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Abstract
Carotenoids are found in abundance in fruit and vegetables, and may be involved in the positive association of these foods with bone health.
This study aimed to explore the associations of dietary carotenoid intakes and plasma concentrations with bone density status and
osteoporotic fracture risk in a European population. Cross-sectional analyses (n 14 803) of bone density status, using calcaneal broadband
ultrasound attenuation (BUA) and longitudinal analyses (n 25 439) of fracture cases were conducted on data from the prospective European
Prospective Investigation into Cancer and Nutrition-Norfolk cohort of middle-aged and older men and women. Health and lifestyle
questionnaires were completed, and dietary nutrient intakes were derived from 7-d food diaries. Multiple regression demonstrated significant
positive trends in BUA for women across quintiles of dietary α-carotene intake (P= 0·029), β-carotene intake (P= 0·003), β-cryptoxanthin
intake (P= 0·031), combined lutein and zeaxanthin intake (P= 0·010) and lycopene intake (P= 0·005). No significant trends across plasma
carotenoid concentration quintiles were apparent (n 4570). The Prentice-weighted Cox regression showed no trends in fracture risk across
dietary carotenoid intake quintiles (mean follow-up time 12·5 years), except for a lower risk for wrist fracture in women with higher lutein and
zeaxanthin intake (P= 0·022); nevertheless, inter-quintile differences in fracture risk were found for both sexes. Analysis of plasma carotenoid
data (mean follow-up time 11·9 years) showed lower hip fracture risk in men across higher plasma α-carotene (P= 0·026) and β-carotene
(P= 0·027) quintiles. This study provides novel evidence that dietary carotenoid intake is relevant to bone health in men and women,
demonstrating that associations with bone density status and fracture risk exist for dietary intake of specific carotenoids and their plasma
concentrations.
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Nutrition is an important modifiable factor influencing bone
health(1), and thus an optimised diet could help reduce
age-related osteoporotic bone deterioration and risk for
fracture, an increasingly critical issue in our ageing population.
The significance of dietary Ca and vitamin D to bone, especially
during development, has been well established in the literature(2),
although the true benefits of supplementation in later life has
been subject to recent debate(3). Research has now begun to
appreciate that other nutrients may be similarly important. In
particular, growing evidence supports the importance of micro-
nutrients and antioxidants abundant in fruit and vegetables,
including Mg, K(4) and vitamin C(5).
Carotenoids are a class of phytochemicals found in particular

abundance in yellow–orange and dark-green leafy vegetables(6).

Their chemical structure contains a conjugated double-bond
chain forming a chromophore, which confers a specific colour,
for example, yellow (lutein), orange (β-carotene) or red
(lycopene), and provides antioxidant properties and the potential
for energy transfer reactions(6). They were originally hypothe-
sised to exert their effects on bone via provitamin A activity, as
vitamin A, in its active form as retinoic acid, is known to
regulate the balance between osteoblastic bone formation and
osteoclastic bone resorption, to up-regulate vitamin D receptors,
and to have an anabolic effect on bone, except at high doses
where it may accelerate bone resorption(7). However, some
carotenoids (lutein, zeaxanthin and lycopene) do not possess
provitamin A activity, and thus the positive effect of non-
provitamin A carotenoids on bone health supports the concept
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of a mechanism independent of vitamin A. Reactive O species
have been shown by in vitro experiments, including those using
human cell lines, and in vivo animal studies to be involved in
multiple processes with the potential to adversely affect bone
remodelling. These include suppressing osteoblastic differentia-
tion(8), increasing osteoclastogenesis(9,10) and osteoclastic differ-
entiation(10,11), and activating the transcription factor NF-κB, which
is involved in bone resorption signalling(11). Thus, the potent
independent antioxidant activity of carotenoids has the potential
to reduce bone resorption and lower fracture risk(12). In vitro
studies suggest that carotenoids may also have direct stimulatory
effects on osteoblast proliferation and differentiation(13–15).
A number of epidemiological studies have investigated links

between carotenoids and bone health. There is some evidence
of associations between higher specific carotenoid intakes
and greater bone density(16–19) or lower incidence of hip
fractures(20,21), and of higher plasma carotenoid concentrations
being associated with greater bone density(22) and a lower risk
for developing osteoporosis(23,24). However, these studies have
had limited generalisability because of their focus on discrete
population groups with a small cohort size, and on pre-
dominantly non-European participants. The current study thus
aimed to explore potential associations of dietary carotenoid
intakes and plasma concentrations (α-carotene, β-carotene,
β-cryptoxanthin, lutein and zeaxanthin, and lycopene) with the
bone density status and risk for osteoporotic fractures in a
general UK population of middle-aged and older men and
women. This was achieved using data from a large prospective
cohort and performing cross-sectional analysis of broadband
ultrasound attenuation (BUA) of the heel bone in addition to
longitudinal analysis of the occurrence of incident fractures of
the hip, spine and the wrist.

Methods

Study population

The European Prospective Investigation into Cancer and
Nutrition (EPIC) was established as a collaboration involving
ten Western European countries. EPIC-Norfolk is one of the UK
subcohorts, described in detail previously(25). A baseline health
check was attended by 25 639 free-living men and women aged
39–79 years between 1993 and 1997. A second health check
was attended by 17 304 of the participants aged 42–82 years
between 1998 and 2000. The Norfolk District Health Authority
Ethics Committee approved all procedures and written
informed consent was provided by participants according to the
Declaration of Helsinki.

Exposure variables

Dietary carotenoids. Daily dietary intakes of α-carotene,
β-carotene, β-cryptoxanthin, lutein and zeaxanthin, lycopene,
and preformed retinol, were estimated from 7-d food diaries
using the methodology described below for dietary covariates.

Plasma carotenoids. Blood was sampled by peripheral vene-
puncture at baseline, and plasma fractions with sodium citrate

were stored in liquid N2 at –196°C until analysis by reversed-
phase HPLC to determine plasma concentrations of α-carotene,
β-carotene, β-cryptoxanthin, lutein and zeaxanthin, lycopene,
and retinol(26).

The correlation between matched dietary and plasma
continuous scale variables was assessed using Pearson’s
correlation coefficient.

