MONTE CARLO SIMULATIONS OF THE 2+1 DIMENSIONAL FOKKER-PLANCK EQUATION: SPHERICAL STAR CLUSTERS CONTAINING MASSIVE, CENTRAL BLACK HOLES

> Stuart L. Shapiro Cornell University Center for Radiophysics and Space Research Space Sciences Building Ithaca, New York 14853

ABSTRACT. The dynamical behavior of a relaxed star cluster containing a massive, central black hole poses a challenging problem for the theorist and intriguing possibilities for the observer. The historical development of the subject is sketched and the salient features of the physical solution and its observational consequences are summarized.

The full dynamical problem of a relaxed, self-gravitating, large N-body system containing a massive central black hole has all the necessary ingredients to excite the most dispassionate many-body. computational physicist: it is a time-dependent, multidimensional, nonlinear problem which must be solved over widely disparate length and time scales simultaneously. The problem has been tackled at various levels of approximation over the years. A new 2+1 dimensional Monte Carlo simulation code has been developed in appreciable generality to solve the time-dependent Fokker-Planck equation in E-J space for this problem. The code incorporates such features as (1) a particle "cloning and renormalization" scheme to provide a statistically reliable population of test particles in low density regions of phase space and (2) a time-step "adjustment" algorithm to ensure integration on local relaxation timescales without having to follow typical particles on orbital trajectories. However, critical regions in phase space (e.g. disruption "loss-cone" trajectories) can still be followed on orbital timescales. Numerical results obtained with this Monte Carlo scheme for the dynamical structure and evolution of globular star clusters and dense galactic nuclei containing massive black holes are reviewed.

Recent dynamical integrations of the Einstein field equations for spherical, collisionless (Vlasov) systems in General Relativity suggest a possible origin for the supermassive black holes believed to power quasars and active galactic nuclei. This scenario is discussed briefly.

373

J. Goodman and P. Hut (eds.), Dynamics of Star Clusters, 373-413.  $\odot$  1985 by the IAU.

## I. INTRODUCTION

Several years ago we embarked on a major program at Cornell to set up and solve on the computer the Fokker-Planck equation in 2+1 dimensional phase space. The purpose of this exploration was to study the structure and evolution of large N-body, self-gravitating, spherical stellar systems, like globular clusters and dense galactic nuclei. We were particularly intrigued by the possibility of massive central black holes residing in such systems and this aspect of the problem served as a focus for much of our work.

As it has developed, the study of the Fokker-Planck equation has become just one, albeit essential, component of a much broader effort at Cornell in large-scale computational astrophysics and relativity. Our current emphasis is on solving the general Boltzmann equation,

$$\frac{\mathrm{Df}}{\mathrm{Dt}} = \left(\frac{\partial f}{\partial t}\right)_{\mathrm{coll}}, \qquad (1)$$

in many different physical regimes where gravity provides the dominant long-range interaction.

Our motivation for tackling the Boltzmann equation is both physical and computational. Physically, this equation encompasses a huge range of interesting, many-body phenomena. Computationally, the Boltzmann equation provides a nontrivial, multidimensional arena to explore nonlinear dynamics on the computer. We shall elaborate on these points below with reference to the specific star cluster problem that is the subject of this review.

Some of our recent computational work revolving around eqn. (1) is summarized in Table 1. This table is a vivid illustration of the fact that an enormous and diverse range of gravitation physics is embodied in eqn. (1). This review will focus on the Fokker-Planck regime of eqn. (1). In this limit, the relaxation timescale of the system under investigation,  $t_r$ , greatly exceeds the dynamical or crossing timescale,  $t_d$ , but is shorter than characteristic integration timescale of interest, t. In stellar dynamics, t is usually the age of the stellar system and, typically,  $t \sim H^{-1} \sim 10^{10}$  yrs, where H is Hubble's constant. We will, however, also provide a "sneak preview" of some recent advances we have made in solving the collisionless Boltzmann (i.e. Vlasov) equation for spherical systems in full General Relativity. For such cases we set the collision terms  $(\partial f/\partial t)_{coll}$  equal to zero in eqn. (1).

As we shall shortly describe, it is the Fokker-Planck regime which is relevant to addressing the question, "What is the dynamical <u>influ-</u> <u>ence</u> of a massive black hole in a relaxed stellar system?". However, we shall point out later that the relativistic Vlasov regime, may, following the Fokker-Planck epoch, hold the clue to answering the question, "What is the <u>origin</u> of the supermassive black holes believed to reside in quasars and active galactic nuclei (AGNs)?".

Most of the large-scale numerical work at Cornell is currently performed on Floating Point Systems (FPS) 190L or 164 Array Processors,

hosted by an IBM 3081 mainframe computer. For a discussion of the merits of this machine, and an overview of some of the computational work summarized in Table 1 and performed on these processors see Farouki, Shapiro and Teukolsky (1983). For a discussion of the more recent work on the Vlasov equation in General Relativity, see Shapiro and Teukolsky (1985 a,b,c).

## TABLE 1

## CORNELL BOLTZMANN EQUATION COMPUTATIONS

| REGIME :                            | Vlasov<br>(Collisionless) |                                                        | Fokker – Planck<br>(Secularly<br>Collisional)                | Fluíd<br>(Collision-Dominated)     |                        |  |
|-------------------------------------|---------------------------|--------------------------------------------------------|--------------------------------------------------------------|------------------------------------|------------------------|--|
| TIME - SCALE<br>ORDERING:           | $t_r \gg t \gg t_d$       |                                                        | t ≫t <sub>r</sub> ≫t <sub>d</sub>                            | t » t <sub>d</sub> »t <sub>r</sub> |                        |  |
| APPLICATIONS:                       | Galax<br>Galax<br>Dynar   | y and<br>y Cluster<br>nics                             | Globular Cluster<br>and Dense<br>Galactic Nuclei<br>Dynamics | Hydrodynamics                      |                        |  |
| GRAVITY                             | Newtonian                 | General<br>Relativity                                  | Newtonian                                                    | Newtonian                          | General<br>Relativity  |  |
| SPATIAL<br>SYMMETRY                 | Arbitrary                 | Spherical                                              | Spherical                                                    | Axisymmetric                       | Spherical              |  |
| COMPUTATIONAL<br>DIMENSIONS         | 2K+1<br>(K=3)             | 2K+1<br>(K=1)                                          | 2K + 1<br>(K = 1 )                                           | K+1<br>(K=2)                       | K + 1<br>(K=1)         |  |
| GOVERNING<br>NONLINEAR<br>EQUATIONS | ODE's                     | ODE's + PDE's                                          | PDE's                                                        | PDE's                              | PDE's                  |  |
| TECHNIQUE                           | Particle<br>Simulations   | Particle<br>Simulations<br>+<br>Finite<br>Differencing | Monte Carlo<br>Particle<br>Simulations                       | Finite<br>Differencing             | Finite<br>Differencing |  |

## II. 3-FOLD MOTIVATION FOR TACKLING THE PROBLEM

Studying the dynamical structure and evolution of a relaxed stellar system (e.g. a globular cluster or dense galactic nucleus) containing a massive black hole is a pursuit with a 3-fold motivation, as we shall now discuss.

## a) Theoretical Motivation

The formation of a supermassive black hole is one of at least two plausible outcomes of stellar core collapse. Both possibilities were enumerated by Spitzer (1975) almost a decade ago.

In the "point-mass scenario", homological core collapse (i.e. the 'gravothermal catastrophe') terminates with the formation of hard binaries near the cluster center. Further gravitational encounters between these binaries and neighboring single stars and binaries cause the binaries to become more tightly bound at the expense of the ambient core. In fact, some stars may be ejected from the core altogether by this binary "heating" mechanism. This scenario has been the focus of considerable attention of late; it is the subject of most of the theoretical papers in this volume.

In the alternative "finite-size star scenario", core collapse ultimately leads to star collisions and coalescence in the core and to the run-away build up of one (or more) supermassive star. This shortlived supermassive star ultimately collapses to form a supermassive black hole at the cluster center. Not surprisingly, the details of the all-important collision-coalescence phase of this scenario are subtle and yet to be fully resolved. [See Lightman and Shapiro (1978) for a discussion and references.] However, as we shall discuss below, given the presence of a massive, central black hole, the dynamical fate of the cluster which evolves under its influence has been worked out, at least for suitably approximate circumstances. So for at least one of the two theoretical scenarios - that involving a supermassive black hole - the answer to the question, "What lies beyond core collapse?" can be concretely answered.

## b) Observational Motivation

The presence of a supermassive black hole has been invoked often to explain diverse forms of 'anomalous' activity observed at the centers of various stellar systems. Table 2 offers a glimpse of this trend.

c) Computational Motivation

A massive black hole in a relaxed star cluster provides a unique cosmic setting in which to solve the 2+1-dimensional Fokker-Planck equation. The problem is highly nonlinear, multidimensional and is characterized by widely varying length scales. These attributes are particularly appealing to a computational physicist. Thus, for all its deceptive simplicity ("merely" Newton's laws of motion in a weak gravitational field for N point-masses), the problem of a massive black hole in a

relaxed stellar system poses an exciting and difficult computational challenge.

In recent years, "computational field theory on a space-time lattice" has become a booming enterprise. This activity is pursued by many-body theorists in several branches of physics, including solidstate, particle, plasma, astrophysics and relativity. The Fokker-Planck problem discussed in this paper falls into this broad category of computational problems: the 'field' here is Newtonian gravity and the 'space' is E-J phase space.

