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ABSTRACT. The dynamical behavior of a relaxed star cluster containing 
a massive, central black hole poses a challenging problem for the 
theorist and intriguing possibilities for the observer. The historical 
development of the subject is sketched and the salient features of the 
physical solution and its observational consequences are summarized. 

^he full dynamical problem of a relaxed, self-gravitating, large 
N-body system containing a massive central black hole has all the 
necessary ingredients to excite the most dispassionate many-body, 
computational physicist: it is a time-dependent, multidimensional, 
nonlinear problem which must be solved over widely disparate length and 
time scales simultaneously. The problem has been tackled at various 
levels of approximation over the years. A new 2+1 dimensional Monte 
Carlo simulation code has been developed in appreciable generality to 
solve the time-dependent Fokker-Planck equation in E-J space for this 
problem. The code incorporates such features as (1) a particle 
"cloning and renormalization" scheme to provide a statistically relia­
ble population of test particles in low density regions of phase space 
and (2) a time-step "adjustment" algorithm to ensure integration on 
local relaxation timescales without having to follow typical particles 
on orbital trajectories. However, critical regions in phase space 
(e.g. disruption "loss-cone" trajectories) can still be followed on 
orbital timescales. Numerical results obtained with this Monte Carlo 
scheme for the dynamical structure and evolution of globular star 
clusters and dense galactic nuclei containing massive black holes are 
reviewed. 

Recent dynamical integrations of the Einstein field equations for 
spherical, collisionless (Vlasov) systems in General Relativity suggest 
a possible origin for the supermassive black holes believed to power 
quasars and active galactic nuclei. This scenario is discussed 
briefly. 

J. Goodman and P. Hut (eds.J, Dynamics of Star Clusters, 3 73 413. 
© 1985 by the IAU. 
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T. INTRODUCTION 

Several years ago we embarked on a major program at Cornell to set up 
and solve on the computer the Fokker-Planck equation in 2+1 dimensional 
phase space. The purpose of this exploration was to study the struc­
ture and evolution of large N-body, self-gravitating, spherical stellar 
systems, like globular clusters and dense galactic nuclei. We were 
particularly intrigued by the possibility of massive central black 
holes residing in such systems and this aspect of the problem served as 
a focus for much of our work. 

As it has developed, the study of the Fokker-Planck equation has 
become just one, albeit essential, component of a much broader effort 
at Cornell in large-scale computational astrophysics and relativity. 
Our current emphasis is on solving the general Boltzmann equation, 

Df _ /3f\ ( 1 ) 

Dt 18*/coll 

in many different physical regimes where gravity provides the dominant 
long-range interaction. 

Our motivation for tackling the Boltzmann equation is both 
physical and computational. Physically, this equation encompasses a 
huge range of interesting, many-body phenomena. Computationally, the 
Boltzmann equation provides a nontrivial, multidimensional arena to 
explore nonlinear dynamics on the computer. We shall elaborate on 
these points below with reference to the specific star cluster problem 
that is the subject of this review. 

Some of our recent computational work revolving around eqn. (1) is 
summarized in Table 1. This table is a vivid illustration of the fact 
that an enormous and diverse range of gravitation physics is embodied 
in eqn. (1). This review will focus on the Fokker-Planck regime of 
eqn. (1). In this limit, the relaxation timescale of the system under 
investigation, tr, greatly exceeds the dynamical or crossing timescale, 
tfl, but is shorter than characteristic integration timescale of inter­
est, t. In stellar dynamics, t is usually the age of the stellar sys­
tem and, typically, t ~ flH ~ 10^° yrs, where H is Rubble's constant. 
We will, however, also provide a "sneak preview" of some recent 
advances we have made in solving the collisionless Boltzmann (i.e. 
Vlasov) equation for spherical systems in full General Relativity. 
For such cases we set the collision terms (3f/3t) ,_ equal to zero in 

f A \ COll 
eqn. (1 ). 

As we shall shortly describe, it is the Fokker-Planck regime which 
is relevant to addressing the question, "What is the dynamical influ­
ence of a massive black hole in a relaxed stellar system?". However, 
we shall point out later that the relativistic Vlasov regime, may, 
following the Fokker-Planck epoch, hold the clue to answering the 
question, "What is the origin of the supermassive black holes believed 
to reside in quasars and active galactic nuclei (AGNs)?". 

Most of the large-scale numerical work at Cornell is currently 
performed on Floating Point Systems (FPS) 1Q0L or 164 Array Processors, 
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hosted by an IBM ^081 mainframe computer. TFor a discussion of the 
merits of this machine, and an overview of some of the computational 
work summarized in ^able 1 and performed on these processors see 
Farouki, Shapiro and Teukolsky (1PR3). For a discussion of the more 
recent work on the Vlasov equation in General Relativity, see Shapiro 
and Teukolsky (1985 a,h,c). 

TABLF 1 

CORNELL BOLTZMANN EQUATION COMPUTATIONS 

REGIME: 

TIME-SCALE 
ORDERING: 

APPLICATIONS: 

GRAVITY 

SPATIAL 
SYMMETRY 

COMPUTATIONAL 
DIMENSIONS 

GOVERNING 
NONLINEAR 
EQUATIONS 

TECHNIQUE 

Vlasov 
(Collisionless) 

tr » t » t(j 

Galaxy and 
Galaxy Cluster 
Dynamics 

Newtonian 

Arbitrary 

2 K + 1 
(K = 3) 

ODE's 

Particle 
Simulations 

General 
Relativity 

Spherical 

2K + 1 
(K«1) 

ODE's + PDE's 

Particle 
Simulations 

+ 
Finite 

Differencing 

Fokker- Planck 
(Secularly 
Collisional) 

t » t r » t ( j 

Globular Cluster 
and Dense 
Galactic Nuclei 
Dynamics 

Newtonian 

Spherical 

2K + 1 
(K=1 ) 

PDE's 

Monte Carlo 
Particle 

Simulations 

Fluid 
(Co Mi si on-Dominated) 

t » t^ » t r 

Hydrodynamics 

Newtonian 

Axisymmetric 

K + 1 
(K = 2) 

PDE's 

Finite 
Differencing 

General 
Relativity 

Spherical 

K + 1 
(K=1 ) 

PDE's 

Finite 
Differencing 
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II. ^-FOLD MOTIVATION FOR TACKLING THE PROBLEM 

Studying the dynamical structure and evolution of a relaxed stellar 
system (e.g. a globular cluster or dense galactic nucleus) containing a 
massive black hole is a pursuit with a ^-fold motivation, as we shall 
now discuss. 

a) Theoretical Motivation 

The formation of a supermassive black hole is one of at least two 
plausible outcomes of stellar core collapse. Both possibilities were 
enumerated by Spitzer (1975) almost a decade ago. 

In the "point-mass scenario", homological core collapse (i.e. the 
'gravothermal catastrophe') terminates with the formation of hard 
binaries near the cluster center. Further gravitational encounters 
between these binaries and neighboring single stars and binaries cause 
the binaries to become more tightly bound at the expense of the ambient 
core. In fact, some stars may be ejected from the core altogether by 
this binary "heating" mechanism. This scenario has been the focus of 
considerable attention of late; it is the subject of most of the 
theoretical papers in this volume. 

In the alternative "finite-size star scenario", core collapse 
ultimately leads to star collisions and coalescence in the core and to 
the run-away build up of one (or more) supermassive star, ^his short­
lived supermassive star ultimately collapses to form a supermassive 
black hole at the cluster center. Not surprisingly, the details of the 
all-important collision-coalescence phase of this scenario are subtle 
and yet to be fully resolved. !~See Lightman and Shapiro (1978) for a 
discussion and references.! However, as we shall discuss below, given 
the presence of a massive, central black hole, the dynamical fate of 
the cluster which evolves under its influence has been worked out, at 
least for suitably approximate circumstances. So for at least one of 
the two theoretical scenarios - that involving a supermassive black 
hole - the answer to the question, "What lies beyond core collapse?" 
can be concretely answered. 

b) Observational Motivation 

The presence of a supermassive black hole has been invoked often to 
explain diverse forms of 'anomalous* activity observed at the centers 
of various stellar systems. Table 2 offers a glimpse of this trend. 

c) Computational Motivation 

A massive black hole in a relaxed star cluster provides a unique cosmic 
setting in which to solve the 2+1-dimensional Fokker-^lanck equation. 
The problem is highly nonlinear, multidimensional and is characterized 
by widely varying length scales. These attributes are particularly 
appealing to a computational physicist, Thus, for all its deceptive 
simplicity ("merely" Newton's laws of motion in a weak gravitational 
field for N point-masses), the problem of a massive black hole in a 
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relaxed stellar system poses an exciting and difficult computational 
challenge. 