Covariates

At each health check, height and weight were recorded
according to standard protocols(25), and participants completed a
health and lifestyle questionnaire. Smoking status was cate-
gorised as current, former or never; family history of osteoporosis
was categorised as yes or no; menopausal status (women only)
was categorised as premenopausal, perimenopausal (<1 year),
perimenopausal (1–5 years) or postmenopausal; and hormone
replacement therapy (HRT) status (women only) was categorised
as current, former, or never users. Physical activity over the
preceding 12 months was assessed using a questionnaire, which
placed participants into inactive, moderately inactive, moderately
active and active categories using a method validated against
heart-rate monitoring data(27). A 7-d food diary was used to
estimate the dietary intake of each participant(28); participants
recorded the quantity and type of all food, drink and supple-
ments consumed within a 7-d period. Validation has shown this
to be more accurate in estimating dietary nutrient intake than
FFQ(25,29). DINER (Data Into Nutrients for Epidemiological
Research) software was used to record the 7-d food diary
information(30), before further translation of the data for nutrient
analysis using DINERMO(31). All data entries were checked by
nutritionists trained in use of the system(31). The contribution of
supplements was quantified using the Vitamin and Mineral
Supplement (ViMiS) database(32).

Outcome variables

Quantitative ultrasound measurements of the calcaneus (heel
bone) were taken at the second health check using a contact
ultrasound bone analyser (CUBA) device (McCue Ultrasonics)
following standard protocols. BUA (dB/MHz) measurements
were taken at least in duplicate for each foot of the participant,
and the mean of the left and right foot measures was used for
analysis. Each of the five CUBA devices used in the study was
calibrated daily with its physical phantom. In addition, calibra-
tion between devices was checked monthly using a roving
phantom. The CV was 3·5%. The CUBA method of bone density
assessment has been shown to be capable of predicting fracture
risk(33), and is cheaper and simpler to conduct in general
practice settings compared with the gold-standard of dual X-ray
absorptiometry.

Fracture incidence data were collected using questionnaires
at each health check, and the East Norfolk Health Authority
database (ENCORE) of hospital attendances by Norfolk resi-
dents was also available for data linkage to corroborate self-
reported data(34). Incidence of all osteoporotic fractures in the
cohort, up to the end of March 2009, was thus determined
by retrieving data using each participant’s National Health
Service (NHS) number and by searching for events logged using
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the International Classification of Diseases 9 and 10 diagnostic
codes for osteoporotic hip, spine or wrist fractures (the three
most common sites of osteoporotic fracture(35)).

Statistical analysis

The High Performance Computing Cluster supported by the
Research and Specialist Computing Support service at the
University of East Anglia was used for statistical data analysis
with STATA software (version 13; StataCorp LP.). A previous
study of this population has shown sex-specific differences in
age-related changes in bone, with greater deterioration evident
in women(33), and thus stratification by sex was used in all our
analyses. Differences between values of variables for men and
women were tested using the t test for continuous variables or
the χ2 test for categorical variables. P< 0·05 was considered to
be statistically significant in individual analyses.

Cross-sectional analyses

Cross-sectional analyses were conducted using data taken at the
second health check, combined with dietary or plasma data
from the first health check; 14 803 participants had complete
data for diet and ultrasound analyses, and 4570 had complete
data for plasma and ultrasound analyses (see Fig. 1). Multi-
variable adjusted regression with ANCOVA was used to inves-
tigate differences in calcaneal BUA across sex-specific dietary
intake quintiles of carotenoid or preformed retinol. Trend

testing was achieved by treating the median values for
quintiles as a continuous variable(36). Each model was
adjusted for important biological, lifestyle and dietary factors:
age, BMI, family history of osteoporosis, menopausal and HRT
status in women, corticosteroid use, smoking status, physical
activity, Ca intake, total energy intake, and Ca- and vitamin
D-containing supplement use, known to influence BUA in this
population(33,37–40). To help correct for dietary misreporting, the
days of food diary completed and the ratio of energy intake:
estimated energy requirement(41) were included in all diet
models. A number of different models were also tested for
comparison purposes: models using residual adjustment for
energy intake(42) where we adjusted for energy before defining
the nutrient quintiles, in place of using unadjusted nutrient
quintiles and adding energy as a covariate in the regression
model; models including dietary fat or fibre as covariates as
evidence suggests that these may affect dietary carotenoid
absorption(43); models including a variable quantifying total fruit
and vegetable intake; and models combining food and sup-
plement intakes, as excluding supplements may underestimate
total nutrient intake(44). Least square means for each quintile
were calculated for all models. To minimise missing data
exclusions, some missing values were recoded as follows:
missing menopausal status data (2·8%) as premenopausal if age
<50 years and never-user of HRT, or as postmenopausal if age
>55 years or a current or former HRT user; missing smoking
status data (0·7%) as former smokers. Participants missing data

Baseline health check
n 25 639

Missing dietary
data
n 127

Excluded if missing: age, BMI, family
history of osteoporosis, physical activity

status or HRT status in women
n 73

Fracture analysis data
n 25 566

Missing plasma
data

n 18 092

Diet fracture
cohort
n 25 439

Plasma fracture
cohort
n 7474

Second health check
n 17 304

Missing dietary
data
n 74

Excluded if missing: age, BMI, family
history of osteoporosis, physical activity

status, HRT status in women or
ultrasound measurements

n 2427

Ultrasound analysis data
n 14 877

Missing plasma
data

n 10 307

Diet ultrasound
cohort
n 14 803

Plasma
ultrasound cohort

n 4570

Fig. 1. Study population flow chart. HRT, hormone replacement therapy.
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for other variables in the multivariable model were excluded. In
separate analyses, calcaneal BUA was investigated across sex-
specific plasma concentration quintiles of specific carotenoids
in a model with the covariates described above, but excluding
dietary and supplement use data.

Longitudinal analyses

Longitudinal analyses used data from the first health check
together with data of hospital recorded fractures for the cohort
participants (all cohort hip, spine and wrist fracture cases up to
31 March 2009; follow-up time was calculated as the time
between an individual’s first health check and this cut-off date,
or death if earlier); data for diet and fracture analyses were
available for 25 439 participants, and for plasma and fracture
analyses for 7474 participants (see Fig. 1). The Prentice-
weighted Cox regression was used to investigate associations
between incidence of fractures and sex-specific quintiles of
specific carotenoid or retinol dietary intakes, or plasma con-
centrations, using the same adjustments as for the BUA models.
Missing values were treated in the same way as in the BUA
models. Total risk for hip, spine or wrist fracture was calculated
as the risk for the first occurrence of one of these fractures; this
does not consider multiple fractures, and therefore the sum of
the specific-site fracture incidences does not sum to the total.