Progress achieved in solving a nonlinear problem in physics often transcends the specific discipline in which the problem was originally formulated and the specific application initially under investigation. It was with this notion in mind that the Cornell group initiated its study of the massive black hole problem.

| Phenomenon                                                   | Examples                                     | References                                                   |
|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| optical<br>light<br>'cusps'                                  | NGC 6624, 6681 and 7078 (M15)<br>M87         | Djorgovski and King (1984),<br>Young et al. 1978             |
| star count<br>'excesses'                                     | NGC 1851                                     | Bahcall et al. (1977)                                        |
| velocity<br>dispersion<br>rise                               | M87                                          | Sargent et al. (1978)                                        |
| X-ray<br>sources                                             | X-ray globular clusters;<br>AGNs and quasars | Grindlay (1977);<br>Gursky and Schwartz (1977)               |
| broad<br>emission<br>lines and<br>rapid time<br>variability  | AGNs and quasars;<br>(e.g. NGC 4151)         | Strittmatter and<br>Williams (1976);<br>Ulrich et al. (1984) |
| energetic<br>activity:<br>high lumi-<br>nosities and<br>jets | AGNs and quasars                             | Rees (1984)                                                  |

| TABLE 2 | OBSERVATIONAL | BASIS | FOR | SUPERMASSIVE | BLACK | HOLES | IN | STELLAR |
|---------|---------------|-------|-----|--------------|-------|-------|----|---------|
|         | SYSTEMS       |       |     |              |       |       |    |         |

## III. HISTORY OF THE PROBLEM

Given the many motivating factors outlined in the previous section for considering the influence of a massive black hole in a star cluster, it is not surprising that an enormous amount of work has been done on this problem by a very large number of researchers over the years. Indeed, virtually every dynamicist has thought about this issue at one time or another and a good many have published on the subject!

With this in mind, it is amusing to trace the historical development of the topic. A light-hearted version of such a review is given in Box 1. Please note that this capsule summary of some of the highlights in the formulation and analysis of the problem is both highly personalized and very incomplete. Other authors may rightfully have an entirely different perspective on the development of the problem. It is also hoped the reader will excuse this author for dramatizing the Cornell group's contributions during this brief stroll down Memory Lane. They are mentioned mainly to show the extent of the group's interest and involvement in the subject and not to attach undue significance to our work.

## IV. FORMULATION OF THE IDEALIZED PROBLEM

In its simplest version, the problem focuses on the steady-state distribution and tidal disruption rate of bound stars near a central black hole M embedded in a <u>static</u> cluster. In this version, one makes the following basic assumptions (Bahcall and Wolf 1976; Lightman and Shapiro 1977):

1. A massive hole, M, is situated at the center of a spherical cluster containing a very large number, N, of stars in the core.

2. All stars have equal mass m « M and radius r.

3. The mass, M, is significantly less than the mass of the cluster core but much larger than the total mass of (bound) stars inside the accretion or 'cusp' radius  $r_a$ , where

$$r_{a} \sim \frac{GM}{\langle v^{2} \rangle} \sim 4 \times 10^{-2} \text{ pc} \left(\frac{\langle v^{2} \rangle}{100 \text{ km}^{2}/\text{s}^{2}}\right)^{-1} M_{3},$$
 (2)

Here  $\langle v^2 \rangle$  is the mean squared velocity dispersion in the core and  $M_3$   $\equiv$   $M/10^3~M_{\odot}.$ 

4. Conditions in the central core of the cluster remain constant in time, so that a steady-state can be achieved near the black hole. The ambient (unbound) core stars far outside  $r_a$  satisfy an isothermal distribution.

5. A star is tidally disrupted and removed whenever it passes within a distance  $\mathbf{r}_{\rm p}$  of M, where

-

| Box 1                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| THE DYNAM<br>BLACK HO                                                                    | ICAL ANALYSIS OF MASSIVE<br>DLES IN STAR CLUSTERS :                                                                                                                                                                                                                                                                                                                      |                                                                                        |  |  |  |
| SOME "GOLDEN MOMENTS"                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |  |  |  |
| AUTHOR (S)                                                                               | CONTRIBUTION (S)                                                                                                                                                                                                                                                                                                                                                         | REMARKS                                                                                |  |  |  |
| EINSTEIN (1939)                                                                          | Shows impossibility of 'Schwarzschild<br>singularities' in static spherically symmetric<br>collisionless clusters of circularly orbiting<br>particles                                                                                                                                                                                                                    | Relativistic<br>stellar dynamics<br>is born !                                          |  |  |  |
| ZEL'DOVICH and PODURETS (1965)<br>IPSER (1969)<br>FACKERELL , IPSER and<br>THORNE (1969) | Suggest how 'gravothermal catastrophe'<br>and collisions might drive a cluster<br>relativistically unstable, leading to<br>catastrophic collapse and supermassive<br>BH formation                                                                                                                                                                                        | Clusters of<br>little BH's<br>can produce a<br>big BH                                  |  |  |  |
| SPITZER (1971, 1975)<br>LYNDEN-BELL (1967,1969)<br>COLGATE (1967)<br>SANDERS (1970)      | Suggest, alternatively, how 'gravothermal<br>catastrophe' might drive star collisions and<br>coalescence, leading to buildup of<br>supermassive stars and possibly, super-<br>massive BH's                                                                                                                                                                               | Analysis of late<br>core collapse<br>forces abandon-<br>ment of point-<br>mass approx. |  |  |  |
| WYLLER (1970)<br>WOLFE and BURBIDGE (1970)<br>TRURAN and CAMERON (1972)                  | Suggest that a supermassive BH in a star<br>cluster might be uncovered by enhanced<br>star density around it                                                                                                                                                                                                                                                             | The stage is set!                                                                      |  |  |  |
| PEEBLES (1972)(a,b)                                                                      | Insightful formulation of BH in glob cluster<br>problem:<br>(1) delineates role of tidal disruption of<br>stars by BH- inword $\mathcal{F}$ , outward $\mathcal{F}$<br>(2) suggests possibility of observable<br>light 'cusps'<br>(3) suggests nonthermal power-law 'cusp'<br>distribution function :<br>$f(E) \propto  E ^p$<br>$\Rightarrow n(r) \propto r^{-(p+3/2)}$ | Argues for<br>p= 3/4<br>whereas<br>p= 1/4 is more<br>appropriate                       |  |  |  |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |  |  |  |

| Box 1 (cont.)                                                                                              |                                                                                                                                                                         |                                                               |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| AUTHOR (S)                                                                                                 | CONTRIBUTION (S)                                                                                                                                                        | REMARKS                                                       |  |  |
| BAHCALL and OSTRIKER (1975)<br>SILK and ARONS (1975)                                                       | Suggest supermassive BH (M/M $_{0} \sim 10^{2}$ – $10^{3})$ as the source of X-rays in globular clusters                                                                | The search<br>is on!                                          |  |  |
| BAHCALL and WOLF (1976,1977)                                                                               | Careful 1D FP calculation of f(E) and n(r):<br>p= ¼; formulate detectability criteria;<br>estimate rms radial offset of BH from center                                  | "The cusp<br>unveiled"                                        |  |  |
| ZEL'DOVICH and NOVIKOV (1971)<br>HILLS (1975)                                                              | Stellar capture rate by BH's in galaxies is estimated                                                                                                                   |                                                               |  |  |
| FRANK and REES (1976)<br>LIGHTMAN and SHAPIRO (1976 a,b)                                                   | Stellar capture rate by BH's in glob clusters is estimated ; approximate 2D FP determination of $f(E,J)$ , $n(r)$ , $\mathcal{F}$ and $\mathcal{G}$ , including scaling | The BH<br>appetite is<br>assessed                             |  |  |
| SHAPIRO (1977)                                                                                             | Homological model for time-dependent<br>evolution of cluster with BH : core collapse<br>halted and reversed; eventual cluster disso-<br>lution in Galactic tudal field. | 'Born again'<br>clusters                                      |  |  |
| MARCHANT and SHAPIRO (1978)<br>COHN and KULSRUD (1978)                                                     | Careful 2D FP calculation of $f(E,J)$ , $n(r)$ $\mathscr{F}$ and $\mathcal{F}$                                                                                          | Back-of-envelopes<br>replaced by large-<br>scale computations |  |  |
| GRINDLAY (1981,1983)<br>GRINDLAY et.al. (1984)                                                             | Precise (1") positions of 8 cluster X-ray sources are measured by the Einstein Observatory : their radial offset argues against massive $(M/M_O \ge 3)$ BH's            | " The saddest<br>words of<br>Mice and Men"                    |  |  |
| LIGHTMAN, PRESS and<br>ODENWALD (1978)<br>FALL and MALKAN (1978)<br>LIGHTMAN (1982)<br>COHN and HUT (1984) | Preliminary analysis of cluster data for<br>post – collapse behavior                                                                                                    | Dynamical<br>model builders<br>take note !                    |  |  |

| AUTHOR (S)                                                                                                                                  |                                                                                                          | CONTRIBUTION (S)                                                                                               | REMARKS                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| ZEL'DOVICH and N<br>HILLS (1975)<br>REES (1977, 1976<br>YOUNG, SHIELDS<br>FRANK (1978)<br>McMILLAN, LIGHT<br>COHN (1982)<br>DUNCAN and SHAI | OVIKOV (1971)<br>and WHEELER(1977)<br>[MAN and<br>PIRO (1983)                                            | Application of theory to dense galactic nuclei :<br>models for quasars and AGN's                               | "BH's are<br>where you<br>find them"<br>(Peebles 1972a) |  |
| see,e.g ,                                                                                                                                   | Other Contribut<br>IPSER (1978)<br>BISNOVATYI — KO<br>DOKUCHAYEV and<br>LIN and TREMAI<br>NORMAN and SIL | ors: Caveats and Controversies<br>GAN, CHURAYEV and KOLOSOV (1982)<br>OZERNOI (1977)<br>NE (1980)<br>-K (1982) |                                                         |  |

$$r_{\rm D} \sim r (M/m)^{1/3} \sim 2 \times 10 \ pc \left(\frac{r}{R_{\rm o}}\right) \left(\frac{m}{M_{\rm o}}\right)^{-1/3} M_{\rm s}^{1/3}$$
, (3)

Immediate consequences of the assumption of large N are the following familiar results:

1a. Only a negligible fraction of the stars in the cluster are in binary systems (Spitzer and Hart 1971).