In recent years, "computational field theory on a space-time 
lattice" has become a booming enterprise. This activity is pursued by 
many-body theorists in several branches of physics, including solid-
state, particle, plasma, astrophysics and relativity. The Fokker-
Planck problem discussed in this paper falls into this broad category 
of computational problems: the 'field' here is Newtonian gravity and 
the 'space' is E-J phase space. 

Progress achieved in solving a nonlinear problem in physics often 
transcends the specific discipline in which the problem was originally 
formulated and the specific application initially under investigation. 
It was with this notion in mind that the Cornell group initiated its 
study of the massive black hole problem. 

TABLE 2 OBSERVATIONAL BASTS FOR STTPERMASSIVE BLACK HOLES IN STELLAR 
SYSTEMS 

Phenomenon Examples References 

optical 
light 
'cusps' 

NGC 6624, 6681 and 7078 (M1<5) Djorgovski and King (1984), 
M87 Young et al. 1978 

star count 
'excesses' 

NGC 1R51 Bahcall et al. (1977) 

velocity 
dispersion 
rise 

M87 Sargent et al. (1978) 

X-ray X-ray globular clusters; 
sources AGNs and quasars 

Grindlay (1Q77); 
Gursky and Schwartz (1977) 

broad 
emission 
lines and 
rapid time 
variability 

AGNs and quasars; 
(e.g. NGC 4151 ) 

Strittmatter and 
Williams (1976); 
TTlrich et al. (1984) 

energetic 
activity: 
high lumi­
nosities and 
jets 

AGNs and quasars Rees (1984) 
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III. HISTORY OF THE PROBLEM 
Given the many motivating factors outlined in the previous section for 
considering the influence of a massive black hole in a star cluster, it 
is not surprising that an enormous amount of work has been done on this 
problem by a very large number of researchers over the years. Indeed, 
virtually every dynamicist has thought about this issue at one time or 
another and a good many have published on the subject! 

With this in mind, it is amusing to trace the historical develop­
ment of the topic. A light-hearted version of such a review is given 
in Box 1. Please note that this capsule summary of some of the high­
lights in the formulation and analysis of the problem is both highly 
personalized and very incomplete. Other authors may rightfully have an 
entirely different perspective on the development of the problem. It 
is also hoped the reader will excuse this author for dramatizing the 
Cornell group's contributions during this brief stroll down Memory-
Lane. They are mentioned mainly to show the extent of the group's 
interest and involvement in the subject and not to attach undue 
significance to our work. 

IV. FORMULATION OF THE IDEALIZED PROBLEM 

In its simplest version, the problem focuses on the steady-state 
distribution and tidal disruption rate of bound stars near a central 
black hole M embedded in a static cluster. In this version, one makes 
the following basic assumptions (Bahcall and Wolf 1976; Lightman and 
Shapiro 1977): 

1 . A massive hole, M, is situated at the center of a spherical 
cluster containing a very large number, N, of stars in the core. 

2. All stars have equal mass m « M and radius r. 
"5. The mass, M, is significantly less than the mass of the 

cluster core but much larger than the total mass of (bound) stars 
inside the accretion or 'cusp' radius ra, where 

~ GM ~ A v l r r2 _ / <v2> ^"1 r 4 x 10 pc ' a 
<v2> \100 km2/s2/ 

\ , (2) 

Here <vO is the mean squared velocity dispersion in the core and 
M^ = M/103 M0. 

4. Conditions in the central core of the cluster remain constant 
in time, so that a steady-state can be achieved near the black hole. 
The ambient (unbound) core stars far outside ra satisfy an isothermal 
distribution. 

5* A star is tidally disrupted and removed whenever it passes 
within a distance r of M, where 
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Box 1 

THE DYNAMICAL ANALYSIS OF MASSIVE 
BLACK HOLES IN STAR CLUSTERS : 

SOME "GOLDEN MOMENTS" 
AUTHOR(S) CONTRIBUTION (S) REMARKS 

EINSTEIN (1939) Shows impossibility of 'Schworzschild . . . 
singulorities' in static spherically symmetric Relativislic 
collisionless clusters of circularly orbiting stellar dynamics 
particles is born ( 

ZEL'DOVICH and POOURETS (1965) 
IPSER (1969) 
FACKERELL ,IPSER and 

THORNE (1969 ) 

Suggest how gravothermal catastrophe' 
and collisions might drive a cluster 
relativistically unstable, leading to 
catastrophic collapse and supermassive 
BH formation 

Clusters of 
l i t t le BH's 
can produce a 
big BH 

SPIT2ER (1971 , 1975) 
LYNDEN-BELL (1967,1969) 
COLGATE ( 1967 ) 
SANOERS ( 1970 ) 

Suggest, alternatively, how 'gravothermal Analysis of late 
catastrophe' might drive star collisions and core collapse 
coalescence, leading to buildup of forces abandon-
supermassive stars ond possibly, super- ment of point-
massive BH's mass approx. 

WYLLER (1970) 
WOLFE and BURBID6E (1970) 
TRURAN and CAMERON (1972 ) 

Suggest that a supermassive BH in a star 
cluster might be uncovered by enhanced 
star density around it 

The stage is set \ 

PEEBLES (1972) ( a, b) Insightful formulation of BH in glob cluster 
problem: Argues for 

(1) delineates role of tidal disruption of p - 3 / 4 
stars by BH- inward ?% outward^* whereas 

(2) suggests possibility of observable p = 1 / 4 is more 
light 'cusps' appropriate 

(3) suggests nonthermal power-law cusp' 
distribution function : 

f (E)CC | E | P 

>n( r )CCr -<P + 3 '2> 
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Box 1 ( con t . ) 

AUTHOR(S) CONTRIBUTION (S) REMARKS 

BAHCALL and OSTRIKER (1975) 
SILK and ARONS (1975) 

BAHCALL and WOLF (1976,1977) 

ZEL'DOVICH and NOVIKOV (1971) 
HILLS (1975) 

FRANK and REES (1976) 
LIGHTMAN and SHAPIRO (1976 a,b) 

SHAPIRO (1977) 

MARCHANTond SHAPIRO (1978) 
COHN and KULSRUD (1978) 

GRINDLAY (1981,1983) 
GRINDLAY et.al. (1984) 

Suggest supermassive BH (M/fvU~102 -103) The search 
as the source of X-rays in globular clusters is on! 

Careful 1D FP calculation of f (E) and n ( r ) : "The cusp 
p r V4 ; formulate detectability criteria; unveiled" 
estimate rms radial offset of BH from center 

Stellar capture rate by BH's in galaxies 
is estimated 

Stellar capture rate by BH's in glob clusters 
is estimated ; approximate 20 FP deter­
mination of f (E,J ) , n (r ) , *? and % , including 
scaling 

The BH 
appetite is 
assessed 

Homologicol model for time-dependent 
evolution of cluster with BH : core collapse 'Born again' 
halted and reversed ; eventual cluster disso- clusters 
lution in Galactic tidal field. 

Careful 20 FP calculation of f ( E , J ) , n( r ) 
T'andf 

Precised") positions of 8 cluster X-ray 
sources are measured by the Einstein 
Observatory : their radial offset argues 
against massive ( M / M Q > 3) BH's 

Bock-of-envelopes 
replaced by large-
scale computations 

'The saddest 
words of 
Mice and Men..." 

LIGHTMAN, PRESS and 
ODENWALD (1978) 

FALL and MALKAN (1978) 
LIGHTMAN (1982) 
COHN ond HUT (1984) 

Preliminary analysis of cluster data for 
post - collapse behavior 

Dynamical 
model builders 
take note! 
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Box 1 (cont.) 