Results

Selected characteristics are summarised in Table 1. The sig-
nificant differences evident according to sex supports our use of
sex-specific model analyses. Mean dietary and supplement-
derived intakes of specific carotenoids and preformed retinol
are shown for the study population (α-carotene, β-cryptox-
anthin, lutein and zeaxanthin, and lycopene supplement
contributions were negligible; individual means ≤150 ng/d).
However, no UK Reference Nutrient Intake values(45) for car-
otenoids are currently available for comparison. Retinol plasma
concentrations <100 μg/l are considered to indicate severe
deficiency; 100–200μg/l indicates mild deficiency(46). Three indi-
viduals (0·07%) with plasma carotenoid data in the ultrasound
cohort (n 4570) were mildly deficient according to these criteria
and one (0·02%) was severely deficient; eleven individuals
(0·15%) of the fracture cohort with plasma data (n 7474) were
mildly deficient and three (0·04%) were severely deficient.

Correlations between dietary carotenoid intakes and
plasma concentrations

A number of weak, but significant, correlations were identified
between dietary carotenoid intakes and plasma concentrations.
Dietary α-carotene intake was significantly correlated with
plasma α-carotene concentration in both men (r 0·497,
P< 0·001, n 2355, ultrasound cohort; r 0·496, P< 0·001, n 2380,
fracture cohort) and women (r 0·373, P< 0·001, n 2201, ultra-
sound cohort; r 0·368, P< 0·001, n 2219, fracture-case cohort).
Dietary β-carotene intake was significantly correlated with
plasma β-carotene concentration in both men (r 0·311,
P< 0·001, n 2355, ultrasound cohort; r 0·311, P< 0·001, n 2380,
fracture cohort) and women (r 0·280, P< 0·001, n 2201,

ultrasound cohort; r 0·275, P< 0·001, n 2219, fracture-case
cohort). Dietary β-cryptoxanthin intake was significantly cor-
related with plasma β-cryptoxanthin concentration in both men
(r 0·395, P< 0·001, n 2355, ultrasound cohort; r 0·397, P< 0·001,
n 2380, fracture cohort) and women (r 0·390, P< 0·001, n 2201,
ultrasound cohort; r 0·388, P< 0·001, n 2219, fracture-case
cohort). Dietary lutein and zeaxanthin intake was significantly
correlated with plasma lutein and zeaxanthin concentration in
both men (r 0·211, P< 0·001, n 2355, ultrasound cohort; r 0·212,
P< 0·001, n 2380, fracture cohort) and women (r 0·214,
P< 0·001, n 2201, ultrasound cohort; r 0·212, P< 0·001, n 2219,
fracture cohort). Dietary lycopene intake was significantly
correlated with plasma lycopene concentration in both men
(r 0·275, P< 0·001, n 2355, ultrasound cohort; r 0·279,
P< 0·001, n 2380, fracture cohort) and women (r 0·294,
P< 0·001, n 2201, ultrasound cohort; r 0·293, P< 0·001, n 2219,
fracture cohort). Preformed dietary retinol intake was not
significantly correlated with plasma retinol concentration in
either men (r 0·039, P= 0·056, n 2355, ultrasound cohort;
r 0·038, P= 0·062, n 2380, fracture cohort) or women (r 0·013,
P= 0·539, n 2201, ultrasound cohort; r 0·014, P= 0·516, n 2219,
fracture cohort).

Associations between dietary carotenoid intakes and
bone density

Mean calcaneal BUA values stratified by sex and quintiles of
specific dietary carotenoid or by preformed retinol intakes are
shown in Fig. 2 for the fully adjusted model (unadjusted data
are shown in the online Supplementary Table S1). In women,
significant positive linear trends were apparent across quintiles
of α-carotene intake (P= 0·029), β-carotene intake (P= 0·003),
β-cryptoxanthin intake (P= 0·031), combined lutein and zeax-
anthin intakes (P= 0·010), and lycopene intake (P= 0·005) for
fully adjusted BUA; a significant negative trend was apparent
across retinol intake quintiles (P= 0·037). Individual significant
differences in fully adjusted BUA in different quintiles v. quintile 1
were also identified for women for quintile 3 (1·5% higher;
n 1662, P= 0·023) and quintile 5 (2·3% higher; n 1662, P= 0·001)
for β-carotene intake; and for quintile 4 (1·8% higher; n 1663,
P= 0·007) and quintile 5 (1·7% higher; n 1662, P= 0·011) for
combined lutein and zeaxanthin intake (see Fig. 2). The asso-
ciations described between BUA and carotenoid intake were no
different when food and supplement contributions were com-
bined in the model, except that with the combined intake data no
trend in BUA across retinol quintiles was evident.

Associations between plasma carotenoid concentrations
and bone density

Analysis of bone density measures according to plasma car-
otenoid concentration quintiles, adjusting for all covariates
previously described, with the exception of dietary factors,
showed no significant linear trends in BUA for either men or
women (see Fig. 3). Nevertheless, a significant difference in
fully adjusted BUA was identified for men between quintile 2
and quintile 1 for plasma lutein and zeaxanthin (3·2% higher;
n 473, P= 0·015). Unadjusted data are shown in the online
Supplementary Table S2.
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Table 1. Selected characteristics of the ultrasound analysis cohort (n 14 803) and the fracture cohort (n 25 439) from European Prospective Investigation into Cancer and Nutrition-Norfolk, stratified by sex
(Mean values and standard deviations; numbers and percentages)

Ultrasound cohort* Fracture cohort†

Men (n 6490) Women (n 8313) Men (n 11510) Women (n 13 929)

Selected characteristics Mean SD Mean SD P‡ Mean SD Mean SD P‡

Age (years) 62·9 9·0 61·6 9·0 <0·001 59·7 9·3 58·9 9·3 <0·001
BMI (kg/m2) 26·9 3·3 26·5 4·4 <0·001 26·5 3·3 26·2 4·3 <0·001
BUA (dB/MHz) 90·1 17·5 72·1 16·5 <0·001
Dietary-derived intake
α-Carotene (μg/d) 406 363 403 356 0·601 390 366 389 387 0·862
β-Carotene (μg/d) 2069 1207 2036 1206 0·108 1988 1220 1958 1291 0·061
β-Cryptoxanthin (μg/d) 406 569 455 570 <0·001 378 574 426 557 <0·001
Lutein and zeaxanthin (μg/d) 1095 870 1136 930 0·006 1048 884 1087 1013 0·001
Lycopene (μg/d) 1428 1671 1289 1365 <0·001 1385 1750 1238 1470 0·001
Retinol (μg/d)§ 773 1297 622 1159 <0·001 780 1571 610 1239 <0·001
Ca intake (mg/d) 942 289 784 243 <0·001 919 298 766 249 <0·001
Total energy intake (kJ/d) 9560 2100 7242 1586 <0·001 9372 2205 7088 1653 <0·001
Total energy intake (kcal/d) 2285 502 1731 379 2240 527 1694 395