1b. The predominant relaxation process between stars is via repeated, two-body, small-angle scattering in the hole's  $r^{-1}$  "Coulomb" potential.

1c. The dynamical timescale  $t_d$  is significantly shorter than the relaxation timescale  $t_r$  everywhere. Thus, by Jean's Theorem, the distribution function depends only on E (energy) and J (magnitude of angular momentum): f = f(E, J).

The goal, then, is to calculate f(F,J). Given f(F,J) we can then determine the steady-state density profile n(r) and rms velocity profile  $v_{rms}(r)$  of bound stars in the cusp. In addition, we want to determine the rate of tidal disruption of stars by the hole, F, which

in steady-state is precisely equal to the net inward drift rate of stars from the isothermal core into the cusp. Finally, we need to determine the corresponding cluster heating rate, E, due to the destruction of bound stars at  $r_{\rm p}$  by the hole.

## V. APPROXIMATE SOLUTION OF THE IDEALIZED PROBLEM

## a) Simple Scaling Argument

Following Shapiro and Lightman (1976) we present here a simple scaling argument for the form of the stellar distribution inside the cusp. The derivation focuses on bound stars well inside  $r_a$  but far outside  $r_D$ . As Peebles (1972 a,b) originally pointed out, these stars cannot maintain thermal equilibrium with the ambient core stars, due to disruption at  $r_D$ . On the other hand, stars deep in the cusp but far outside  $r_D$  should presumably be moving nearly isotropically, so it is reasonable to look for a scale-free, isotropic, <u>power-law</u> distribution function of the form

$$f(E) \propto |E|^{p} \quad . \tag{4}$$

Now from eqn. (4) and the assumptions listed in Section IV it immediately follows that the mean energy per unit mass of star at r is given by

$$\mathbf{E} \sim - \mathbf{G}\mathbf{M}/\mathbf{r}$$
, (5)

the stellar velocity dispersion is given by

$$\langle v^2 \rangle \sim GM/r$$
, (6)

and the stellar density profile is given by

$$n(r) \propto r^{-(p + 3/2)}$$
, (7)

so the problem of determining the stellar distribution reduces to finding p.

Focus, then, on stars in a typical spherical shell between r and 2r in the cusp. The net inward flux of stars is then

$$F \sim \frac{n(r) r^3}{t_F(r)} = \text{constant, independent of } r$$
, (8)

where  $t_F$  is the net diffusion timescale for inward star transport in the cusp. The net outward flux of energy is

MONTE-CARLO SIMULATIONS OF THE 2+1 D FOKKER-PLANCK EQUATION

$$E \sim \frac{\mathbf{n}(\mathbf{r}) \mathbf{r}^{3} \mathbf{E}}{\mathbf{t}_{E}(\mathbf{r})} = \text{constant, independent of } \mathbf{r}$$
, (9)

where  $t_E$  is the net diffusion timescale for outward energy transport. In steady-state F and E are constant, independent of radius. Now eqns. (8) and (9) immediately relate  $t_F$  and  $t_F$ :

$$t_E \propto t_F r^{-1} . \tag{10}$$

Thus  $t_{\rm F}$  is shorter than  $t_{\rm F}$  because for each star moving <u>inward</u> from 2r to r there is almost simultaneously a corresponding star moving <u>outward</u> from r to 2r, so that the <u>net</u> star flux is small. However, at  $r_{\rm D}$  there are no outgoing stars so the net diffusion timescales for star and energy transport are comparable there. This fact determines the proportionality constant in eqn. (2):

$$\mathbf{t}_{\mathrm{F}}(\mathbf{r}) \sim (\mathbf{r}_{\mathrm{D}}/\mathbf{r}) \ \mathbf{t}_{\mathrm{F}}(\mathbf{r}) \tag{11}$$

Now no quantity can be transported in a relaxed cluster on a timescale shorter than the local relaxation timescale,

$$t_r \sim \frac{\langle v^2 \rangle^{3/2}}{G^2 m^2 n^2}$$
 (12)

So setting  $t_F(r)$  (<  $t_F(r)$  for  $r > r_D$ ) equal to  $t_r$  everywhere and using eqns. (5), (6) and (12) in eqn. (9) yields

$$n(r) \propto r^{-7/4}$$
,  $r_a \gg r \gg r_D$  (13)

or, from eqn. (6),

$$p = 1/4$$
 . (14)

This result was first derived by Bahcall and Wolf (1976) (hereafter BW) from a detailed integration of the 1-dimensional Fokker-Planck equation for f(E). The density profile in a cluster containing a black hole is shown schematically in Fig. 1.

## b) Some Immediate Observational Consequences

(1) <u>Black Hole Mass Limits</u>. Upon deriving the bound star distribution function, BW showed how it could be applied observationally to set an upper limit to the mass of any central black hole in a star cluster. To detect a massive black hole it is necessary to resolve the cusp region  $r \leq r_a$ . If the cluster is located at distance d from the earth, with the cusp subtending an angle  $\theta_a$ , we have from eqn. (2)



Figure 1: The stellar density n(r) as a function of radius r in an isolated spherical cluster containing a massive, central black hole. In the absence of a black hole, the isothermal core extends from r=0 to the core radius at r=r<sub>c</sub> and there is no cusp (dotted line in I). In the presence of the galactic tidal field, the density falls sharply at the galactic tidal radius  $r_{T}$  (dotted line in III). From Shapiro and Lightman (1976). MONTE-CARLO SIMULATIONS OF THE 2+1 D FOKKER-PLANCK EQUATION

$$\theta_{a} \sim 1'' \left(\frac{d}{10 \text{ kpc}}\right)^{-1} \left(\frac{\langle v^{2} \rangle}{100 \text{ km}^{2}/\text{s}^{2}}\right)^{-1} M_{3},$$
 (15)

which must be compared with the "seeing" disk (i.e. resolution limit)  $\theta_{s}$  of an optical telescope:

 $\theta_{a} \sim 1^{"}$  for (optimal) ground based observations,

Now the conservative criterion established by BW for believing that a black hole is present in a cluster (i.e. the number of stars within a projected angular radius  $\theta_{s}$  from the cluster center is at least F times the unperturbed value for the core, where F ~ 3-10) yields for the minimum detectable black hole mass the value

$$^{\mathrm{M}}(\mathrm{detectable}) \stackrel{\sim}{\sim} 5 \times 10^{3} \mathrm{M}_{\Theta} \left(\frac{\mathrm{F}}{\mathrm{10}}\right)^{4/7} \left(\frac{\mathrm{^{\theta}c}}{\mathrm{^{5}"}}\right)^{3/7} \left(\frac{\mathrm{< v}^{2} \mathrm{>}}{\mathrm{100 \ \mathrm{km}^{2}/\mathrm{s}^{2}}}\right) \quad (17)$$

where  $\theta_c$  is the angular radius of the cluster core.

Evidently, ground based observations are only sensitive to black hole masses greater than ~  $5 \times 10^3$  M<sub>☉</sub> while future ST observations can detect somewhat smaller masses [see the article by Bahcall in this Proceedings for further discussions of planned ST observations of central cusps in clusters and the associated complications. Application of eqn. (17) to ground based optical observations of the central density profiles in several X-ray globular clusters indicated central black hole masses (if present) less than ~  $10^4$  M<sub>e</sub>. This conclusion is generally consistent with the results of Bahcall et al. (1975) for NGC 7078 (M15), of Bahcall (1976) for NGC 6624 and of Bahcall and Hausman (1976) for NGC 6440 and 6441.

(2) Cusp Profiles. In principle, the observation of an optical light (projected) surface density profile increasing like

$$\sigma (\text{stars pc}^{-2}) \sim r^{-(p+1/2)} \sim r^{-3/4}$$
 (18)

toward the center of a relaxed cluster would provide strong evidence for the presence of a central black hole. In practice, however, this observational test is almost impossible to apply. The difficulty stems from the fact that, observationally, it is not easy to distinguish between a black hole induced cusp and, say, an isothermal profile  $(\sigma$  ~  $r^{-1})$  predicted by several theories for the post-collapse halo of a cluster see Inagaki and Lynden-Bell 1983, Heggie 1983, Goodman 1983, and papers in this Proceedings for theoretical discussions of postcollapse clusters without black holes; see Djorgovski and King 1984 and papers by King and Bahcall in this Proceedings for discussions of the observational difficulties .

https://doi.org/10.1017/S0074180900147618 Published online by Cambridge University Press

A more distinguishing characteristic of cusps around black holes is the velocity dispersion profile [eqn. (6)]. The Keplerean rise in  $\langle v^2 \rangle$  with decreasing r discriminates between black hole cusps and isothermal halos, where  $\langle v^2 \rangle \sim \text{constant}$ . Unfortunately, velocity profiles are more difficult to measure than light profiles.