AUTHOR(S) CONTRIBUTION (S) REMARKS 

ZEL'DOVICH and NOVIKOV (1971) 
HILLS (1975) 
REES (1977, 1978) 
YOUNG, SHIELDS and WHEELER0977) 
FRANK (1978) 
MCMILLAN, LIGHTMAN and 

COHN (1982) 
DUNCAN and SHAPIRO (1983) 

Application of theory to dense galactic nuclei: 
models for quasars and AGN's 

"BHs are 
where you 
find them" 
(Peebles 1972a) 

Other Contributors. Caveats and Controversies 

see, eg , IPSER (1978) 
BISNOVATYI-KOGAN, CHURAYEV and KOLOSOV (1982) 
DOKUCHAYEV and OZERNOI (1977) 
LIN and TREMAINE (1980) 
NORMAN and SILK (1982) 

rD - r (M/m) 1 ^ ~ 2 x 10 pc IT 

R 
00 

Immediate consequences of the assumption of large N are the 
following familiar results: 

1a. Only a negligible fraction of the stars in the cluster are in 
binary systems (Spitzer and Hart 1971). 

1b. The predominant relaxation process between stars is via 
repeated, two-body, small-angle scattering in the hole's r~1 "Coulomb" 
potential. 

1c. The dynamical timescale t<j is significantly shorter than the 
relaxation timescale t r everywhere. Thus, by Jean's Theorem, the dis­
tribution function depends only on E (energy) and J (magnitude of 
angular momentum): f = f(tf,j). 

The goal, then, is to calculate f(tf,j). Given f(tf,j) we can then 
determine the steady-state density profile n(r) and rms velocity pro­
file vrms(r) of bound stars in the cusp. In addition, we want to 
determine the rate of tidal disruption of stars by the hole, F, which 
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in steady-state is precisely equal to the net inward drift rate of 
stars from the isothermal core into the cusp- Finally, we need to 
determine the corresponding cluster heating rate, E> due to the de­
struction of bound stars at r by the hole. 

V. APPROXIMATE SOLUTION OF THE IDEALIZED PROBLEM 

a) Simple Scaling Argument 

Following Shapiro and Lightman (1976) we present here a simple scaling 
argument for the form of the stellar distribution inside the cusp. The 
derivation focuses on bound stars well inside ra but far outside r^. 
As Peebles (1972 a,b) originally pointed out, these stars cannot main­
tain thermal equilibrium with the ambient core stars, due to disruption 
at rj). On the other hand, stars deep in the cusp but far outside rj) 
should presumably be moving nearly isotropically, so it is reasonable 
to look for a scale-free, isotropic, power-law distribution function of 
the form 

f(E) <* |E| P . (4) 

Now from eqn. (4) and the assumptions listed in Section IV it immedi­
ately follows that the mean energy per unit mass of star at r is given 

E - - GM/r , (5) 

the stellar velocity dispersion is given by 

<v2> - GM/r , (6) 

and the stellar density profile is given by 

n(r) « r"<P + V2) f ( 7 ) 

so the problem of determining the stellar distribution reduces to 
finding p. 

Focus, then, on stars in a typical spherical shell between r and 
2r in the cusp. The net inward flux of stars is then 

F ~ n^r^ r = constant, independent of r , (R) 
tp(r) 

where tp is the net diffusion timescale for inward star transport in 
the cusp. The net outward flux of energy is 
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E ~ . T' r i = constant, independent of r , (q) 
%(r) 

where tp is the net diffusion timescale for outward energy transport. 
In steacly-state F and E are constant, independent of radius. Now 
eqns. (8) and (p) immediately relate tp and tp: 

tp « tp r"1 . (10) 
Thus tp is shorter than tp because for each star moving inward from 2r 
to r there is almost simultaneously a corresponding star moving outward 
from r to 2r, so that the net star flux is small. However, at vj) there 
are no outgoing stars so the net diffusion timescales for star and 
energy transport are comparable there. This fact determines the pro­
portionality constant in eqn. (2): 

tE(r) ~ (rD/r) tp(r) (11) 

Now no quantity can be transported in a relaxed cluster on a time-
scale shorter than the local relaxation timescale, 

2 3/2 
t - < V > . (12) 

G2m2n2 

So setting tp(r) (< tp(r) for r > r^) equal to tr everywhere and using 
eqns. (s), (b) and (12) in eqn. (p) yields 

n(r) <* r" , r » r » r̂  O^) 

or, from eqn. (6), 

P = 1/4 . (U) 

This result was first derived by Bahcall and Wolf (1976) (hereafter BW) 
from a detailed integration of the 1-dimensional "Fokker-Planck equation 
for f(E). The density profile in a cluster containing a black hole is 
shown schematically in Fig. 1. 

b) Some Immediate Observational Consequences 

(1) Black Hole Mass Limits. Upon deriving the bound star distribution 
function, BW showed how it could be applied observationally to set an 
upper limit to the mass of any central black hole in a star cluster. 
To detect a massive black hole it is necessary to resolve the cusp re­
gion r < ra. If the cluster is located at distance d from the earth, 
with the cusp subtending an angle 6 , we have from eqn. (2) 
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logn(r) 

log r 

Figure 1: The stellar density n(r) as a function of radius r in an 
isolated spherical cluster containing a massive, central black hole. 
In the absence of a black hole, the isothermal core extends from r=0 to 
the core radius at r=rc and there is no cusp (dotted line in I). In 
the presence of the galactic tidal field, the density falls sharply at 
the galactic tidal radius rrp (dotted line in III). From Shapiro and 
Lightman (1976). 
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-1 < V 2 > U 1 M , . ( 1 S ) 
10 kpcj I ^ , 2 . 2 

' MOO km / s 

which must be compared with the "seeing" disk (i.e. resolution limit) 
0g of an optical telescope: 

6g - 1" for (optimal) ground based observations, 

~ 0.1" for the Space Telescope . (16) 
Now the conservative criterion established by BW for believing 

that a black hole is present in a cluster (i.e. the number of stars 
within a projected angular radius 0 S from the cluster center is at 
least F times the unperturbed value for the core, where F ~ 3-10) 
yields for the minimum detectable black hole mass the value 

(detectable) © (17) 
100 km2/s2' 

where 6C is the angular radius of the cluster core. 
Evidently, ground based observations are only sensitive to black 

hole masses greater than ~ 5 x 10^ M^ while future ST observations can 
detect somewhat smaller masses [see the article by Bahcall in this 
Proceedings for further discussions of planned ST observations of 
central cusps in clusters and the associated complications]. Applica­
tion of eqn. (17) to ground based optical observations of the central 
density profiles in several X-ray globular clusters indicated central 
black hole masses (if present) less than ~ 10^ MQ. This conclusion is 
generally consistent with the results of Bahcall et al. (1975) for NGC 
7078 (M1<5), of Bahcall (1976) for NOC 6624 and of Bahcall and Hausman 
(1976) for NOC 6440 and 6441. 

(2) Cusp Profiles. In principle, the observation of an optical light 
(projected) surface density profile increasing like 

a (stars pc"2) - r"(p+1 / 2 ) ~ r~V* (1R) 

toward the center of a relaxed cluster would provide strong evidence 
for the presence of a central black hole. In practice, however, this 
observational test is almost impossible to apply. The difficulty stems 
from the fact that, observationally, it is not easy to distinguish 
between a black hole induced cusp and, say, an isothermal profile 
(a ~ r~') predicted by several theories for the post-collapse halo of a 
cluster [see Tnagaki and Lynden-Bell 1983, Heggie 198*5, Goodman 198*5, 
and papers in this Proceedings for theoretical discussions of post-
collapse clusters without black holes; see Djorgovski and King 1984 and 
papers by King and Bahcall in this Proceedings for discussions of the 
observational difficulties!. 
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A more distinguishing characteristic of cusps around black holes 
is the velocity dispersion profile Teqn. (6)1. The Keplerean rise in 
<v2> with decreasing r discriminates between black hole cusps and iso­
thermal halos, where <v^> - constant. Unfortunately, velocity profiles 
are more difficult to measure than light profiles. 