Supplement-derived intake
β-Carotene (μg/d) 39 673 68 833 0·023 41 706 65 804 0·012
Retinol (μg/d) 202 402 256 421 <0·001 180 383 238 417 <0·001
Ca-containing supplement use <0·001 <0·001

n 102 505 165 746
% 1·6 6·1 1·4 5·4

Vitamin D-containing supplement use <0·001 <0·001
n 1621 2773 2570 4273
% 25·0 33·4 22·3 30·7

Plasma concentration
α-Carotene (μg/l) 77|| 57 102¶ 69 <0·001 72** 56 97†† 74 <0·001
β-Carotene (μg/l) 200|| 124 267¶ 162 <0·001 192** 120 257†† 161 <0·001
β-Cryptoxanthin (μg/l) 76|| 61 108¶ 86 <0·001 72** 59 105†† 90 <0·001
Lutein and zeaxathin (μg/l) 198|| 85 211¶ 94 <0·001 192** 85 209†† 96 <0·001
Lycopene (μg/l) 300|| 177 320¶ 183 <0·001 290** 196 307†† 184 <0·001
Retinol (μg/l) 528|| 122 497¶ 120 <0·001 525** 128 501†† 127 <0·001

Smoking <0·001 <0·001
Current

n 555 721 1471 1691
% 8·6 8·7 12·8 12·1

Former
n 3609 2697 6233 4446
% 55·6 32·4 54·2 31·9

Never
n 2326 4895 3806 7792
% 35·8 58·9 33·1 55·9

Physical activity <0·001 <0·001
Inactive

n 1792 2188 3549 4232
% 27·6 26·3 30·8 30·4

Moderately inactive
n 1626 2714 2833 4469
% 25·1 32·6 24·6 32·1

Moderately active
n 1615 1990 2650 3096
% 24·9 23·9 23·0 22·2
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Table 1. Continued

Ultrasound cohort* Fracture cohort†

Men (n 6490) Women (n 8313) Men (n 11510) Women (n 13 929)

Selected characteristics Mean SD Mean SD P‡ Mean SD Mean SD P‡

Active
n 1457 1421 2478 2132
% 22·5 17·1 21·5 15·3

Family history of osteoporosis 0·001 0·001
No

n 6313 7792 11 203 13120
% 97·3 93·7 97·3 96·6

Yes
n 177 521 307 809
% 2·7 6·3 2·7 3·4

Corticosteroid use 0·391 0·077
Current or former (>3 months)

n 272 426 351 480
% 4·2 5·1 3·0 3·4

Never (<3 months)
n 6218 7887 11 159 13449
% 95·8 94·9 97·0 96·6

Menopausal status
Premenopausal

n 484 2342
% 5·8 16·8

Perimenopausal (<1 year)
n 272 754
% 3·3 5·4

Perimenopausal (1–5 years)
n 1461 2494
% 17·6 17·9

Postmenopausal
n 6096 8339
% 73·3 59·9

Hormone replacement therapy
Current

n 1764 2824
% 21·2 20·3

Former
n 1490 1582
% 17·9 11·4

Never
n 5059 9523
% 60·9 68·4

BUA, broadband ultrasound attenuation.
* Ultrasound group characteristics at second health check (time of ultrasound).
† Fracture group characteristics at first health check or time of consent.
‡ Differences between men and women using t test for continuous or χ2 for categorical variables.
§ Retinol as preformed intake only.
|| n 2362.
¶ n 2208.
** n 3817.
†† n 3657.
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Associations between dietary carotenoid intakes and
fracture risk

Fully adjusted total risk for hip, spine or wrist fractures showed
a significant negative linear association in men with quintiles
of dietary α-carotene (n 11 510, P= 0·040) and β-carotene
(n 11 510, P= 0·044) intake. A significant negative trend was
also present in women for the association between wrist frac-
ture risk and lutein and zeaxanthin intake quintiles (n 13 929,
P= 0·022). Table 2 shows all trend P values and quintile 1 v.
quintile 5 comparisons. In men, total hip, spine and wrist