(3) <u>Black Hole Cluster Locations</u>. BW and Lightman (1976) showed that in a relaxed cluster core the projected radial offset,  $R_x$ , from the core center of a heavy mass  $M_x$  satisfies

$$\langle R_{x} \rangle \sim 0.7 r_{c} q^{-1/2} , q \gg 1$$
 (19)

where  $q = M_X/m$  is the ratio of the heavy mass to the mean stellar mass m in the core and  $r_c$  is the core radius. This result has been applied statistically by Grindlay et al. (1984) to eight X-ray globular clusters for which precise (1") positions of the X-ray sources have been measured with the Einstein X-ray Observatory. From the rather large offset of these sources from their cluster centers, the X-ray source masses were determined to be in the range 0.9 - 2M<sub>0</sub>. One thus concludes rather definitively that the observed globular cluster X-ray sources are <u>not</u> supermassive black holes [see Grindlay, this volume, for further discussion]. Note that this conclusion by no means rules out the possibility that a massive black hole exists at the centers of these clusters - only that the observed X-ray sources are not massive black holes.

## c) The Disruption "Loss-Cone"

Any discussion of the distribution of stars around a black hole which, like the one in Section V.a, presumes an isotropic stellar velocity profile everywhere, f = f(E), cannot be entirely correct. For consider, say, those highly eccentric stars which possess sufficiently low J that, at pericenter, they wander inside  $r_D$ . These stars are disrupted inside  $r_D$  and are immediately removed from the system. Clearly, then, the stellar distribution function must depend on J as well as E, as originally emphasized by Frank and Rees (1976) and Lightman and Shapiro (1977).

To appreciate the two-dimensional (anisotropic) character of the problem, consider the distribution of bound stars in velocity space as depicted in Fig. 2. Focus on stars of a given energy E at radius  $r_E$ . All stars of energy E move with the same speed  $v_E = (GM/r_E)^{1/2}$  at  $r_E$ ; only the directions of their velocity vectors vary. If their instantaneous positions in velocity space are marked by the location of the tips of their velocity vectors, then these stars will be found on the surface of a sphere in velocity space, as shown. At this radius stars with maximal angular momentum  $J_{max}(E)$  move in a circular orbit about the hole. Stars with critical angular momentum  $J_{min}(E)$  just graze the tidal disruption radius  $r_D$  at pericenter. As is clear from the figure,



Figure 2: (a) Velocity distribution for ingoing stars with fixed energy E, radius  $r_E \equiv GM/2|E|$ , and speed  $v = (2|E|)^{1/2}$ . Stars with angular momentum J in the range  $J_{min}(E) \ll J \leq J_{max}(E)$  are distributed nearly uniformly on the velocity sphere, where  $J_{min}(E) \equiv [2(E + GM/r_t)]^{1/2}$  rt and  $J_{max}(E) \equiv GM/(2|E|)^{1/2}$ . Stars scattered into the loss cone with  $J \leq J_{min}(E)$  may be removed from the system in an orbital period. (b) The velocity sphere viewed from below. The quantity  $j_2$ represents the dispersion in  $\Delta J$  suffered by a star in one orbital period due to stellar encounters;  $q(E) \equiv j_2^2/J_{min}^2(E)$ . The phase space density of stars outside the loss cone falls rapidly with J as  $J + J_{min}$ when  $q \ll 1$  (the "diffusion" limit), but the density remains nearly uniform when  $q \gg 1$  (the "pinhole" limit). In each dynamical time only stars in the ring  $J_{min} \leq J \leq J_{min} + j_2$  may enter the loss cone. From Lightman and Shapiro (1977).

S. L. SHAPIRO

the region  $J < J_{\min}(E)$  maps out a "loss-cone" at the south pole in velocity space: stars inside this cone at pericenter are destroyed within one orbital period.

Far from the disruption loss-cone, those stars with  $J_{max} \ge J \gg J_{min}$  are barely affected by the cone and distribute themselves nearly isotropically on the velocity sphere. However, near and inside the loss-cone, the stellar distribution is depleted. This depletion in velocity (or J) space drives a net flux of stars per unit energy,  $F_{\rm E}$ , into the loss-cone from the ambient quasi-isotropic region. It is this J-space depletion and corresponding differential loss-cone flux that have been ignored in the naive 1-dimensional analysis described above.

Now consider how the stars move on the velocity sphere. In each period, stars experience a small rms change in angular momentum, j<sub>2</sub>, due to gravitational encounters with their neighbors. This change causes them to move slightly on the velocity sphere, much like bees buzzing around a hive. What happens to those stars near the loss-cone depends critically on the ratio

$$q \equiv j_2^2 / J_{min}^2(E)$$
 (20)

which, in turn, depends on E. There are two extreme possibilities: (1)  $q \ll 1$ , in which case the change in J is sufficiently small that stars enter the loss-cone via two-dimensional diffusion. In this "empty loss-cone" case, the distribution function falls rapidly to zero at  $J=J_{min}$  because any star found well inside the loss-cone would be destroyed in one period, long before it could be scattered out of the loss-cone; (2)  $q \gg 1$ , in which case the change in J is larger than the loss-cone opening so that most stars which reside inside the cone at apocenter manage to scatter out by the time they reach pericenter and are not disrupted. The distribution function remains nearly isotropic even inside the loss-cone in this "full loss-cone" case.

There exists a critical energy  $E = E_{crit}$  defined by

$$q (E_{crit}) = 1$$
 (21)

Stars with energy Ecrit typically reside at a radius

$$r_{crit} \sim GM/|F_{crit}|$$
 (22)

from the black hole. This energy marks the transition between the "full" and "empty" loss-cone regimes.

Any attempt to analyze rigorously the two-dimensional character of the stellar distribution function f(E,J) around a massive black hole must deal carefully with the disruption loss-cone region in phase space. In particular, numerical routines constructed to determine f(E,J) must be able to handle stars reliably in the two opposite extreme regimes,  $q \ll 1$  and  $q \gg 1$  as well as handle stars in the critical transition regime in between. This realization was one of the

key factors governing the design of the 2+1 Monte Carlo simulation code described below.

d) The 2+1 Fokker-Planck Equation

The 2+1 Fokker-Planck equation for F(E,J) is given by (Lightman and Shapiro 1977; hereafter LS)

$$P(E)\frac{\partial f}{\partial t} = -\frac{\partial}{\partial E} \left[ f\epsilon_{1} \right] + \frac{1}{2} \frac{\partial^{2}}{\partial E^{2}} \left[ f(\epsilon_{1}^{2} + \epsilon_{2}^{2}) \right] - \frac{1}{J} \frac{\partial}{\partial J} \left[ fJj_{1} \right]$$
$$+ \frac{1}{2J} \frac{\partial^{2}}{\partial J^{2}} \left[ fJ(j_{1}^{2} + j_{2}^{2}) \right] + \frac{1}{J} \frac{\partial^{2}}{\partial E\partial J} \left[ fJ(\epsilon_{1}j_{1} + \zeta^{2}) \right],$$
(23)

which must be solved in steady-state for the idealized problem formulated in Section IV. In eqn. (23),  $\varepsilon_1$  and  $j_1$  are the mean changes in energy and angular momentum per orbital period P,  $\varepsilon_2$  and  $j_2$  are the dispersions about these means, and  $\zeta^2$  is the correlation between  $\varepsilon_2$  and  $j_2$  for a star with fixed energy and angular momentum. These orbital perturbations are obtained directly from the locally defined velocity diffusion coefficients by integrating over orbits as shown in LS and in Shapiro and Marchant (1978).

Equation (23) is a 2+1 dimensional, integro-partial differential equation. Its nonlinear character is "hidden" by the fact that the orbital perturbations appearing in the equation are themselves integrals over f.

Consistent with the assumptions listed in Section IV, eqn. (23) must be integrated subject to the following boundary conditions:

i) The distribution of unbound stars is isotropic and isothermal: i.e. f satisfies

$$f = (2\pi v_0^2)^{-3/2} n_0 \exp(-E/v_0^2) , E > 0$$
 (24)

where  $v_0$  is the constant line-of-sight velocity dispersion in the isothermal core and  $n_0$  is the core density.

ii) The distribution function vanishes for  $J > J_{max}$ , i.e. f = 0 for  $J > J_{max}$ .

iii) Stars are consumed by the black hole if and only if they lie within the loss cone  $\lfloor J \leq J_{\min}(F) \rfloor$  when they are at <u>pericenter</u>; that is, stars are destroyed when they are physically within the disruption radius, f = 0,  $r \leq r_D$ .

Note that (iii) is the precise statement of the loss-cone boundary condition. It is not appropriate to replace (iii) by "simplifications" such as f = 0 for  $J < J_{min}$ , which is not true in general (see Section V.c).

In addition, eqn. (23) is subject to the initial (steady-state) condition

$$\frac{\partial f}{\partial t} = 0 \tag{25}$$

e) Approximate Solution of Equation (23) and Scaling

Before discussing detailed Monte Carlo simulations of eqn. (23) for f(E,J) it is useful to summarize the results of a crude analytic analysis of the two-dimensional problem by LS [see also Frank and Rees 1976]. Indeed, the availability of the analytic analysis and the scaling behavior which it predicted proved crucial to the construction of a reliable simulation code to solve the problem more accurately.

(1) <u>Bound Star Distribution (E < 0).</u> LS found that the distribution could be written approximately in the power-law form of eqns. (4), (6) and (7), with

 $p \approx 1/4 + logarithmic correction terms$ 

The correction terms are small except near  $r_D$ . Hence the solution of BW remained valid in the outer (observable) regions of the cusp.