(3) Black Hole Cluster Locations. BW and Lightman (1976) showed that 
in a relaxed cluster core the projected radial offset, Rx, from the 
core center of a heavy mass Mx satisfies 

<Rx> - 0.7 rc q"1/2 , q » 1 (19) 

where q = Mx/m is the ratio of the heavy mass to the mean stellar mass 
m in the core and rc is the core radius. This result has been applied 
statistically by Qrindlay et al. (1984) to eight X-ray globular 
clusters for which precise 0") positions of the X-ray sources have 
been measured with the Einstein X-ray Observatory. From the rather 
large offset of these sources from their cluster centers, the X-ray 
source masses were determined to be in the range 0.9 - 2M0. One thus 
concludes rather definitively that the observed globular cluster X-ray 
sources are not supermassive black holes Tsee Crindlay, this volume, 
for further discussionl. Note that this conclusion by no means rules 
out the possibility that a massive black hole exists at the centers of 
these clusters - only that the observed X-ray sources are not massive 
black holes. 

c) The Disruption "Loss-Cone" 

Any discussion of the distribution of stars around a black hole which, 
like the one in Section V.a, presumes an isotropic stellar velocity 
profile everywhere, f = f(fl), cannot be entirely correct. "For con­
sider, say, those highly eccentric stars which possess sufficiently low 
J that, at pericenter, they wander inside rj). These stars are dis­
rupted inside rj) and are immediately removed from the system. Clearly, 
then, the stellar distribution function must depend on J as well as ft, 
as originally emphasized by Prank and Rees (1976) and Lightman and 
Shapiro (1977). 

To appreciate the two-dimensional (anisotropic) character of the 
problem, consider the distribution of bound stars in velocity space as 
depicted in Pig. 2. Focus on stars of a given energy *! at radius rpj. 
All stars of energy 13 move with the same speed vg = (GM/r]g)1/2 at r^; 
only the directions of their velocity vectors vary. If their instan­
taneous positions in velocity space are marked by the location of the 
tips of their velocity vectors, then these stars will be found on the 
surface of a sphere in velocity space, as shown. At this radius stars 
with maximal angular momentum J m ax^) move in a circular orbit about 
the hole. Stars with critical angular momentum Jmin(E) Just graze the 
tidal disruption radius rj) at pericenter. As is clear from the figure, 
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(a) 

To massive star 

(b) 9 > > 1 

Figure 2: (a) Velocity distribution for ingoing stars with fixed 
energy fi, radius rp; = GM/21RI, and speed v = (2 MR|)1 /2. Stars with 
angular momentum J 'in the range Jmin(E) « J < Jmax^ are distributed 
nearly uniformly on the velocity sphere, where 

Jmin(^) = [2(W + 
GM/rt)l1/2 rt and Jmax(ft) = GM/(2 E )1/2. Stars scattered into the 
loss cone with J <_ Jmin(R) may be removed from the system in an orbital 
period. (b) The velocity sphere viewed from below. The quantity fe 
represents the dispersion in AJ suffered by a star in one orbital 
period due to stellar encounters; q(fi) = jl/Jmin^)* T h e Pnase space 
density of stars outside the loss cone falls rapidly with J as J + Jmin 
when q « 1 (the "diffusion" limit), but the density remains nearly uni­
form when q > 1 (the "pinhole" limit). In each dynamical time only 
stars in the ring Jmin < J £ Jmin + J2 m a v e n t e r t h e l o s s cone- F r o m 
Lightman and Shapiro (1977). 

q « 1 
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the region J < Jmin^^ maps out a "loss-cone" at the south pole in 
velocity space: stars inside this cone at pericenter are destroyed 
within one orbital period. 

Far from the disruption loss-cone, those stars with Jmax >_ J * 
Jm±n are barely affected by the cone and distribute themselves nearly 
isotropically on the velocity sphere. However, near and inside the 
loss-cone, the stellar distribution is depleted. This depletion in 
velocity (or j) space drives a net flux of stars per unit energy, F^, 
into the loss-cone from the ambient quasi-isotropic region. It is this 
J-space depletion and corresponding differential loss-cone flux that 
have been ignored in the naive 1-dimensional analysis described above. 

Now consider how the stars move on the velocity sphere. In each 
period, stars experience a small rms change in angular momentum, J2> 
due to gravitational encounters with their neighbors. This change 
causes them to move slightly on the velocity sphere, much like bees 
buzzing around a hive. What happens to those stars near the loss-cone 
depends critically on the ratio 

q '= ̂ / ^ ( E ) (20) 

which, in turn, depends on E. There are two extreme possibilities: 
(1) q € 1, in which case the change in J is sufficiently small that 
stars enter the loss-cone via two-dimensional diffusion. In this 
"empty loss-cone" case, the distribution function falls rapidly to zero 
at J=Jmin because any star found well inside the loss-cone would be 
destroyed in one period, long before it could be scattered out of the 
loss-cone; (2) q > 1, in which case the change in J is larger than the 
loss-cone opening so that most stars which reside inside the cone at 
apocenter manage to scatter out by the time they reach pericenter and 
are not disrupted. The distribution function remains nearly isotropic 
even inside the loss-cone in this "full loss-cone" case. 

There exists a critical energy E = ^>cv±^ defined by 

q (E ..) = 1 (21) 
crit 

Stars with energy Ecrit typically reside at a radius 

r .. ~ GM/IE I (22) 
crit I critI 

from the black hole. This energy marks the transition between the 
"full" and "empty" loss-cone regimes. 

Any attempt to analyze rigorously the two-dimensional character of 
the stellar distribution function f(E,j) around a massive black hole 
must deal carefully with the disruption loss-cone region in phase 
space. In particular, numerical routines constructed to determine 
f(E,j) must be able to handle stars reliably in the two opposite 
extreme regimes, q « 1 and q » 1 as well as handle stars in the 
critical transition regime in between. This realization was one of the 

https://doi.org/10.1017/S0074180900147618 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147618


MONTE-CARLO SIMULATIONS OF THE 2+1 D FOKKER-PLANCK EQUATION 389 

key factors governing the design of the 2+1 Monte Carlo simulation code 
described below. 

d) The 2+1 Eokker-Planck Equation 

The 2+1 Fokker-Planck equation for E(E,j) is given by (Lightman and 
Shapiro 1977; hereafter LS) 

P(E)!I = - M f e l + l ^ L r f ( e i
2 + e 2 ) ] - I M f J j J 

3 t 8E ] 2 _ 2 1 d J 3J ] 

3E 

+ 1_ £. rfj(j . 2
 + i 2)1 + 1 JL \t3(e.j. ♦ ?2)1 , 

2J »T2 J 3ff3J 
8 J (2S) 

which must be solved in steady-state for the idealized problem formu­
lated in Section IV. In eqn. (23), e^ and j^ are the mean changes in 
energy and angular momentum per orbital period P, e£ anc* «1? are ^ne 

dispersions about these means, and ̂  is the correlation between £? an(^ 
J2 for a star with fixed energy and angular momentum. These orbital 
perturbations are obtained directly from the locally defined velocity 
diffusion coefficients by integrating over orbits as shown in LS and in 
Shapiro and Marchant (1978). 

Equation (23) is a 2+1 dimensional, integro-partial differential 
equation. Its nonlinear character is "hidden" by the fact that the 
orbital perturbations appearing in the equation are themselves 
integrals over f. 

Consistent with the assumptions listed in Section IV, eqn. (23) 
must be integrated subject to the following boundary conditions: 

i) The distribution of unbound stars is isotropic and isothermal: 
i.e. f satisfies 

9 _^/9 9 
f = (2TTV ) ' n exp (-E/v ") , E > 0 (24) 

where v0 is the constant line-of-sight velocity dispersion in the iso­
thermal core and n0 is the core density. 

ii) The distribution function vanishes for J > JmSLX, i.e. f = 0 
for J > Jmax. 

iii) Stars are consumed by the black hole if and only if they lie 
within the loss cone !~J <_ Jmin(^)~l when they are at pericenter; that 
is, stars are destroyed when they are physically within the disruption 
radius, f = 0, r < n). 

Note that (iii) is the precise statement of the loss-cone boundary 
condition. It is not appropriate to replace (iii) by "simplifications" 
such as f = 0 for J < Jniin» which is not true in general (see Section 
V.c). 
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In addition, eqn. (23) is subject to the initial (steady-state) 
condition 

^ = 0 (25) 
dt 

e) Approximate Solution of Equation (23) and Scaling 

Before discussing detailed Monte Carlo simulations of eqn. (23) for 
f(E,j) it is useful to summarize the results of a crude analytic analy­
sis of the two-dimensional problem by LS [see also Frank and Rees 
1976]. Indeed, the availability of the analytic analysis and the scal­
ing behavior which it predicted proved crucial to the construction of a 
reliable simulation code to solve the problem more accurately. 