fracture risk was lower in α-carotene intake quintile 5 v. quintile 1
(0·71; 95% CI 0·53, 0·95; P= 0·020); and hip fracture risk was
lower in α-carotene intake quintile 3 v. quintile 1 (0·64; 95% CI
0·42, 0·99; P= 0·046) and β-cryptoxanthin intake quintile 5 v.
quintile 1 (0·65 (95% CI 0·42, 0·99); P= 0·046). In women, hip
fracture risk was lower in lutein and zeaxanthin quintile 4 v.
quintile 1, (0·75; 95% CI 0·58, 0·98; P=0·032). A negative linear
association was evident across preformed retinol intake quintiles
for wrist fracture risk (n 11510, P= 0·005) in men. Also in men,
compared with dietary retinol quintile 1, total fracture risk was
lower in quintile 5 (0·71; 95% CI 0·52, 0·97; P= 0·033); wrist
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Fig. 2. Fully adjusted calcaneal broadband ultrasound attenuation (BUA) of 6490 men and 8313 women from the European Prospective Investigation into Cancer and
Nutrition-Norfolk cohort, stratified by sex and dietary intake quintiles (Q) of specific carotenoids or retinol. Full model: age, BMI, family history of osteoporosis, menopausal
and hormone replacement therapy status in women, corticosteroid use, smoking status, physical activity, calcium intake, total energy intake, calcium- and vitamin
D-containing supplement use, days of food diary completed, and the ratio of energy intake:estimated energy requirement. Retinol as preformed intake only. Values are
means and standard deviations represented by vertical bars. , Q1; , Q2; , Q3; , Q4; , Q5. Mean α-carotene intake per quintile: men – 406 (SD 363)μg/d; Q1, 40
(SD 36)μg/d; Q2, 188 (SD 41)μg/d; Q3, 339 (SD 46)μg/d; Q4, 515 (SD 60) μg/d; Q5, 948 (SD 399)μg/d; women – 403 (SD 356)μg/d; Q1, 50 (SD 40)μg/d; Q2, 196
(SD 40)μg/d; Q3, 337 (SD 44)μg/d; Q4, 509 (SD 60)μg/d; Q5, 922 (SD 416)μg/d. Mean β-carotene intake per quintile: men – 2069 (SD 1207) μg/d; Q1, 757 (SD 254)μg/d;
Q2, 1366 (SD 146)μg/d; Q3, 1871 (SD 150)μg/d; Q4, 2472 (SD 212)μg/d; Q5, 3877 (SD 1199) μg/d; women – 2036 (SD 1206) μg/d; Q1, 758 (SD 247)μg/d; Q2, 1352
(SD 139)μg/d; Q3, 1832 (SD 142)μg/d; Q4, 2428 (SD 206)μg/d; Q5, 3813 (SD 1294)μg/d. Mean β-cryptoxanthin intake per quintile: men – 406 (SD 569)μg/d; Q1, 15
(SD 9)μg/d; Q2, 56 (SD 17)μg/d; Q3, 168 (SD 52)μg/d; Q4, 447 (SD 123)μg/d; Q5, 1343 (SD 622)μg/d; women – 455 (SD 570)μg/d; Q1, 25 (SD 13)μg/d; Q2, 89 (SD 29)μg/d;
Q3, 243 (SD 61)μg/d; Q4, 540 (SD 124)μg/d; Q5, 1380 (SD 613)μg/d. Mean lutein and zeaxanthin intake per quintile: men – 1095 (SD 870)μg/d; Q1, 334 (SD 127)μg/d;
Q2, 642 (SD 72)μg/d; Q3, 899 (SD 80)μg/d; Q4, 1244 (SD 130)μg/d; Q5, 2355 (SD 1144) μg/d; women – 1136 (SD 930)μg/d; Q1, 363 (SD 123)μg/d; Q2, 659 (SD 71)μg/d;
Q3, 915 (SD 80)μg/d; Q4, 1263 (SD 132)μg/d; Q5, 2482 (SD 1256)μg/d. Mean lycopene intake per quintile: men – 1428 (SD 1671)μg/d; Q1, 126 (SD 117)μg/d; Q2, 556
(SD 121)μg/d; Q3, 1028 (SD 160)μg/d; Q4, 1693 (SD 242)μg/d; Q5, 3735 (SD 2416)μg/d; women – 1289 (SD 1365)μg/d; Q1, 147 (SD 116)μg/d; Q2, 524 (SD 104)μg/d;
Q3, 932 (SD 134)μg/d; Q4, 1546 (SD 233)μg/d; Q5, 3297 (SD 1764) μg/d. Mean retinol intake per quintile: men – 773 (SD 1297)μg/d; Q1, 177 (SD 52)μg/d; Q2, 295
(SD 29)μg/d; Q3, 403 (SD 35)μg/d; Q4, 561 (SD 68)μg/d; Q5, 2431 (SD 2212) μg/d; women – 622 (SD 1159)μg/d; Q1, 138 (SD 41)μg/d; Q2, 233 (SD 22)μg/d; Q3, 309
(SD 25)μg/d; Q4, 425 (SD 45)μg/d; Q5, 2004 (SD 2069)μg/d. * P< 0·05 v. Q1, ** P<0·01, according to ANCOVA.
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fracture risk was lower in quintile 4 (0·44; 95% CI 0·24, 0·81;
P= 0·008) and quintile 5 (0·33; 95% CI 0·17, 0·65; P= 0·001); and
spine fracture risk was lower in quintile 3 (0·56 (95% CI 0·33,
0·96); P=0·033).
The associations between carotenoid intakes and fracture risk

were no different when food and supplement contributions were
combined in the model. However, preformed retinol analyses
showed a number of differences when supplements were
included. There was no significant difference in total fracture risk
in men between retinol quintile 1 and quintile 5 with the com-
bined intake data, although the differences in risk between
quintile 2 and quintile 1 (0·67; 95% CI 0·50, 0·90; P= 0·008) and
between quintile 3 and quintile 1 (0·72; 95% CI 0·53, 0·96;
P= 0·028) were significant. Other significant retinol inter-quintile

differences, in addition to those found in diet only analyses,
were: wrist fracture risk for men in quintile 3 v. quintile 1 (0·37;
95% CI 0·20, 0·69; P= 0·002); spine fracture risk for men in
quintile 2 (0·31; 95% CI 0·17, 0·56; P= 0·048), quintile 4 (0·59;
95% CI 0·36, 0·96; P= 0·036) and quintile 5 (0·54; 95% CI 0·30,
0·97; P= 0·040) v. quintile 1; and wrist fracture risk for women in
quintile 5 v. quintile 1 (0·64; 95% CI 0·43, 0·96; P= 0·031).

Associations between plasma carotenoid intakes and
fracture risk

In men, but not in women, there was a significant linear
trend for lower hip fracture risk across plasma α-carotene
quintiles (P= 0·026) and plasma β-carotene quintiles (P= 0·027)
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Fig. 3. Fully adjusted calcaneal broadband ultrasound attenuation (BUA) of 2362 men and 2208 women from the European Prospective Investigation into Cancer and Nutrition-
Norfolk cohort, stratified by sex and plasma concentration quintiles (Q) of specific carotenoids or retinol. Full model: age, BMI, smoking status, physical activity, family history of
osteoporosis, menopausal and hormone replacement therapy status in women, and corticosteroid use. Values are means and standard deviations represented by vertical bars.

, Q1; , Q2; , Q3; , Q4; , Q5. Mean α-carotene per quintile: men – 77 (SD 57) μg/l; Q1, 25 (SD 8) μg/l; Q2, 46 (SD 5) μg/l; Q3, 65 (SD 6) μg/l; Q4, 89 (SD 9) μg/l; Q5, 160
(SD 73) μg/l; women – 102 (SD 69) μg/l; Q1, 35 (SD 11) μg/l; Q2, 61 (SD 6) μg/l; Q3, 85 (SD 8) μg/l; Q4, 120 (SD 12) μg/l; Q5, 208 (SD 72) μg/l. Mean β-carotene per quintile: men –