(2) <u>Critical Radius</u>. The critical radius defined by eqn. (22) was found to satisfy

$$r_{crit}/r_a \approx 0.1 n_*^{-4/9} v_*^{32/9} M_3^{-20/27}$$
 (26)

where

$$n_* \equiv n_0 / (5 \times 10^4 \text{ pc}^{-3}) \text{ and } v_* \equiv v_0 / (10 \text{ km s}^{-1})$$
 (27)

and where m = M<sub>0</sub> and r = R<sub>0</sub>. Thus one obtains the important result that  $r_{crit}$  resides inside the cusp for typical globular clusters with massive black holes (i.e.  $r_{crit}/r_a < 1$ ) but outside the cusp for 7 typical dense galactic nuclei (i.e.  $r_{crit}/r_a > 1$  assuming  $n_0 ~ 10^{\circ} pc^{-3}$ ,  $v_0 ~ 500$  km/s, M  $\geq 10^6 M_0$ ).

(3) Loss-Cone Disruption Rate: Bound Stars (E < 0). The maximum possible star flux that a relaxed system can accommodate is, on dimensional grounds,

$$F_{\max}(\mathbf{r}) \sim \frac{\mathbf{n}(\mathbf{r}) \mathbf{r}^{3}}{\mathbf{t}_{\mathbf{r}}(\mathbf{r})}$$
(28)

where  $t_r$  is the local relaxation timescale. LS found that the differential loss-cone disruption rate  $F_E$  (stars/time/specific energy) peaked sharply at  $E_{crit}$  and that the total disruption rate satisfied

$$F \equiv \int_{-M/r_{D}} F_{E} dE \sim F_{max}(r_{crit})/\ln (r_{crit}/r_{D})$$
(29)  
$$-M/r_{D} \sim 10^{-7} n_{*}^{-14/9} v_{*}^{-49/9} M_{3}^{-61/27} yr^{-1} , (30)$$

where we have neglected logarithmic variations in eqn. (29). The corresponding core heating rate due to disruption was found to be

$$E = \int_{-M/r_{D}} F_{E} |E| dE \sim F \left(\frac{GM}{r_{crit}}\right) \ln (r_{crit}/r_{D})$$
(31)

(4) Loss-Cone Disruption Rate: Unbound Stars (E>0). Unbound stars can also enter the loss-cone at pericenter and be disrupted. Their rate of disruption was found to be

$$F^{u} \approx F \left( r_{crit} / r_{a} \right)^{5/4} . \tag{32}$$

Accordingly, the bound star disruption rate dominates the unbound rate for typical globular clusters but the reverse is true for dense galactic nuclei. A similar result applies to the relative heating rates, although for unbound stars, is negative and corresponds to core "cooling":

$$E^{\rm u} \approx v_{\rm o}^2 F^{\rm u} . \tag{33}$$

## f) Time-Dependent, Homological Core Evolution.

Suppose we remove the assumption of steady-state. How will a relaxed cluster core respond with time to the presence of a central black hole? This question motivated Shapiro (1977) to construct a simple homological model for the evolution of a globular cluster core with a central hole. The equations were those employed by Ambartsumian (1938) and Spitzer (1940) in their simple "evaporation model" for core collapse, modified by terms accounting for the effects of a central hole. The key effects considered were the tidal disruption of bound stars by the hole (eqn. 28) and the associated heating of the core which accompanies this process (eqn. 31). The resulting evolution of the cluster core radius with time is shown in Fig. 3 for various initial black hole masses. In all cases, the hole eventually manages to halt and reverse core collapse. At late times the core expands asymptotically to infinity according to

~ / ~

$$R_{c} \propto t^{2/3}, t \neq \infty$$
 (34)



Figure 3: The core radius  $R_c^*$  as a function of time t (in units of the initial relaxation time  $\tau_{r_0} = 6.2 \times 10^6$  yr) for a cluster with an initial core density  $n_{c_0}^* = 0.2$ , radius  $R_c^* = 0.5$ , and black hole mass M<sub>3</sub> between 0 and 1. Core parameters are expressed in the following non-dimensional units:  $n_c^* = n_c/(5 \times 10^4 \text{ pc}^{-3})$ ,  $R_c^* = R_c/(1 \text{ pc})$ , M<sub>3</sub> = M/( $10^3M_{\Theta}$ ). Massive central black holes invariably halt and reverse core collapse. From Shapiro (1977).

This behavior is thus quite analogous to that found by Hénon (1961; 1975) for cluster cores heated by central binaries. In spite of the crudeness of the homological model, it does suggest that core reexpansion may be a generic feature of post-collapse evolution, whatever the central energy source. It also points to the dissolution of a globular cluster in the Galactic tidal field as a plausible final outcome (Wielen 1971; Shapiro 1977).

## VI. THE MONTE CARLO APPROACH

a) Key Numerical Difficulty: The Problem of Multiple Lengthscales

Simulating the full 2D problem rigorously by means of a Monte Carlo scheme immediately poses some "technical" difficulties. The key difficulties are associated with the vast dynamical range spanned by the parameters describing a relaxed cluster with a massive, central hole. This large dynamical range is in turn due to the existence of multiple, widely disparate length scales characterizing such a system. In this respect, a star cluster containing a massive black hole is not unlike many other multidimensional, nonlinear, many-body systems whose dynamical behavior on large scales requires detailed knowledge of behavior on small scales, and vice versa.

Specifically, consider the idealized problem posed in Section IV and focus on the bound stars (E < 0). They occupy the region  $r_D \leq r \leq r_a$ , which spans over six decades in radial coordinate space and a corresponding six decades in  $|E| \sim GM/r$  phase space. The associated number density of stars in the cusp,  $N(E) \propto |E|^{-9/4}$  thus decreases by over 14 decades through the cusp! This fact poses the following numerical challenge: how do we achieve statistical reliability at high |E| deep in the cusp with only a finite number of stars at low |E| at the outer edge of cusp?

Consider next the position of bound stars in J-space. They occupy the region  $J_{min}(E) \leq J \leq J_{max}(E)$ , where the ratio  $J_{min}/J_{max}$  varies between  $(r_D/r_a)^{1/2} - 10^{-3} \leq J_{min}/J_{max} \leq 1$ . The small value of this parameter, which describes the "opening angle" of the disruption losscone, throughout most of the cusp poses the problem: how do we achieve accuracy near the relatively small loss-cone to enforce the allimportant tidal disruption boundary condition?

Now consider the time variable. We first note that in a relaxed Fokker-Planck system, it is not so much dynamical or orbital time,  $t_d$ which matters but "only" the ratio of  $t_d$  to the local relaxation time,  $t_r$ . But even so, this ratio scales like  $t_d/t_r \sim |E|^{-5/4}$  in the cusp and thus varies between  $10^{-11} \leq t_d/t_r \leq 10^{-4}$ . This vast variation poses the problem: how do we follow stars for many orbital periods some for many more than others, depending upon |E| - before they relax?

Finally note that only the bound stars entered into the above considerations. For general problems where the unbound star distribution is not fixed, a whole new set of lengthscales (e.g. core radius, Galactic tidal radius, etc.) enter the discussion and increase the dynamical range of the system even further!

## b) Confronting the Difficulty

Below we summarize some of the tricks we have incorporated in our 2+1 Monte Carlo simulation scheme to handle the problem of multiple lengthscales. As these tricks, as well as the problems they are designed to overcome, are quite general in character, it may prove useful to incorporate them in other simulation codes. Before discussing them we first note that the highly nonlinear character of the Fokker-Planck equation is treated by the familiar pseudo-linearization device of following a 'test' star distribution which relaxes by scattering not against itself directly, but against a fixed 'field' star background distribution (cf. Chandrasekhar 1942; Spitzer 1962). Of course, the 'field' star distribution and the orbital perturbations it induces are recomputed at regular time intervals to match the evolving 'test' star distribution, thereby achieving self-consistency (see Box 2).



#### MONTE-CARLO SIMULATIONS OF THE 2+1 D FOKKER-PLANCK EQUATION

We employ one approximation in our application of the method: the orbital perturbation coefficients, which control the motions of 'test' stars in phase space, are computed from the J-averaged (isotropized) field-star distribution. This approximation is reasonable whenever the field-star distribution does not vary greatly from isotropy, as is the case in the black hole problem.



1) Particle 'Creation-Annihilation' Scheme. To provide sufficient numbers of test stars and thereby guarantee statistical reliability in low populated regions of phase space (e.g. high  $|\mathbf{E}|$  regions in the cusp) we construct a particle 'creation-annihilation' scheme, illustrated schematically in Box 3. Specifically, at predeterminated boundaries in E-space, stars diffusing toward higher  $|\mathbf{E}|$  generate "clones" which may, themselves, subsequently diffuse toward the black hole independently of their "parent". To prevent artificial numerical contamination, these clones are prevented from crossing back across the energy boundary below which they formed, and, instead, are removed from the system if they attempt to do so. Since all test stars are dynamically coupled and interact only with field stars, there is no nonlinear feedback associated with this procedure.

Our method for accurately surveying many decades in phase space by particle 'cloning' has much in common with the Renormalization Group applied elsewhere in many-body physics. Accordingly, we sometimes refer to our procedure as 'Dynamical Renormalization'.

2) 'Time-step Adjustment' Scheme. To reconcile the very short dynamical timescales  $t_d$  associated with loss-cone consumption, with the rather long timescales associated with 2-body relaxation,  $t_r \gg t_d$ , we employ a 'time-step adjustment' algorithm (Box 4). That is, the size of an individual test particle time-step is determined by the particles' value of E and J. For typical stars, it is chosen to be some fraction of the local relaxation timescale and consists of many orbital periods (the number increasing as  $|E|^{5/4}$  in the cusp). However, for stars on critical trajectories (e.g. near the disruption loss-cone), the step size is chosen to be an orbital period so that the stars' position can be examined each time they reach pericenter. The ability to chose whether or not to follow a star on an orbital timescale gives maximum flexibility and efficiency to any Fokker-Planck simulation scheme.