(1) Bound Star Distribution (E < 0). LS found that the distribution 
could be written approximately in the power-law form of eqns. (4), (O 
and (7), with 

p « 1/4 + logarithmic correction terms 

The correction terms are small except near rj). Hence the solution of 
BW remained valid in the outer (observable) regions of the cusp. 

(2) Critical Radius. The critical radius defined by eqn. (22) was 
found to satisfy 

^ -4/q 32/9 „ -20/27 
rcrit/ra * °'1 *• V* N3 (2*} 

where 

n- = n /(5 * 10 PC~ ) and v- = v /(lO km s" ) (27) ^r 0 ^ o 

and where m = M0 and r = R0. Thus one obtains the important result 
that rCTn resides inside the cusp for typical globular clusters with 
massive black holes (i.e. rcr:^/ra < 1) but outside the cusp for 
typical dense galactic nuclei (i.e. rcrit/ra > 1 assuming n0 ~ 10 
pc-3f v0 - 500 km/s, M } 10* M 0). 

(3) Loss-Cone Disruption Rate; Bound Stars (E < 0). The maximum 
possible star flux that a relaxed system can accommodate is, on 
dimensional grounds, 

t (r) 
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where tr is the local relaxation timescale. LS found that the differ­
ential loss-cone disruption rate Fg (stars/time/specific energy) 
peaked sharply at E c r£ t and that the total disruption rate satisfied 

0 
F E / F E d E ~ Fmax(rcrit)/ln ^ c r i t ' V <2Q) 

-M/rD 

- I*"7 ^ U / 9 v*~49/9 M 3
6 1 / 2 7 yr"1 , (30) 

where we have neglected logarithmic variations in eqn. (29). The cor­
responding core heating rate due to disruption was found to be 

0 

EE I FE |E| dE~ F[-2L)ln (rcr.t/rD) (31) 
-M/rD * crit 

(4) Loss-Cone Disruption Rate: Unbound Stars (E>0). Unbound stars 
can also enter the loss-cone at pericenter and be disrupted. Their 
rate of disruption was found to be 

F ° * F ( rcrit/ ra ) 5 M • (32> 

Accordingly, the bound star disruption rate dominates the unbound rate 
for typical globular clusters but the reverse is true for dense 
galactic nuclei. A similar result applies to the relative heating 
rates, although for unbound stars, is negative and corresponds to 
core "cooling": 

E U - v 2 F U . (33) 
o 

f) Time-Dependent, Homological Core Evolution. 

Suppose we remove the assumption of steady-state. How will a relaxed 
cluster core respond with time to the presence of a central black hole? 
This question motivated Shapiro (1977) to construct a simple homologi­
cal model for the evolution of a globular cluster core with a central 
hole. The equations were those employed by Ambartsumian (1938) and 
Spitzer (1940) in their simple "evaporation model" for core collapse, 
modified by terms accounting for the effects of a central hole. The 
key effects considered were the tidal disruption of bound stars by the 
hole (eqn. 28) and the associated heating of the core which accompanies 
this process (eqn. 31). 

https://doi.org/10.1017/S0074180900147618 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147618


392 S. L. SHAPIRO 

The resulting evolution of the cluster core radius with time is 
shown in Fig. 3 for various initial black hole masses. In all cases, 
the hole eventually manages to halt and reverse core collapse. At late 
times the core expands asymptotically to infinity according to 

2/3 (34) 

1.0 

0.0k 
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Figure 3: The core radius R£ as a function of time t (in units of the 
initial relaxation time Tr = 6.2 * 10^ yr) for a cluster with an ini-
tial core density nc =0.2, radius Rc = 0.5, and black hole mass M3 
between 0 and 1. Core parameters are expressed in the following non-
dimensional units: n* = nc/(5 * 10^ pc"^), R^ = Rc/d pc), M3 = 
M/(1O3M0). Massive central black holes invariably halt and reverse 
core collapse. From Shapiro (1977). 

This behavior is thus quite analogous to that found by Henon (1961; 
1975) for cluster cores heated by central binaries. In spite of the 
crudeness of the homological model, it does suggest that core re-
expansion may be a generic feature of post-collapse evolution, whatever 
the central energy source. It also points to the dissolution of a 
globular cluster in the Galactic tidal field as a plausible final 
outcome (Wielen 1971; Shapiro 1977). 
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VI. THE MONTE CARLO APPROACH 

a) Key Numerical Difficulty: The Problem of Multiple Lengthscales 

Simulating the full 2D problem rigorously by means of a Monte Carlo 
scheme immediately poses some "technical11 difficulties. The key diffi­
culties are associated with the vast dynamical range spanned by the 
parameters describing a relaxed cluster with a massive, central hole. 
This large dynamical range is in turn due to the existence of multiple, 
widely disparate length scales characterizing such a system. In this 
respect, a star cluster containing a massive black hole is not unlike 
many other multidimensional, nonlinear, many-body systems whose dynami­
cal behavior on large scales requires detailed knowledge of behavior on 
small scales, and vice versa. 

Specifically, consider the idealized problem posed in Section IV 
and focus on the bound stars (E < 0) . They occupy the region rj) < r < 
ra, which spans over six decades in radial coordinate space and a 
corresponding six decades in E ~ GM/r phase space. The associated 
number density of stars in the cusp, N(E) a E "9/4 thus decreases by 
over 14 decades through the cusp! This fact poses the following 
numerical challenge: how do we achieve statistical reliabilityiat high 
E| deep in the cusp with only a finite number of stars at low 

& 
at 

outer edge of cusp? 
Consider next the position of bound stars in J-space. They occupy 

the region Jmin(E) < J < J m a x(E), where the ratio Jmin/^max varies 
between (rD/ra)l/2 - lCT3 £ Jmin/Jmax i 1. The small value of this 
parameter, which describes the "opening angle11 of the disruption loss-
cone, throughout most of the cusp poses the problem: how do we achieve 
accuracy near the relatively small loss-cone to enforce the all-
important tidal disruption boundary condition? 

Now consider the time variable. We first note that in a relaxed 
Fokker-Planck system, it is not so much dynamical or orbital time, t^ 
which matters but "only" the ratio of t^ to the local relaxation time, 
tr. But even so, this ratio scales like t(j/tr ~ E ~ 5/4 in the cusp 
and thus varies between 10"H < t<i/tr < 10"^. This vast variation 
poses the problem: how do we follow stars for many orbital periods -
some for many more than others, depending upon E - before they reTax? 

Finally note that only the bound stars entered into the above 
considerations. For general problems where the unbound star distribu­
tion is not fixed, a whole new set of lengthscales (e.g. core radius, 
Galactic tidal radius, etc.) enter the discussion and increase the 
dynamical range of the system even further! 

b) Confronting the Difficulty 

Below we summarize some of the tricks we have incorporated in our 2+1 
Monte Carlo simulation scheme to handle the problem of multiple length-
scales. As these tricks, as well as the problems they are designed to 
overcome, are quite general in character, it may prove useful to in­
corporate them in other simulation codes. 
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Before discussing them we 
character of the Fokker-Planck 
pseudo-linearization device of 
which relaxes by scattering not 
fixed 'field1 star background d 
Spitzer 1962). Of course, the 
orbital perturbations it induce 
vals to match the evolving ftes 
self-consistency (see Box 2). 

first note that the highly nonlinear 
equation is treated by the familiar 
following a 'test1 star distribution 
against itself directly, but against a 
istribution (cf. Chandrasekhar 1942; 
1 field1 star distribution and the 
s are recomputed at regular time inter-
t1 star distribution, thereby achieving 

Box 2 
MONTE-CARLO SIMULATIONS IN ( E , J ) SPACE 

'FIELD'STARS vs 'TEST1 STARS 

(start) 

choose initial'field'star distribution 
f = f ( E , J , t0 ) 

I 
distribute initial 'test'stars in E-J bins: 
N (E,J , t 0 ) = 8 7 r 2 J P ( E , J ) f ( E , J , t 0 ) 

■1 
isotropize f: 

f (E,t)=V2 j £ 8 ( E ) f f (E,J , t ) JdJ 

1 
tabulate diffusion coefficients on E-J grid using f 

I evolve 'test1 particles: 
E —E + AE, J - J + A J , t — t + At 

I 
bin 'test' particles and get new 'field' 

particle distribution: 
n E . J . n ^ S T T ^ P t E . J j r ' N f E . J . t ) 

T 

_ Q 2 l U e J U n ^ 
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We employ one approximation in our application of the method: the 
orbital perturbation coefficients, which control the motions of 'test1 
stars in phase space, are computed from the J-averaged (isotropized) 
field-star distribution. This approximation is reasonable whenever the 
field-star distribution does not vary greatly from isotropy, as is the 
case in the black hole problem. 