200 (SD 124) μg/l; Q1, 79 (SD 21) μg/l; Q2, 129 (SD 12) μg/l; Q3, 174 (SD 15) μg/l; Q4, 235 (SD 21) μg/l; Q5, 383 (SD 141) μg/l; women – 267 (SD 162) μg/l; Q1, 107 (SD 28) μg/l; Q2,
174 (SD 16) μg/l; Q3, 234 (SD 17) μg/l; Q4, 310 (SD 26) μg/l; Q5, 509 (SD 183) μg/l. Mean β-cryptoxanthin per quintile: men – 76 (SD 61) μg/l; Q1, 22 (SD 7) μg/l; Q2, 40 (SD 5) μg/l;
Q3, 60 (SD 6) μg/l; Q4, 88 (SD 10) μg/l; Q5, 170 (SD 70) μg/l; women – 108 (SD 86) μg/l; Q1, 32 (SD 9) μg/l; Q2, 57 (SD 7) μg/l; Q3, 85 (SD 9) μg/l; Q4, 125 (SD 16) μg/l; Q5, 239 (SD
103) μg/l. Mean lutein and zeaxanthin per quintile: men – 98 (SD 85) μg/l; Q1, 105 (SD 20) μg/l; Q2, 149 (SD 10) μg/l; Q3, 182 (SD 10) μg/l; Q4, 228 (SD 16) μg/l; Q5, 328 (SD 78) μg/l;
women – 211 (SD 94) μg/l; Q1, 110 (SD 20) μg/l; Q2, 155 (SD 11) μg/l; Q3, 195 (SD 11) μg/l; Q4, 240 (SD 16) μg/l; Q5, 355 (SD 89) μg/l. Mean lycopene per quintile: men – 300
(SD 177) μg/l; Q1, 103 (SD 35) μg/l; Q2, 190 (SD 21) μg/l; Q3, 267 (SD 24) μg/l; Q4, 366 (SD 35) μg/l; Q5, 575 (SD 144) μg/l; women – 320 (SD 183) μg/l; Q1, 109 (SD 35) μg/l; Q2, 204
(SD 24) μg/l; Q3, 289 (SD 26) μg/l; Q4, 394 (SD 36) μg/l; Q5, 603 (SD 140) μg/l. Mean retinol per quintile: men – 528 (SD 122) μg/l; Q1, 379 (SD 48) μg/l; Q2, 461 (SD 17) μg/l; Q3, 514
(SD 17) μg/l; Q4, 577 (SD 21) μg/l; Q5, 708 (SD 96) μg/l; women – 497 (SD 120) μg/l; Q1, 350 (SD 39) μg/l; Q2, 431 (SD 16) μg/l; Q3, 485 (SD 16) μg/l; Q4, 546 (SD 19) μg/l;
Q5, 674 (SD 96) μg/l. * P<0·05 v. Q1, according to ANCOVA.
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Table 2. Risk of hip, spine and wrist fractures in the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort population at follow-up v. baseline, stratified by sex and dietary intake
quintiles (Q) of specific carotenoids or retinol
(The Prentice-weighted Cox proportional hazard ratios and 95% confidence intervals)

Fracture incidence and risk†

Total fractures Hip fracture Spine fracture Wrist fracture

Intakes (μg/d) Incidence Hazard ratio 95% CI Incidence Hazard ratio 95% CI Incidence Hazard ratio 95% CI Incidence Hazard ratio 95% CI

Men
α-Carotene

Q1 111/2302 1·00 Ref. 57/2302 1·00 Ref. 33/2302 1·00 Ref. 28/2302 1·00 Ref.
Q5 85/2302 0·71* 0·53, 0·95 44/2302 0·71 0·47, 1·06 22/2302 0·61 0·35, 1·07 23/2302 0·79 0·45, 1·40
Total‡ 467/11 510 228/11 510 149/11510 115/11 510
Ptrend 0·040 0·111 0·096 0·730

β-Carotene
Q1 103/2302 1·00 Ref. 55/2302 1·00 Ref. 31/2302 1·00 Ref. 23/2302 1·00 Ref.
Q5 85/2302 0·77 0·57, 1·03 39/2302 0·70 0·46, 1·07 27/2302 0·78 0·46, 1·33 25/2302 0·93 0·52, 1·68
Total 467/11 510 228/11 510 149/11510 115/11 510
Ptrend 0·044 0·181 0·132 0·540

β-Cryptoxanthin
Q1 102/2302 1·00 Ref. 59/2302 1·00 Ref. 22/2302 1·00 Ref. 25/2302 1·00 Ref.
Q5 79/2302 0·80 0·59, 1·08 36/2302 0·65* 0·42, 0·99 29/2302 1·38 0·78, 2·44 18/2302 0·69 0·37, 1·28
Total 467/11 510 228/11 510 149/11510 115/11 510
Ptrend 0·115 0·190 0·846 0·088

Lutein and zeaxanthin
Q1 96/2302 1·00 Ref. 48/2302 1·00 Ref. 31/2302 1·00 Ref. 26/2302 1·00 Ref.
Q5 81/2302 0·82 0·61, 1·12 41/2302 0·90 0·56, 1·38 25/2302 0·74 0·43, 1·27 20/2302 0·70 0·39, 1·27
Total 467/11 510 228/11 510 149/11510 115/2302
Ptrend 0·143 0·929 0·131 0·230

Lycopene
Q1 109/2303 1·00 Ref. 61/2303 1·00 Ref. 33/2303 1·00 Ref. 23/2303 1·00 Ref.
Q5 69/2302 0·79 0·58, 1·07 35/2302 0·85 0·56, 1·31 19/2302 0·67 0·38, 1·20 19/2302 0·83 0·44, 1·56
Total 467/11 510 228/11 510 149/11510 115/11 510
Ptrend 0·137 0·386 0·298 0·552

Retinol§
Q1 105/2302 1·00 Ref. 41/2302 1·00 Ref. 40/2302 1·00 Ref. 29/2302 1·00 Ref.
Q5 467/11 510 0·71* 0·52, 0·97 44/2302 1·11 0·70, 1·77 28/2302 0·61 0·36, 1·05 16/2302 0·33** 0·17, 0·65
Total 260/6538 228/11 510 149/11510 115/11 510
Ptrend 0·106 0·966 0·404 0·005

Women
α-Carotene

Q1 233/2786 1·00 Ref. 142/2786 1·00 Ref. 42/2786 1·00 Ref. 73/2786 1·00 Ref.
Q5 223/2785 0·97 0·80, 1·16 127/2785 0·89 0·69, 1·13 53/2785 1·42 0·94, 2·15 72/2785 0·98 0·70, 1·37
Total 1165/13 929 665/13 929 249/13929 398/13 929
Ptrend 0·372 0·172 0·129 0·777

β-Carotene
Q1 254/2786 1·00 Ref. 153/2786 1·00 Ref. 48/2786 1·00 Ref. 84/2786 1·00 Ref.
Q5 218/2785 0·88 0·73, 1·07 121/2785 0·81 0·63, 1·04 54/2785 1·29 0·86, 1·92 73/2785 0·87 0·63, 1·20
Total 1165/13 929 665/13 929 249/13929 398/13 929
Ptrend 0·340 0·203 0·224 0·558

β-Cryptoxanthin
Q1 260/2786 1·00 Ref. 154/2786 1·00 Ref. 60/2786 1·00 Ref. 86/2786 1·00 Ref.
Q5 223/2785 0·89 0·74, 1·07 120/2785 0·82 0·64, 1·04 45/2785 0·85 0·57, 1·26 84/2785 1·00 0·73, 1·36
Total 1165/13 929 665/13 929 249/13929 398/13 929
Ptrend 0·646 0·293 0·831 0·708

Lutein and zeaxanthin
Q1 246/2786 1·00 Ref. 141/2786 1·00 Ref. 52/2786 1·00 Ref. 88/2786 1·00 Ref.
Q5 221/2785 0·93 0·78, 1·13 134/2785 1·01 0·79, 1·29 46/2785 1·00 0·66, 1·50 64/2785 0·72 0·52, 1·00
Total 1165/13 929 665/13 929 249/13929 398/13 929
Ptrend 0·123 0·545 0·884 0·022
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(see Table 3). In women, fracture risk was significantly lower in
α-carotene quintile 3 than in quintile 1 in the fully adjusted
model for both total fracture (0·70; 95% CI 0·50, 0·96; P= 0·028)
and hip fracture (0·63; 95% CI 0·41, 0·97; P= 0·035); hip fracture
risk in women was also lower in plasma retinol quintile 4 v.
quintile 1 (0·64; 95% CI 0·41, 0·99; P = 0·044).