### VII. MONTE CARLO SIMULATIONS OF BLACK HOLES IN GLOBULAR STAR CLUSTERS

(a) Simulations of the Idealized Problem

Figure 4 shows the nondimensional, isotropized distribution function and differential tidal disruption rate for bound stars obtained by Shapiro and Marchant (1978) using the E-J Monte Carlo simulation scheme. The isotropized profile is quite comparable to the 1D BW profile except that deep in cusp near the disruption region  $(x_D \equiv M/(2r_Dv_O^2) = 10^4$  in the case illustrated) considerable depletion is evident. A nearly identical isotropized profile to the Monte Carlo one shown here was obtained by Cohn and Kulsrud (1978), who integrated the 2D Fokker-Planck equation by finite-difference techniques.



The region of maximum tidal disruption, as measured by  $|E|F_E$ , is strongly peaked near  $E_{crit}$ , as predicted by LS (see Section V.e). Indeed, most qualitative aspects of the solution discussed by LS, including the scaling, are verified by the numerical simulation.



Figure 4: The isotropized distribution function,  $\overline{g}$ , for the case  $x_{crit} = 10$  and  $x_{D} = 10^{4}$ , is plotted as a function of dimensionless energy  $x \equiv -E/v_{0}^{2}$  (filled circles). The function  $\overline{g}$  is normalized to unity at x = 0. The differential consumption rate,  $F_{E}^{*}x$ , is also plotted (filled squares); and those data points which had rather large error bars are distinguished (open squares). The function  $F_{E}^{*}x$  peaks sharply near  $x_{crit}$ , indicating that the black hole principally consumes stars of energy ~  $E_{crit}$ . The distribution  $g_{0}$  is the (one-dimensional) BW solution (solid line). From Shapiro and Marchant (1978).

#### (b) Simulations of Black Holes in Realistic Clusters

The Monte Carlo scheme was used by Marchant and Shapiro (1979) to determine the steady-state distribution and tidal disruption rate of stars around a massive black hole at the center of a <u>realistic</u> Kingmodel stellar cluster. Here, the <u>self-gravity</u> of the stars is taken into account. The density and surface density profiles calculated for different assumed black hole masses are plotted in Figs. 5 and 6, respectively. For these computations the total cluster mass is  $M_{cluster} = 3.6 \times 10^5 M_{\odot}$  and the core mass is  $M_{core} = 2 \times 10^4 M_{\odot}$ . It is clear from the figures that self-gravity becomes important whenever the black hole mass is sufficiently large:  $M/M_{core} \ge 0.1$ . In this limit the cusp does not display any distinctive structure near  $r_a$ . Thus if such high-mass black holes reside in globular clusters, their main observable signature might be the lack of a resolvable cluster core.



Figure 5: Density of stars n is plotted as a function of cluster radius r for clusters with black holes with different assumed masses M. The ambient King-model cluster parameters are  $N = 3.6 \times 10^5$  stars,  $v_0 = 10 \text{ km s}^{-1}$ , and  $\phi_s(0) = -8v_0^2$ . The cluster tidal radius  $r_t$ , the core radius  $r_{\rm crit}$ , and the tidal disruption radius  $r_d$ , are shown for all cases. All the black-hole cases show cusp profiles similar to the  $r^{-7/4}$  power law. The effects of self-gravity near  $r_a$  are evident for the very massive black-hole cases. From Marchant and Shapiro (1979).



Figure 6: Surface density of stars  $\sigma$  as a function of the projected cluster radius r for some of the clusters shown in Figure 5. Note that the case M =  $10^4$  M<sub>o</sub> shows no shoulder in its surface-density profile. In all cases, the distinctive  $r^{-3/4}$  dependence of  $\sigma$  is evident, but only well inside the accretion radius. From Marchant and Shapiro (1979).

## c) 2+1 Cluster Evolution Simulations

By far the most significant application of the 2+1 Monte Carlo scheme is determining the detailed, time-dependent, dynamical evolution of a realistic star cluster containing a massive, central black hole. Such calculations were performed by Marchant and Shapiro (1980) and Duncan and Shapiro (1982).

To check how well the simulation scheme could track Fokker-Planck evolution, the dynamical evolution of a cluster without a central hole was considered first. Initial data for this case consisted of a Plummer model (n = 5 polytrope) allowing for a finite Galactic tidal cut-off radius rt. In general, the familiar features of the 'gravothermal catastrophe' were revealed by our integrations. Specifically, the simulations of the early and intermediate phases of core collapse,  $0 \le t/t_{rh} \le 13.4$ , agreed well with earlier 2+1 Fokker-Planck simulations of Spitzer and his colleagues [see paper by Spitzer in these Proceedings for a review and references]. Here  $t_{rh}$  is the initial half-mass relaxation time defined by Spitzer. Our simulations of the late phases,  $13.4 \le t/t_{rh} \le 14.7$ , agreed well with the Fokker-Planck integrations of Cohn (1979, 1980). In particular, the homologous nature of advanced core collapse as predicted by Lynden-Bell and Eggleton (1980) was verified. Not surprisingly, it was found to be relatively independent of rt.



Figure 7: (a) The density at  $r_a$ ,  $n_a \equiv n(r_a)$  (dashed line), and the core density  $n_c$  as functions of time. (b) The core radius  $R_c$  (solid curve) and the accretion radius  $r_a$  as functions of time. From Duncan and Shapiro (1982).

Confident that our scheme could handle evolution accurately, we next considered the effect of a central black hole. The initial data again consisted of a Plummer model with a finite tidal radius, but now we inserted a black hole, with initial mass in the range  $0 \leq M_i/M_0 \leq 2000$  at the cluster center at an arbitrary time  $t_i$  (which we varied) during the cluster's evolution. We found that in all cases core collapse is eventually reversed by the heat flux from stellar disruption by the hole. The system attains a quasi-stationary, expanding state, by which time the hole (if assumed to swallow most of the disrupted stellar debris) has grown to several thousand solar masses. This expanding state appears to be roughly independent of (i) the initial hole mass, (ii) the time during core evolution at which the hole is introduced and, (iii) the value of  $r_t$ .

Figure 7 illustrates the variation with time of characteristic central densities and radii during the evolution. Core collapse, followed by re-expansion, are clearly evident. The corresponding growth of the black hole is shown in Fig. 8. Typically, core bounce occurs when the hole grows to  $M \approx 0.1 M_{core}$ .



Figure 8: (a) The growth of the black hole mass  $M_h$  with time for the case shown in Fig. 7. The filled circles are "data" from a Monte Carlo simulation, while the smooth curves represent homological solutions characterized by one free parameter ( $\gamma$ ). (b) The time evolution of the core radius. From Duncan and Shapiro (1982).

## VIII. MONTE CARLO SIMULATIONS OF BLACK HOLES IN DENSE GALACTIC NUCLEI

Dense galactic nuclei may provide more hospitable environments than globular clusters for forming massive black holes. Indeed, many models of AGN's and quasars now favor the presence of a supermassive black hole ( $M \ge 10^6-10^9 M_{\odot}$ ) to power these energetic sources (see Table 2). It was therefore natural for Duncan and Shapiro (1983) to extend their 2+1 Monte Carlo simulation scheme to study the dynamical evolution of a dense galactic nucleus with a massive, central hole.

As initial data they considered King model clusters of solar-type stars. The core parameter for these models were in the range expected for AGN's and quasars,

$$2 \times 10^{7} \leq M_{core}/M_{\odot} < 3 \times 10^{8}$$

$$300 \leq v_{o} (km/s) < 10^{3}$$

$$10^{6} \leq n_{o} (stars pc^{-3}) < 10^{7} ,$$
(35)

while the initial central black hole mass was varied between

$$2 \times 10^{6} < M/M_{e} < 5 \times 10^{4}$$
 (36)

In addition to tidal disruption by the black hole, stars in dense galactic nuclei can be destroyed by star-star collisions. These collisions were incorporated in the Monte Carlo simulations, where it was assumed that the stars disrupted immediately upon impact and that all the gaseous debris liberated during collisions and tidal disruptions is consumed by the central hole. Accordingly, the hole grows at a rate given by

$$M = m \left(F_{\text{coll}} + F_{\text{tide}}\right) . \tag{37}$$

This accretion by the hole results in a radiation luminosity given by

$$L = 7 \times 10^{45} \left(\frac{\varepsilon}{0.1}\right) \left(\frac{M}{M_{\odot} \text{ yr}^{-1}}\right) \text{ erg s}^{-1}$$
(38)

where  $\boldsymbol{\varepsilon}$  is the assumed conversion efficiency of rest mass into radiation.

The key results of this study were the following:

- 1. Star destructions result predominantly from collisions when the rms velocity  $v_0$  exceeds the escape velocity  $v_{esc} \approx 620$  km/s from a star. Destructions result predominantly from tidal disruptions when the reverse is true.
- The maximum stellar destruction rate achieved in these systems is found to be

m 
$$F_{\text{tide}}(\text{max}) \sim \frac{M_{\text{core}}}{t_{r}} \leq 10^{-2} M_{\odot} \text{ yr}^{-1}$$
 (39)

for tidal disruption and

$$m F_{coll}(max) \sim \frac{M_{core}}{t_{coll}} \sim M_{o} yr^{-1}$$
(40)

for star collisions. Here  $t_r$  and  $t_{coll}$  are the core relaxation and collision timescales, respectively, and the numerical values were those found for the Monte Carlo simulations (they are largely determined by the assumed initial conditions).