Box 3 

PARTICLE 'CREATION-ANNIHILATION1 SCHEME; 
"DYNAMICAL RENORMALIZATION" 
'Test-star1 Energy-level diagram: 

'creation - annihilation' boundary-, 

N, 'parent' (weight: 1) 

log|E| 
create 
N 'clones' (weight: VN) 

(toBH) 

annihilate all but 1/N 

A 
i 
i 

o 

^ y^s 

i 
A 

/ 

s 
1 \ m 

\ 

^ 
t 

\ 
1 

/ 

i 

K 

\ 
f 

1 

/ \ 
I I 

^_^ 
) particles at t 

particles at t + At 

"Put particles where you need them" 

https://doi.org/10.1017/S0074180900147618 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147618


396 S. L. SHAPIRO 

1) Particle 'Creation-Annihilation1 Scheme. To provide sufficient 
numbers of test stars and thereby guarantee statistical reliability in 
low populated regions of phase space (e.g. high E regions in the 
cusp) we construct a particle 'creation-annihilation1 scheme, illus­
trated schematically in Box 3. Specifically, at predeterminated 
boundaries in E-space, stars diffusing toward higher E generate 
"clones" which may, themselves, subsequently diffuse toward the black 
hole independently of their "parent". To prevent artificial numerical 
contamination, these clones are prevented from crossing back across the 
energy boundary below which they formed, and, instead, are removed from 
the system if they attempt to do so. Since all test stars are dynami­
cally coupled and interact only with field stars, there is no nonlinear 
feedback associated with this procedure. 

Our method for accurately surveying many decades in phase space by 
particle 'cloning1 has much in common with the Renormalization Group 
applied elsewhere in many-body physics. Accordingly, we sometimes 
refer to our procedure as 'Dynamical Renormalization'. 

2) 'Time-step Adjustment' Scheme. To reconcile the very short 
dynamical timescales t<j associated with loss-cone consumption, with the 
rather long timescales associated with 2-body relaxation, tr > t^, we 
employ a 'time-step adjustment' algorithm (Box 4). That is, the size 
of an individual test particle time-step is determined by the parti­
cles' value of E and J. For typical stars, it is chosen to be some 
fraction of the local relaxation timescale and consists of many orbital 
periods (the number increasing as IE 15/4 in tfte cusp). However, for 
stars on critical trajectories (e.g. near the disruption loss-cone), 
the step size is chosen to be an orbital period so that the stars' 
position can be examined each time they reach pericenter. The ability 
to chose whether or not to follow a star on an orbital timescale gives 
maximum flexibility and efficiency to any Fokker-Planck simulation 
scheme. 

VII. MONTE CARLO SIMULATIONS OF BLACK HOLES IN GLOBULAR STAR CLUSTERS 

(a) Simulations of the Idealized Problem 

Figure 4 shows the nondimensional, isotropized distribution function 
and differential tidal disruption rate for bound stars obtained by 
Shapiro and Marchant (1978) using the E-J Monte Carlo simulation 
scheme. The isotropized profile is quite comparable to the ID BW 
profile except that deep in cusp near the disruption region 
(xj) = M/(2rj)V02) = 10^ in the case illustrated) considerable depletion 
is evident. A nearly identical isotropized profile to the Monte Carlo 
one shown here was obtained by Cohn and Kulsrud (1978), who integrated 
the 2D Fokker-Planck equation by finite-difference techniques. 
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Box 4 

'TIME STEP ADJUSTMENT1 ALGORITHM 

n=n(E,J) = number of orbital periods per Monte-Carlo time-step; 
guarantees AE/E and A J / J are « 1. 

a. "Typical" bound stars : J £ Jm a x (E) 

*d 

% tidal disruption sphere 

b. Stars near 'loss-cone : J « Jmax(E) 

"atr-)2 
wmax/ 

.'. For typical stars each step constitues many periods 
BUT |( 

stars on critical trajectories (i.e."loss-cone" orbits) can be followed 
carefully on orbital timescales. 

397 
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The region of maximum tidal disruption, as measured by E Fg, is 
strongly peaked near Ecrit» a s predicted by LS (see Section v.e). In­
deed, most qualitative aspects of the solution discussed by LS, includ­
ing the scaling, are verified by the numerical simulation. 
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Figure 4: The isotropized distribution function, "g, for the case 
xcrit = 10 anc* XD = 10 > is plotted as a function of dimensionless 
energy x = -E/vQ2 (filled circles). The function "g is normalized t 
unity at x = 0. The differential consumption rate, Fgx, is also 
plotted (filled squares); and those data points which had rather large 
error bars are distinguished (open squares). The function Fgx peaks 
sharply near xcr£t, indicating that the black hole principally consumes 
stars of energy ~ E c r£ t. The distribution gQ is the (one-dimensional) 
BW solution (solid line). From Shapiro and Marchant (1978). 
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(b) Simulations of Black Holes in Realistic Clusters 

The Monte Carlo scheme was used by Marchant and Shapiro (1979) to 
determine the steady-state distribution and tidal disruption rate of 
stars around a massive black hole at the center of a realistic King-
model stellar cluster. Here, the self-gravity of the stars is taken 
into account. The density and surface density profiles calculated for 
different assumed black hole masses are plotted in Figs. 5 and 6, 
respectively. For these computations the total cluster mass is 
Mcluster = 3.6 x 105 M0 and the core mass is M c o r e = 2 * 10^ M0. It is 
clear from the figures that self-gravity becomes important whenever the 
black hole mass is sufficiently large: M/Mcore ;> 0.1. In this limit 
the cusp does not display any distinctive structure near ra. Thus if 
such high-mass black holes reside in globular clusters, their main 
observable signature might be the lack of a resolvable cluster core. 
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Figure 5: Density of stars n is plotted as a function of cluster 
radius r for clusters with black holes with different assumed masses M. 
The ambient King-model cluster parameters are N = 3.6 x if)5 stars, vQ = 
10 km s-1, and <\>s(0) = -8vQ

2. The cluster tidal radius rt, the core 
radius rcrit, and the tidal disruption radius rd, are shown for all 
cases. All the black-hole cases show cusp profiles similar to the 
r"~7/^ power law. The effects of self-gravity near ra are evident for 
the very massive black-hole cases. From Marchant and Shapiro (1979). 
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Figure 6: Surface density of stars a as a function of the projected 
cluster radius r for some of the clusters shown in Figure 5. Note that 
the case M = 104 M0 shows no shoulder in its surface-density profile. 
In all cases, the distinctive r-3/4 

dependence of o is evident, but 
only well inside the accretion radius. From Marchant and Shapiro 
(1979). 

c) 2+1 Cluster Evolution Simulations 

By far the most significant application of the 2+1 Monte Carlo scheme 
is determining the detailed, time-dependent, dynamical evolution of a 
realistic star cluster containing a massive, central black hole. Such 
calculations were performed by Marchant and Shapiro (1980) and Duncan 
and Shapiro (1982). 