Discussion

This study has shown that significant associations between
dietary carotenoid intake and a quantitative measure of bone
density exist in a UK population cohort, after adjustment
for important biological, lifestyle and other dietary covariates.
In women, dietary intake quintiles of dietary α-carotene,
β-carotene, β-cryptoxanthin, combined lutein and zeaxanthin,
and lycopene were all positively linearly associated with cal-
caneal BUA, such that individuals with a higher intake of each
of these carotenoids had higher BUA measurements; preformed
retinol was negatively associated. Significant associations of
BUA with quintiles of plasma carotenoid concentration were
much more limited, with no significant trends apparent, and
only a single inter-quintile association evident for lutein and
zeaxanthin in men. Nevertheless, the magnitude of the effects
seen with the dietary analyses is highly relevant to bone
health(33); for example, the difference between the median
β-carotene intakes in quintile 5 and quintile 1 for women (3462
and 792 μg/d) could be accounted for by the additional intake
of just one small carrot and yet is associated with 2·3% greater
BUA. Moreover, this study included longitudinal analysis of the
risk for osteoporotic fracture, demonstrating significant linear
trends for lower risk for wrist fracture across dietary retinol
quintiles in men and dietary lutein and zeaxanthin quintiles in
women, and lower hip fracture risk across plasma α-carotene
and β-carotene concentration quintiles in men. A number of
significant differences in fracture risk were also shown between
individual quintiles of dietary carotenoid intake or plasma
concentration. These include lower total risk for hip, spine and
wrist fracture in the highest v. the lowest intake quintiles of
dietary α-carotene in men, as well as lower hip fracture risk in
the highest β-cryptoxanthin intake quintile in men and in higher
lutein and zeaxanthin intake quintiles in women. This study is,
to our knowledge, the first comprehensive epidemiological
analysis of the relevance of specific dietary and plasma caro-
tenoids with bone density status and risk for osteoporotic
fractures in a large European mixed-sex cohort. The findings
thus provide an important advance to the current research
evidence.

Inclusion of a variable quantifying total fruit and vegetable
intake in our regression models caused an attenuation of
the associations of carotenoids with BUA (data not shown),
suggesting potential effects of other components in fruit and
vegetables in addition to carotenoids. However, despite this
attenuation, the associations of carotenoids with BUA remained
significant, indicating that the effects of carotenoids indepen-
dent of total fruit and vegetable consumption are important.
The mechanisms by which carotenoids may influence bone
metabolism are not fully understood, although a number of
theories have been proposed. Some, but not all, carotenoidsTa
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Table 3. Risk of hip, spine and wrist fractures in the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort population at follow-up v. baseline, stratified by sex and serum
concentration quintiles (Q) of specific carotenoids or retinol
(The Prentice-weighted Cox proportional hazard ratios and 95% confidence intervals).

Fracture incidence and risk†

Total fractures Hip fracture Spine fracture Wrist fracture

Intakes (μg/l) Incidence Hazard ratio 95% CI Incidence Hazard ratio 95% CI Incidence Hazard ratio 95% CI Incidence Hazard ratio 95% CI

Men
α-Carotene

Q1 32/764 1·00 Ref. 18/764 1·00 Ref. 9/764 1·00 Ref. 8/764 1·00 Ref.
Q5 28/763 0·69 0·41, 1·16 12/763 0·52 0·25, 1·11 9/763 0·92 0·35, 2·39 7/763 0·60 0·21, 1·73
Total‡ 175/3817 88/3817 63/3817 33/3817
Ptrend 0·062 0·026 0·594 0·474

β-Carotene
Q1 33/764 1·00 Ref. 18/764 1·00 Ref. 10/764 1·00 Ref. 7/764 1·00 Ref.
Q5 41/763 1·00 0·62, 1·63 13/763 0·52 0·25, 1·09 16/763 1·65 0·72, 3·82 13/763 1·46 0·54, 3·90
Total 175/3817 88/3817 63/3817 33/3817
Ptrend 0·744 0·027 0·151 0·360

β-Cryptoxanthin
Q1 29/764 1·00 Ref. 16/764 1·00 Ref. 10/764 1·00 Ref. 6/764 1·00 Ref.
Q5 35/763 1·12 0·68, 1·85 16/763 0·91 0·45, 1·85 15/763 1·53 0·67, 3·48 4/763 0·58 0·16, 2·09
Total 175/3817 88/3817 63/3817 33/3817
Ptrend 0·655 0·282 0·360 0·239

Lutein and zeaxanthin
Q1 29/764 1·00 Ref. 12/764 1·00 Ref. 16/764 1·00 Ref. 1/764 1·00 Ref.
Q5 37/763 1·07 0·65, 1·75 13/763 0·85 0·39, 1·90 18/763 1·04 0·52, 2·09 6/763 5·15 0·61, 43·4
Total 175/3817 88/3817 63/3817 33/3817
Ptrend 0·970 0·809 0·840 0·947

Lycopene
Q1 44/764 1·00 Ref. 27/764 1·00 Ref. 12/764 1·00 Ref. 7/764 1·00 Ref.
Q5 29/763 0·79 0·49, 1·29 10/763 0·54 0·26, 1·13 15/763 1·40 0·64, 3·08 6/763 0·82 0·26, 2·57
Total 175/3817 88/3817 63/3817 33/3817
Ptrend 0·339 0·107 0·529 0·659

Retinol
Q1 42/764 1·00 Ref. 23/764 1·00 Ref. 16/764 1·00 Ref. 5/764 1·00 Ref.
Q5 34/763 0·76 0·49, 1·20 16/763 0·67 0·35, 1·27 14/763 0·84 0·41, 1·72 5/763 0·93 0·27, 3·23
Total 175/3817 88/3817 63/3817 33/3817
Ptrend 0·293 0·475 0·482 0·723