Equations (37)-(40) thus suggest that quasars  $(L \sim 10^{45}-10^{48} \text{ erg s}^{-1})$  may be dense galactic nuclei in which physical collisions are occurring, while AGN's  $(L \sim 10^{42}-10^{45} \text{ erg s}^{-1})$  may be nuclei where collisions are unimportant and tidal disruptions dominate. Similar conclusions have been reached by other investigations (see references in Box 1).

3. For late times, M, hence L, decays like

$$L \sim M \sim t^{-\alpha}$$
(41)

where  $\alpha$  depends on the power-law stellar profile outside the core and is, typically, in the range  $\alpha \sim 0.8 - 1$ .

Simulation results for a candidate "quasar" model are shown in Figs. 9 and 10. In Fig. 9 the evolution of the density profile is shown. For this case the initial core relaxation time is  $t_{r,i} = 4.5 \times 10^9$  yr while the collision time is  $t_{coll,i} = 2 \times 10^8$  yr; evidently  $t_{coll,i} \ll t_{r,i}$  so collisions dominate. In this case the bound stars in the cusp are quickly destroyed by collisions, leaving only the unbound stars with a characteristic  $n(r) \propto r^{-1/2}$  profile. In Fig. 10 the black hole consumption rate is plotted vs time. This rate remains constant for t <  $t_{coll,i}$  while the core is being consumed, after which it decays



Figure 9: The stellar density profile at five successive times for the "quasar" model simulation. The dashed curve shows the initial profile, while the lowest solid curve is the profile at the end of the simulation. The initial cluster has a core radius  $r_{1,i}$ , star number N<sub>8,i</sub> and line-of-sight velocity dispersion v<sub>350,i</sub>. From Duncan and Shapiro (1983).

like t<sup>-1</sup> as the hole eats its way out into the halo. From an initial mass of  $2 \times 10^6 M_{\odot}$ , the black hole grows to  $3 \times 10^9 M_{\odot}$  by the end of the simulation. The maximum luminosity achieved during the cluster's evolution is about L ~  $10^{46} \text{ erg s}^{-1}$  (for  $\varepsilon = 0.1$ ), which is quite respectable for a typical quasar.



Figure 10: The black hole growth rate  $M_h$  ( $\propto$  L) as a function of time for the case shown in Fig. 9. The <u>dashed</u> curve is the rate predicted by simple analytic arguments. From Duncan and Shapiro (1983).

# IX. THE BIRTH OF SUPERMASSIVE BLACK HOLES VIA THE COLLAPSE OF DENSE STELLAR SYSTEMS

An analysis of massive black holes in star clusters would not be complete without some discussion of their origin. A possible scenario for the formation of massive holes in globular clusters via star collisions and coalescence has been proposed by Spitzer (1975) and sketched by Lightman and Shapiro (1978) (see Section II.a). Such a mechanism cannot produce black holes much more massive than ~ 100 M, but we have seen that black holes in clusters can grow considerably by the consumption of tidally disrupted stars (Section VII.c). This scenario has to be investigated in much greater detail before its likelihood can be properly assessed.

Several mechanisms have been suggested for the formation of supermassive black holes in dense galactic nuclei (see Box 1). One of the most appealing is the scenario first put forward by Zel'dovich and Podurets (1965). They argued that the combined effects of <u>secular</u> core collapse (i.e. the 'gravothermal catastrophe', which they referred to as 'stellar evaporation') and star-star collisions would drive a cluster to states of ever higher central velocity and redshift. At sufficiently high redshift, the cluster would become relativistically unstable, at which point it would undergo catastrophic collapse on a dynamical timescale to a supermassive black hole. They had in mind initial Newtonian star clusters composed of stellar mass black holes which would thus ultimately collapse to form a single, supermassive black hole.

Some recent theoretical developments suggest that this proposal by Zel'dovich and Podurets (1965) ought to be regarded quite seriously. For the first time, it has been possible to integrate numerically the full Einstein field equations for an arbitrary spherical, collisionless gas in General Relativity (Shapiro and Teukolsky 1985 a,b). These integrations enable one to follow on the computer the evolution on dynamical timescales of relativistic star clusters, even during epochs characterized by total gravitational collapse and the formation of supermassive black holes. The formation and growth of the black hole can be followed accurately without the appearance of numerical or physical singularities.

The original speculation of Zel'dovich and Podurets (1965) that star clusters become relativistically unstable at sufficiently high central redshift ( $z_c \ge 0.5$ ) has been demonstrated rigorously in perturbation theory (see, e.g., Ipser 1969, 1980; Fackerell, Ipser and Thorne 1969 and references therein). The recent numerical integrations described above provide further verification of this relativistic instability and, more significantly, follow its nonlinear growth and the ultimate fate of unstable clusters. In particular, the integrations show quite generally that clusters of sufficiently high central redshift do undergo catastrophic collapse to a black hole on a dynamical timescale. Moreover, they reveal that, while the core may encompass only a small fraction of the cluster mass at the center initially, the hole ultimately grows to entrap virtually the <u>entire</u> cluster in a few mean orbital periods.

The fully relativistic, Vlasov simulations of spherical star clusters described above provide fresh support for the Zel'dovich and Podurets supermassive black hole scenario. They have motivated Shapiro and Teukolsky (1985c) to reconsider this suggestion in greater detail, in light of our current knowledge of dense galactic nuclei, the gravothermal catastrophe, etc. The result is summarized in Fig. 11. Illustrated are the evolutionary tracks of initially Newtonian, isothermal cores of dense stellar systems composed of neutron stars (m = 1.4  $\rm M_{\odot}$ ). At any instant, the cores are defined by two parameters:  $\rm N_{C}$ , the total number of core stars and  $\rm z_{C}$ , the central redshift in the core ( $\rm z_{C} \propto \Phi_{C} \propto \rm v_{C}^{2}$ , where  $\Phi_{C}$  is the central potential and  $\rm v_{C}$  is the core velocity dispersion, also shown). Each track is composed of two distinct segments, corresponding to two different epochs: an early, low-redshift ( $\rm z < \rm z_{CO11}$ ) "point-mass" epoch during which the core undergoes secular collapse via the 'gravothermal catastrophe' and a later,





Figure 11: Dynamical evolution tracks in the  $N_c - z_c$  plane of dense cluster cores consisting of 1.4 M<sub>0</sub> neutron stars. During phase (a), the "gravothermal catastrophe", the core evolves by two-body scattering to central redshift  $z_{coll} \sim 8 \times 10^{-3}$ . During phase (b) the neutron stars collide, coalesce and collapse to form ~ 2.8 M<sub>0</sub> black holes. During phase (c) the remnant black holes collide and coalesce, driving the core to central redshift  $z_{crit} \sim 0.5$ . At this point the entire cluster becomes relativistically unstable and undergoes catastrophic collapse to a supermassive black hole in a few mean orbital periods. The range of plausible core parameters for dense galactic nuclei lie in the box shown in the upper left of the figure. The hatched region shows the fraction of these capable of evolving to a supermassive black hole in a Hubble time. From Shapiro and Teukolsky (1985c).

103

10<sup>2</sup>

Zc

105

10<sup>4</sup>

101

high-redshift  $(z \ge z_{coll})$  "finite-radius" epoch during which star-star collisions and coalescences dominate the evolution. During both epochs, the number of core stars decrease while the central redshift increases. Ultimately, the core achieves relativistic central velocities and redshift  $(z = z_{crit} ~ 0.5)$  at which point it undergoes total gravitational collapse to a black hole. The hole quickly grows outward and eventually swallows up most of the ambient cluster in a few mean dynamical timescales.

Only those clusters which can evolve to a relativistic state in a Hubble time are relevant for our investigation. Also, only those clusters which have more than one star remaining in their core by  $z = z_{crit}$  can actually reach this state. These two constraints confine the tracks to be within the heavy lines in the figure. A similar figure can be drawn for clusters consisting initially of white dwarfs or stellar-mass black holes.

Consider the consequences of this scenario. First, there is minimum central redshift (z = z, ~ 10<sup>-4</sup>) or a minimum central velocity dispersion (v ~ 10<sup>3</sup> km s<sup>-1</sup>) below which a cluster of neutron stars cannot evolve to a relativistic state in a Hubble time. Although this minimum core velocity is large, it is not unreasonably large for conditions expected in dense galactic nuclei. Indeed, consider the range of plausible parameters calculated for dense galactic nuclei following the collision-coalescence epoch which the normal stars in the nucleus are expected to undergo (Colgate 1967; Sanders 1970). Very likely, this initial collision-coalescence epoch will convert the dense, but otherwise normal galactic nucleus into a cluster of stellar-mass compact stars - black holes or neutron stars (Begelman and Rees 1978). The parameter range calculated by Colgate (1967) and Sanders (1970) for such systems is indicated by the box in the upper left-hand corner of Figure 11. What is interesting is that (1) this box intersects a small, but finite domain occupied by those dense cores capable of evolving to supermassive black holes in a Hubble time and (2) the domain of intersection occurs in the range  $10^7 \leq N_c \leq 10^8$ , indicating that, following total gravitational collapse, the clusters will yield supermassive black holes with masses in the range  $10^7 \leq M/M_{\odot} \leq 10^8$ . This is roughly the mass range of black holes which can generate AGN and quasar luminosities via gas accretion near the Eddington limit! It is thus within the mass range frequently cited in black hole models of such systems (cf. Section VIII).

The supermassive black hole generation mechanism in dense clusters discussed here is attractive and uncomplicated. It leads to black holes of the "right size" to explain quasars and AGNs. Whether or not the picture is also correct will depend on the results of more detailed, future studies, both theoretical and observational.

This work has been supported in part by National Science Foundation Grant AST 81-16370 at Cornell University.