«""• I 
CM 

' O 
u_« I 

o 
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To check how well the simulation scheme could track Fokker-Planck 
evolution, the dynamical evolution of a cluster without a central hole 
was considered first. Initial data for this case consisted of a 
Plummer model (n = 5 polytrope) allowing for a finite Galactic tidal 
cut-off radius r^. In general, the familiar features of the 'gravo-
thermal catastrophe1 were revealed by our integrations. Specifically, 
the simulations of the early and intermediate phases of core collapse, 
0 < t/trh < 13.4, agreed well with earlier 2+1 Fokker-Planck simula­
tions of Spitzer and his colleagues [see paper by Spitzer in these 
Proceedings for a review and references]. Here trh is the initial 
half-mass relaxation time defined by Spitzer. Our simulations of the 
late phases, 13.4 < t/trh < 14.7, agreed well with the Fokker-Planck 
integrations of Cohn (1979, 1980). In particular, the homologous 
nature of advanced core collapse as predicted by Lynden-Bell and 
Eggleton (1980) was verified. Not surprisingly, it was found to be 
relatively independent of r^. 

t(109yr) 

(b) 

14 15 
H t r h 

Figure 7: (a) The density at ra, na = n(ra) (dashed line), and the 
core density nc as functions of time. (b) The core radius f̂  (solid 
curve) and the accretion radius ra as functions of time. From Duncan 
and Shapiro (1982). 

Confident that our scheme could handle evolution accurately, we 
next considered the effect of a central black hole. The initial data 
again consisted of a Plummer model with a finite tidal radius, but now 
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we inserted a black hole, with initial mass in the range 
0 < M£/M0 < 2000 at the cluster center at an arbitrary time t^ (which 
we"~varied) during the cluster's evolution. We found that in all cases 
core collapse is eventually reversed by the heat flux from stellar dis­
ruption by the hole. The system attains a quasi-stationary, expanding 
state, by which time the hole (if assumed to swallow most of the dis­
rupted stellar debris) has grown to several thousand solar masses. 
This expanding state appears to be roughly independent of (i) the 
initial hole mass, (ii) the time during core evolution at which the 
hole is introduced and, (iii) the value of r^. 

Figure 7 illustrates the variation with time of characteristic 
central densities and radii during the evolution. Core collapse, 
followed by re-expansion, are clearly evident. The corresponding 
growth of the black hole is shown in Fig. 8. Typically, core bounce 
occurs when the hole grows to M * 0.1 M c o r e. 

T(109yr) 
,„4 18 20 22 24 26 28 30 
io n 1 i 1 i 1 1— 

0.1 
(b) 

13 15 16 
t(trh) 

17 18 19 

Figure 8: (a) The growth of the black hole mass M^ with time for the 
case shown in Fig. 7. The filled circles are "data" from a Monte Carlo 
simulation, while the smooth curves represent homological solutions 
characterized by one free parameter ( Y ) . (b) The time evolution of the 
core radius. From Duncan and Shapiro (1982). 
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VIII. MONTE CARLO SIMULATIONS OF BLACK HOLES IN DENSE GALACTIC NUCLEI 

Dense galactic nuclei may provide more hospitable environments than 
globular clusters for forming massive black holes. Indeed, many models 
of AGN's and quasars now favor the presence of a supermassive black 
hole (M > 10^-10^ MQ) to power these energetic sources (see Table 2). 
It was therefore natural for Duncan and Shapiro (1983) to extend their 
2+1 Monte Carlo simulation scheme to study the dynamical evolution of a 
dense galactic nucleus with a massive, central hole. 

As initial data they considered King model clusters of solar-type 
stars. The core parameter for these models were in the range expected 
for AGNfs and quasars, 

2 x 10 < M /M — core © < 3 x 10 

300 < v (km/s) < 10~ — o (35) 

ft —3 7 
10 <_ n (stars pc ) < 10 , 

while the initial central black hole mass was varied between 

6 2 x 10 < M/M < 
0 

5 x 10 (36) 

In addition to tidal disruption by the black hole, stars in dense 
galactic nuclei can be destroyed by star-star collisions. These colli­
sions were incorporated in the Monte Carlo simulations, where it was 
assumed that the stars disrupted immediately upon impact and that all 
the gaseous debris liberated during collisions and tidal disruptions is 
consumed by the central hole. Accordingly, the hole grows at a rate 
given by 

M = m ( F . + F . . ) coll tide (37) 

This accretion by the hole results in a radiation luminosity given by 

L = 7 x 10 45 

1M yr -U 
erg s -1 (38) 

where £ is the assumed conversion efficiency of rest mass into 
radiation. 

The key results of this study were the following: 
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Star destructions result predominantly from collisions when the rms 
velocity v 0 exceeds the escape velocity v e s c * 620 km/s from a 
star. Destructions result predominantly from tidal disruptions 
when the reverse is true. 
The maximum stellar destruction rate achieved in these systems is 
found to be 

m F ., (max) tide 
core y l r k-2 xt -1 < 10 M yr 

9 
(39) 

for tidal disruption and 

M 
m F ,,(max) coll 

core „ .. -1 
M yr 

"coll 
(40) 

for star collisions. Here tr and t c o^ are the core relaxation and 
collision timescales, respectively, and the numerical values were 
those found for the Monte Carlo simulations (they are largely 
determined by the assumed initial conditions). 

Equations (37)-(40) thus suggest that quasars (L - 1045-10^8 

erg s~l) may be dense galactic nuclei in which physical collisions are 
occurring, while AGNfs (L ~ 10^2-10^-> erg s""*) may be nuclei where 
collisions are unimportant and tidal disruptions dominate. Similar 
conclusions have been reached by other investigations (see references 
in Box 1). 

• 
3. For late times, M, hence L, decays like 

L ~ M - t -a (41) 

where a depends on the power-law stellar profile outside the core 
and is, typically, in the range a ~ 0.8 - 1. 

Simulation results for a candidate "quasar11 model are shown in 
Figs. 9 and 10. In Fig. 9 the evolution of the density profile is 
shown. For this case the initial core relaxation time is tr £ = 4.5 x 
10^ yr while the collision time is t c o n i = 2 * 10^ yr; evidently tcoll i ̂  tr £ so collisions dominate. In this case the bound stars in 
the cusp are quickly destroyed by collisions, leaving only the unbound 
stars with a characteristic n(r) * r~"l'2 profile. In Fig. 10 the black 
hole consumption rate is plotted vs time. This rate remains constant 
for t < t c o n i while the core is""B~eing consumed, after which it decays 
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10 ,10 

10* 

10 

u 

10 

10 

10" 

I M i l l ] 

I I I I I I I 

"I 1 I I M I I | 1 1 I I M l I | 1 1 I || I I U | 

N 8 i = 2.7 
v350,i^2.9 
M QUASAR" 

0 

b 
c 
d 
e 

t(109yr) 
0 
0.13 
1.03 
5.03 

15.7 

t / tcoi i . 
0 
0.65 
5.15 

25.15 
78.5 

I I I 1 1 1 1 1 1 J I I 1 I, 
I 1 1 1 1 J I I I I I I I 

10" 101 
r(pc) 10 

Figure 9: The stellar density profile at five successive times for 
the "quasar" model simulation. The dashed curve shows the initial 
profile, while the lowest solid curve is the profile at the end of the 
simulation. The initial cluster has a core radius r^ £, star number 
N3 i and line-of-sight velocity dispersion V 3 5 Q > £ . From Duncan and 
Shapiro (1983). 

like t""1 as the hole eats its way out into the halo. From an initial 
mass of 2 x 10 6 M 0, the black hole grows to 3 x 10 9 M d by the end of 
the simulation. The maximum luminosity achieved during the cluster's 
evolution is about L ~ 10^ 6 erg s"1 (for z = 0.1), which is quite re­
spectable for a typical quasar. 
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1 0 F—'—' ' ' M l ] 1 1—I I I I M | -i—l I l i i l l ~ i 1 — I I l I f ■ | — 

N 8 f i =2.7 
v 3 5 0 , i = 2 - 9 

"QUASAR" 

- i—i—T-TT 

O 

10 b-

10 

coll, i 

\r 

' M 

\ I I I 1 I I I I I I I M i l l I I I I I I I I I I I I T I I I i i J I I I I 
10' 101 8 

Time (yrs) 
10s 10 <0 

Figure 10: The black hole growth rate M^ (« L) as a function of time 
for the case shown in Fig. 9. The dashed curve is the rate predicted 
by simple analytic arguments. From Duncan and Shapiro (1983). 

