ : X → G(1, n)

by ψ(P) = [φ−1(P)], where G(1, n) denotes the Grassmannian of lines in Pn. Let

D be the Plücker divisor on G(1, n)—that is, the pullback of O(1) via the Plücker

embedding of G(1, n). Note that ψ is injective, since φ is a morphism. We now have

the following result:
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Theorem 3.1 Using the notation of the previous paragraph, assume that the counting
function of X with respect to the divisor A = ψ∗(D) satisfies

NX(B) = card{P ∈ X(K) | HA(P) ≤ B} = O(Bε)

for some ε < 1
m

, where m satisfies that mL − φ∗A is ample for a hyperplane section L.
Then we have

(1/c)B2 ≤ NV (B) ≤ cB2

for some positive constant c.

Proof The first inequality is clear by Schanuel’s Theorem [Sch], since V contains at

least one K-rational line. Thus, we turn our attention to the second inequality. Write

H for the usual height function in Pn, and let F = φ∗A. Via the height machine

(see for example [Vo], Proposition 1.2.9), we obtain a constant α such that for all

K-rational points P of V

(3) HF(P) ≤ αH(P)m.

We can now calculate as follows:

NV (B) ≤
∑

P∈X(K),HA(P)≤Bm

αNφ−1(P)(B)

≤
∑

P∈X(K),HA(P)≤Bm

( cK

HA(P)
B2 + 1

)

,

where this last inequality is from Theorem 2.1 and the fact that H
(

φ−1(P)
)

=

HA(P). The hypothesis of the theorem now easily implies that this sum is asymp-

totically less than cB2 for a positive constant c, and the theorem is proven.

Remarks In particular, Theorem 3.1 applies to all (relatively) minimal ruled surfaces

(see section V.2 of [Ha] for a discussion of such surfaces). (This is not quite true,

since the two cases of P1 × P1 and P2 blown up at a single point do not satisfy the

hypotheses of Theorem 3.1, but they can be handled in a similar manner, or indeed

by any number of elementary approaches as well.)

The arithmetic of relatively minimal ruled surfaces over a rational base curve has

been dealt with admirably in several places, including most notably in the very gen-

eral treatment of Batyrev and Tschinkel [BT] in the context of toric varieties, and in

a more specific and explicit way by Billard [Bi]. Note that in both these works, the

authors not only obtain the exponent in the leading term of the counting function,

but they also compute the constant in the leading term and compute error terms,

neither of which we are able to do here.

Finally, we remark that the results of Theorem 3.1 are consistent with the conjec-

tures of Batyrev and Manin [BM].

Theorem 2.1 can in principle be applied to any variety which is a union of lines

in Pn, by the simple expedient of summing the counting functions of the individual
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lines, and controlling the point of smallest height on each line. Such an analysis

proceeds trivially for Pn, for example, which is the union of a pencil of lines through

a fixed point, and the exponent on the upper bound thereby obtained is sharp (n+1).

Similar analyses can be done for cones—in both cases, the point of smallest height on

(almost all) lines is the basepoint of the linear system which sweeps out the variety.

One might hope to obtain analogues of Theorem 2.1 for curves other than lines.

Indeed, Heath-Brown accomplishes this in [HB1] with Theorems 2 and 3 (the lat-

ter is conditional on a certain hypothesis on the ranks of elliptic curves) and espe-

cially Theorem 5 in [HB2], and Broberg with Corollary 1 in [Br]. However, the chief

advantage of Theorem 2.1 is that the asymptotic growth of the counting function

shrinks as the height of the line grows, making it much easier to sum counting func-

tions over infinitely many lines. It would be interesting to try to obtain analogues of

Theorem 2.1 for curves of higher degree.
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algébriques. Math. Ann. 286(1990), 27–43.

[BT] V. Batyrev and Yu. Tschinkel, Height zeta functions of toric varieties. J. Math. Sci. 82(1996),
3220–3239.
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[HB2] , The density of rational points on curves and surfaces. Ann. of Math. (2) 155(2002),

553–598.
[Ne] J. Neukirch, Algebraic Number Theory. Springer-Verlag, New York, 1999.
[Sch] S. H. Schanuel, Heights in number fields. Bull. Soc. Math. France 107(1979), 433–449.
[Si] J. Silverman, Counting Integer and Rational Points on Varieties. Columbia University Number

Theory Seminar, New York, 1992, Astérisque 228(1995), 223–236.
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