#### REFERENCES

Ambartsumian, V.A. 1938, Ann. Lenningrad State Univ. No. 22, (Astr. Series, Issue 4) Bahcall, J.N., Bahcall, N.A. and Weistrop, D. 1975, Ap. J. (Lett.) 16, L159. Bahcall, J.N. and Ostriker, J.P. 1975, Nature 256, 23. Bahcall, J.N. and Wolf, R.A. (BW) 1976, Ap. J. 209, 214. Bahcall, J.N. and Wolf, R.A. 1977, Ap. J. 216, 883. Bahcall, N.A. 1976, Ap. J. (Lett.), 204, L83. Bahcall, N.A. and Hausman, M.A. 1976, Ap. J. (Lett.) 207, L181. Bahcall, N.A., Lasker, B.M and Wamsteker, W. 1977, Ap. J. (Lett.) 213, L105. Begelman, M.C. and Rees, M.J. 1978, MNRAS 185, 847. Bisnovatyi-Kogan, G.S., Churayev, R.S. and Kolosov, B.I. 1982, Astron. Astrophys. 113. 179. Chandrasekhar, S. 1942, Principles of Stellar Dynamics (Chicago: University of Chicago Press). Cohn, H. 1979, <u>Ap. J. 234</u>, 1036. Cohn, H. 1980, Ap. J. 242, 765. Cohn, H. and Hut, P. 1983, preprint. Cohn, H. and Kulsrud, R.M. 1978, Ap. J. 226, 1087. Colgate, S.A. 1967, Ap. J. 150, 163. Djorgovski, S. and King, J.R. 1984, Ap. J. (Lett.) 277, L49. Dokuchayev, V.I. and Ozernoi, L.M. 1977, JETP 73, 1587. Duncan, M.J. and Shapiro, S.L. 1982, Ap. J. 253, 921 (Paper IV). Duncan, M.J. and Shapiro, S.L. 1983, Ap. J. 268, 565. Einstein, A. 1939, Ann. Math. 40, 922. Fackerell, E.D., Ipser, J.R. and Thorne, K.S. 1969, Comments Astrophys. Space Phys. 1, 134. Fall, S.M. and Malkam, M.A. 1978, MNRAS 185, 899. Farouki, R.T., Shapiro, S.L. and Teukolsky, S.A. 1983, in IEEE Computer 16, 73. Frank, J. 1978, MNRAS 184, 87. Frank, J. and Rees, M.J. 1976, MNRAS 176, 633. Goodman, J. 1983, preprint. Grindlay, J.E. 1977 in Highlights of Astronomy Vol. 4, 111. Grindlay, J.E. 1981, in X-ray Astronomy with the Einstein Satellite ed. R. Giacconi (Reidel, Dordrecht) p. 79. Grindlay, J.E. 1983, Advances in Space Exploration Vol. 2, No. 9, p. 133. Grindlay, J.E., Hertz, P., Steiner, J.E., Murray, S.S. and Lightman, A.P. 1984, Ap. J. (Lett.) 282, L13. Gursky, H. and Schwartz, D.A. 1977 in Ann. Rev. Astron. Astrophys. 15, 541. Heggie, D.C. 1983, preprint. Hénon, M. 1961, Ann. d'Ap. 24, 369. Hénon, M. 1975 in Dynamics of Stellar Systems (IAU Symposium No. 69), ed. by A. Hayli (Reidel, Dordrecht) p. 133. Hills, J.G. 1975, Nature 254, 295. Inagaki, S. and Lynden-Bell, D. 1983, MNRAS 205, 913.

Ipser, J.R. 1969, Ap. J. 158, 17. Ipser, J.R. 1978, Ap. J. 222, 976. Ipser, J.R. 1980, Ap. J. 238, 1101. Lightman, A.P. 1976, private communication in Bahcall and Wolf (1976). Lightman, A.P. 1982, Ap. J. (Lett.) 263, L19. Lightman, A.P., Press, W.H. and Odenwald, S. 1978, Ap. J. 219, 629. Lightman, A.P. and Shapiro, S.L. (LS) 1977, Ap. J. 211, 244. Lightman, A.P. and Shapiro, S.L. 1978, Rev. Mod. Phys. 50, 437. Lin, D.N.C. and Tremaine, S. 1980, Ap. J. 242, 789. Lynden-Bell, D. 1967, MNRAS 136, 101. Lynden-Bell, D. 1969, Nature 223, 690. Lynden-Bell, D. and Eggleton, P.P. 1980, MNRAS 138, 495. Marchant, A.B. and Shapiro, S.L. 1979, <u>Ap. J. 234</u>, 317 (Paper II). Marchant, A.B. and Shapiro, S.L. 1980, <u>Ap. J. 239</u>, 685 (Paper III). McMillan, S.L., Lightman, A.P. and Cohn, H. 1981, Ap. J. 251, 436. Norman, C. and Silk, J. 1983, Ap. J. 266, 502. Peebles, P.J.E. 1972a, Gen. Rel. Grav. 3, 63. Peebles, P.J.E. 1972b, Ap. J. 178, 371. Rees, M.J. 1977, Ann. N.Y. Acad. Sci. 302, 613. Rees, M.J. 1978, Phys. Scripta 17, 193. Rees, M.J. 1984 in Ann. Rev. Astron. Astrophys., in press. Sanders, R. 1970, Ap. J. 162, 791. Sargent, W.L.W., Young, P.J., Boksenberg, A., Shortridge, K., Lynds. C.R. and Hartwick, F.D.A. 1978, Ap. J. 221, 731. Shapiro, S.L. 1977, Ap. J. 217, 281. Shapiro, S.L. and Lightman, A.P. 1976, Nature 262, 743. Shapiro, S.L. and Marchant, A.B. 1978, Ap. J. 225, 603 (Paper I). Shapiro, S.L. and Teukolsky, S.A. 1985 (a,b,c) in preparation. Silk, J. and Arons, J. 1975, Ap. J. (Lett.) 200, L131. Spitzer, L. 1940, MNRAS 100, 396. Spitzer, L. 1962, Physics of Fully Ionized Gases (Wiley, New York). Spitzer, L. 1971 in Semaine d'etude sur les noyeaux des galaxies 1970 (Pontificae Academiae Scientarum Scripta Varia No. 34). Spitzer, L. 1975 in Dynamics of Stellar Systems (IAU Symposium No 69), ed. by A. Hayli (Reidel, Dordrecht), p. 3. Spitzer, L. and Hart, M.H. 1971, Ap. J. 164, 399. Strittmatter, P.A. and Williams, R.E. 1976 in Ann. Rev. Astron. Astrophys. 14, 373. Truran, J.W. and Cameron, A.G.W. 1972, Ap. and Space Sci. 14, 179. Ulrich, M.H., Boksenberg, A., Bromage, G.E., Clavel, J., Elvius, A., Penston, M.V., Perola, G.C., Petteni, M., Snijders, M.A.J., Tanzi, E.G. and Tarenghi, M. 1984, MNRAS 206, 221. Wielen, R. 1971, Ap. Space Sci. 13, 300. Wolfe, A.M. and Burbidge, G.R. 1970, Ap. J. 161, 419. Wyller, A.A. 1970, Ap. J. 160, 443. Young, P.J., Shields, G.A. and Wheeler, J.C. 1977, Ap. J. 212, 367. Young, P.J., Westphal, J.A., Kristian, J., Wilson, C.P. and Landauer, F.P. 1978, Ap. J. 221, 721. Zel'dovich, Ya. B. and Novikov, I.D. 1971, Relativistic Astrophysics, Vol. 1 (University of Chicago, Chicago).

Zel'dovich, Ya. B. and Podurets, M.A. 1965, Astron. Zh 42, 963 [English translation in Sov. Astron. - A.J. 9, 742].

#### DISCUSSION

KING: Another version of Peebles' remark (not due to Peebles) is, "I'll believe a black hole when I see one." More seriously, what would you expect us to observe, that would distinguish between your model and those that are stabilized by binaries?

SHAPIRO: As has been pointed out for a long time, black holes will induce distinguishing 'cusp' profiles in the cores of any cluster in which they reside. These central cusps will take a number of forms: optical light cusps, star-count surface density cusps ( $\sigma$ ), and projected rms velocity cusps, V<sub>I</sub> (averaged through the line of sight). Of these, the most frequently mentioned is  $\sigma$ , which acquires the characteristic Bahcall-Wolf  $\sigma \sim r^{-3/4}$  shape. It will be difficult, however, to distinguish this profile observationally from asymptotic isothermal profiles,  $\sigma_{isoth} \sim r^{-1}$ , which may characterize post-collapse binary scenarios. However, as Marchant and I emphasized in Paper III of our series (see, e.g. Fig. 12), V<sub>I</sub> may provide the *best* evidence for the presence of a massive, central black hole. This function rises rapidly ad V<sub>I</sub>  $\sim r^{-1/2}$  inside the core, while, as Cohn has pointed out, it does not increase very rapidly in clusters without massive holes.

One should also pursue *statistical* studies of cumulative cluster data to distinguish between the different post-collapse evolutionary tracks that clusters follow, depending on whether they contain a massive black hole or binaries. One might ultimately produce 'H-R' diagrams in which the location of clusters reveals pre- and postcollapse evolutionary paths. This may be difficult, of course, particularly since at late times the post-collapse core expansion may be quite comparable in both scenarios. Nevertheless, this study should be pursued further.

COHN: As a follow-up the previous question, I would like to note that the behavior of the velocity dispersion profile in a cusp should give the best indication of whether a massive central black hole is present. In a cusp around a black hole,  $v \propto r^{-0.5}$  and is thus fairly steep. In contrast, in a cusp that developes as a result of core collapse with no black hole, the velocity dispersion is very much flatter,  $v \propto r^{-0.11}$ .