IX. THE BIRTH OF SUPERMASSIVE BLACK HOLES VIA THE COLLAPSE OF DENSE 
STELLAR SYSTEMS 

An analysis of massive black holes in star clusters would not be 
complete without some discussion of their origin. A possible scenario 
for the formation of massive holes in globular clusters via star colli­
sions and coalescence has been proposed by Spitzer (1975) and sketched 
by Lightman and Shapiro (1978) (see Section II.a). Such a mechanism 
cannot produce black holes much more massive than - 100 M , but we have 
seen that black holes in clusters can grow considerably by the consump­
tion of tidally disrupted stars (Section VII.c). This scenario has to 
be investigated in much greater detail before its likelihood can be 
properly assessed. 

Several mechanisms have been suggested for the formation of 
supermassive black holes in dense galactic nuclei (see Box 1). One of 
the most appealing is the scenario first put forward by Zel'dovich and 
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Podurets (1965). They argued that the combined effects of secular core 
collapse (i.e. the 'gravothermal catastrophe1, which they referred to 
as 'stellar evaporation1) and star-star collisions would drive a 
cluster to states of ever higher central velocity and redshift. At 
sufficiently high redshift, the cluster would become relativistically 
unstable, at which point it would undergo catastrophic collapse on a 
dynamical timescale to a supermassive black hole. They had in mind 
initial Newtonian star clusters composed of stellar mass black holes 
which would thus ultimately collapse to form a single, supermassive 
black hole. 

Some recent theoretical developments suggest that this proposal by 
Zel'dovich and Podurets (1965) ought to be regarded quite seriously. 
For the first time, it has been possible to integrate numerically the 
full Einstein field equations for an arbitrary spherical, collisionless 
gas in General Relativity (Shapiro and Teukolsky 1985 a,b). These 
integrations enable one to follow on the computer the evolution on 
dynamical timescales of relativistic star clusters, even during epochs 
characterized by total gravitational collapse and the formation of 
supermassive black holes. The formation and growth of the black hole 
can be followed accurately without the appearance of numerical or 
physical singularities. 

The original speculation of Zel'dovich and Podurets (1965) that 
star clusters become relativistically unstable at sufficiently high 
central redshift (zc ]> 0.5) has been demonstrated rigorously in per­
turbation theory (see, e.g., Ipser 1969, 1980; Fackerell, Ipser and 
Thorne 1969 and references therein). The recent numerical integrations 
described above provide further verification of this relativistic in­
stability and, more significantly, follow its nonlinear growth and the 
ultimate fate of unstable clusters. In particular, the integrations 
show quite generally that clusters of sufficiently high central red-
shift do undergo catastrophic collapse to a black hole on a dynamical 
timescale. Moreover, they reveal that, while the core may encompass 
only a small fraction of the cluster mass at the center initially, the 
hole ultimately grows to entrap virtually the entire cluster in a few 
mean orbital periods. 

The fully relativistic, Vlasov simulations of spherical star 
clusters described above provide fresh support for the Zel'dovich and 
Podurets supermassive black hole scenario. They have motivated Shapiro 
and Teukolsky (1985c) to reconsider this suggestion in greater detail, 
in light of our current knowledge of dense galactic nuclei, the gravo-
thermal catastrophe, etc. The result is summarized in Fig. 11. Illus­
trated are the evolutionary tracks of initially Newtonian, isothermal 
cores of dense stellar systems composed of neutron stars (m = 1.4 M Q ) . 
At any instant, the cores are defined by two parameters: Nc, the total 
number of core stars and zc, the central redshift in the core 
(zc a *c a vc^> where $ c is the central potential and vc is the core 
velocity dispersion, also shown). Each track is composed of two dis­
tinct segments, corresponding to two different epochs: an early, low-
redshift (z < zcon) "point-mass" epoch during which the core undergoes 
secular collapse via the 'gravothermal catastrophe1 and a later, 
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high-redshift (z >_ zco\\) "finite-radius" epoch during which star-star 
collisions and coalescences dominate the evolution. During both 
epochs, the number of core stars decrease while the central redshift 
increases. Ultimately, the core achieves relativistic central velo­
cities and redshift (z = z . ~ 0.5) at which point it undergoes total 
gravitational collapse to a black hole. The hole quickly grows outward 
and eventually swallows up most of the ambient cluster in a few mean 
dynamical timescales. 

Only those clusters which can evolve to a relativistic state in a 
Hubble time are relevant for our investigation. Also, only those 
clusters which have more than one star remaining in their core by z = 
zcrit c a n actually reach this state. These two constraints confine 
the tracks to be within the heavy lines in the figure. A similar 
figure can be drawn for clusters consisting initially of white dwarfs 
or stellar-mass black holes. 

Consider the consequences of this scenario. First, there is mini­
mum central redshift (z = z . ~ 10""̂ ) or a minimum central velocity 
dispersion (v ~ 10^ km s~*; Delow which a cluster of neutron stars 
cannot evolve to a relativistic state in a Hubble time. Although this 
minimum core velocity is large, it is not unreasonably large for con­
ditions expected in dense galactic nuclei. Indeed, consider the range 
of plausible parameters calculated for dense galactic nuclei following 
the collision-coalescence epoch which the normal stars in the nucleus 
are expected to undergo (Colgate 1967; Sanders 1970). Very likely, 
this initial collision-coalescence epoch will convert the dense, but 
otherwise normal galactic nucleus into a cluster of stellar-mass com­
pact stars - black holes or neutron stars (Begelman and Rees 1978). 
The parameter range calculated by Colgate (1967) and Sanders (1970) for 
such systems is indicated by the box in the upper left-hand corner of 
Figure 11. What is interesting is that (1) this box intersects a 
small, but finite domain occupied by those dense cores capable of 
evolving to supermassive black holes in a Hubble time and (2) the 
domain of intersection occurs in the range 10? < Nc < 10**, indicating 
that, following total gravitational collapse, the clusters will yield 
supermassive black holes with masses in the range 10' < M/M0 < 10°. 
This is roughly the mass range of black holes which can generate AGN 
and quasar luminosities via gas accretion near the Eddington limit! It 
is thus within the mass range frequently cited in black hole models of 
such systems (cf. Section VIII). 

The supermassive black hole generation mechanism in dense clusters 
discussed here is attractive and uncomplicated. It leads to black 
holes of the "right size" to explain quasars and AGNs. Whether or not 
the picture is also correct will depend on the results of more de­
tailed, future studies, both theoretical and observational. 

This work has been supported in part by National Science 
Foundation Grant AST 81-16370 at Cornell University. 
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DISCUSSION 

KING: Another version of Peebles1 remark (not due to Peebles) is 
"I'll believe a black hole when I see one." More seriously, what would 
you expect us to observe, that would distinguish between your model 
and those that are stabilized by binaries? 

SHAPIRO: As has been pointed out for a long time, black holes will 
induce distinguishing fcusp? profiles in the cores of any cluster in 
which they reside. These central cusps will take a number of forms: 
optical light cusps, star-count surface density cusps (a), and pro­
jected rms velocity cusps, Vn (averaged through the line of sight). 
Of these, the most frequently mentioned is a, which acquires the 
characteristic Bahcall-Wolf a ^ 

r-3/4 
shape. It will be difficult, 

however, to distinguish this profile observationally from asymptotic 
isothermal profiles, cr^sot^ ^ r~l, which may characterize post-collapse 
binary scenarios. However, as Marchant and I emphasized in Paper III 
of our series (see, e.g. Fig. 12), Vn may provide the best evidence 
for the presence of a massive, central black hole. This function rises 
rapidly ad Vn ̂  r~l/2 inside the core, while, as Cohn has pointed out, 
it does not increase very rapidly in clusters without massive holes. 

One should also pursue statistical studies of cumulative cluster 
data to distinguish between the different post-collapse evolutionary 
tracks that clusters follow, depending on whether they contain a 
massive black hole or binaries. One might ultimately produce !H-RT 
diagrams in which the location of clusters reveals pre- and post-
collapse evolutionary paths. This may be difficult, of course, 
particularly since at late times the post-collapse core expansion may 
be quite comparable in both scenarios. Nevertheless, this study should 
be pursued further. 

COHN: As a follow-up the previous question, I would like to note 
that the behavior of the velocity dispersion profile in a cusp should 
give the best indication of whether a massive central black hole is 
present. In a cusp around a black hole, v <* r~0*5 and is thus fairly 
steep. In contrast, in a cusp that developes as a result of core 
collapse with no black hole, the velocity dispersion is very much 
flatter, v <x r-0*11. 
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