Women
α-Carotene

Q1 84/732 1·00 Ref. 50/732 1·00 Ref. 22/732 1·00 Ref. 24/732 1·00 Ref.
Q5 81/731 0·79 0·57, 1·08 47/731 0·74 0·49, 1·12 15/731 0·60 0·30, 1·20 32/731 1·15 0·66, 2·01
Total 386/3657 232/3657 89/3657 121/3657
Ptrend 0·422 0·265 0·278 0·241

β-Carotene
Q1 56/732 1·00 Ref. 29/732 1·00 Ref. 20/732 1·00 Ref. 16/732 1·00 Ref.
Q5 78/731 0·96 0·67, 1·38 48/731 1·00 0·62, 1·63 15/731 0·50 0·25, 1·02 26/731 1·27 0·66, 2·45
Total 386/3657 232/3657 89/3657 121/3657
Ptrend 0·378 0·249 0·160 0·563

β-Cryptoxanthin
Q1 73/732 1·00 Ref. 42/732 1·00 Ref. 17/732 1·00 Ref. 22/732 1·00 Ref.
Q5 85/731 0·98 0·72, 1·35 51/731 0·97 0·64, 1·46 15/731 0·75 0·37, 1·52 29/731 1·16 0·66, 2·04
Total 386/3657 232/3657 89/3657 121/3657
Ptrend 0·873 0·651 0·245 0·180
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have provitamin A activity and therefore may have effects on
bone health via this mediator(7), all have antioxidant activity
likely to be protective of bone(12), and members of the car-
otenoid family have also been shown experimentally to have
direct stimulatory effects on osteoblast proliferation and differ-
entiation at physiologically relevant concentrations(20).

Our results suggest that the effects on bone health may differ
for specific carotenoids, a situation also evident in previous
carotenoid research(16,17,21). In the Framingham Osteoporosis
Study, participants had lower risk for hip fracture or non-
vertebral fracture if they were in the highest tertile of total
carotenoid or lycopene intake, respectively, but no associations
were evident for α-carotene or β-carotene, β-cryptoxanthin, or
lutein and zeaxanthin(21). It is possible that this occurrence may
be due to differing ranges and magnitude of intakes for different
carotenoids. Indeed, specific carotenoids are found in differing
concentrations in different fruit and vegetables: unpublished
composition analysis conducted for the EPIC-Norfolk cohort
showed that α-carotene was predominantly sourced from root
vegetables, especially carrots (65% of total); β-carotene was
also sourced significantly from carrots (35%) and other root,
dark-green leafy and fruiting vegetables; β-cryptoxanthin was
sourced from citrus fruits, mainly oranges; lutein was sourced
mainly from peas (16%), with broccoli, cabbages and other
leafy vegetables providing approximately 10% each;
zeaxanthin was sourced mostly from citrus fruits (19% from
oranges), apples (>10%) and green leafy and fruiting vege-
tables; and lycopene was sourced from fruiting vegetables,
mainly tomatoes (35%) and tinned beans in tomato sauce
(15%). However, it is also possible that underlying mechanisms
of action may be different and more potent for some car-
otenoids compared with others. We know that all carotenoids
are capable of antioxidant activity with potential to counter the
negative influence of oxidative stress on bone health(12), but
some, for example, β-cryptoxanthin(7), have been shown to
have direct effects on bone metabolism. The fact that differing
magnitudes of effects appear to exist leads us to speculate that
universal antioxidant activity may not be the dominant
mechanism for all carotenoids. Another factor is the potential
for differential absorption, which may affect interpretation, but
makes the plasma data presented in this study particularly
useful. Indeed, although low serum concentrations of
α-carotene and β-carotene, lycopene, β-cryptoxanthin and
zeaxanthin have been demonstrated in a study of Italian
women with osteoporosis, and likewise for lycopene and
β-cryptoxanthin in US women(12), only one small Japanese
study has been published detailing a longitudinal analysis of
serum carotenoids and bone health, observing lower risk for
osteoporosis development with higher serum β-carotene and
β-cryptoxanthin(23).

Our findings showed correlation between dietary intakes of
carotenoids and their plasma concentrations, corroborating pre-
vious studies(47,48). The relatively weak nature of these correla-
tions has also been noted previously and attributed to various
influences including seasonality, obesity and day to day variation
in an individual’s dietary intake and plasma concentrations(49).
No correlation was identified for dietary retinol intake and
plasma retinol concentration. Between the extremes of severeTa
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deficiency and excess, plasma retinol is tightly homoeostatically
controlled(50), which could explain the lack of correlation with
dietary intake in our data(44). Our results for bone density status
in women confirm the detrimental effects of higher dietary
vitamin A retinol-equivalent intakes reported elsewhere(51), and
although not directly replicated in associations of diet and
fracture risk, plasma retinol data corroborates this with a lower
comparative risk for fracture in quintile 4 v. quintile 1 than in
quintile 5 v. quintile 1.

Strengths and limitations

This study provides important observational evidence of asso-
ciations between specific carotenoid dietary intakes or plasma
concentrations and bone health, in the largest European study
on this subject to date. Nevertheless, we were limited in the data
available for analysis. In particular, plasma carotenoid data
were only available for a smaller subset of the full cohort, which
may have reduced the power of our analyses. In terms of
anthropometric indices, blood pressure and blood lipids, the
EPIC-Norfolk cohort is representative of the UK population(25).
We acknowledge that hospital admission data may under-
estimate fracture incidence, particularly of spine fractures, and
this could differ by sex. Furthermore, record linkage used to
determine fracture cases precluded the ability to discriminate
between low- and high-trauma fractures. The influence of this
on our findings is expected to be small, as the proportion of
high-trauma fracture cases in this demographic group is likely to
be low(52). It is an advantage of our study that data for both
sexes were analysed, as different effects were evident in men
and women, a situation often apparent in bone health. For
example, data from a Chinese cohort study showed that total
carotenoid and α-carotene or β-carotene, and lutein/zeaxanthin
were all inversely associated with hip fracture risk in men, but
no significant associations were identified for women(20). Our
data similarly show the strongest associations for fracture risk in
men, although the ultrasound data are conversely more
significant in women. Sex differences in fruit and vegetable
consumption or reporting may be responsible for differences in
the associations with bone identified here and in previous
studies(53), although, as carotenoids are fat soluble, the different
adiposity of men and women could also influence their
bioavailability and effects.
Accurate estimation of dietary nutrient intake is critical to the

validity of the findings of this type of study. The quantitative 7-d
food diary method used here has been validated previously and
is expected to provide more precise dietary intake figures
compared with FFQ or 24-h recall methods(31). Dietary and
lifestyle data used in longitudinal analyses were collected at
baseline, and thus variation in food consumption and lifestyle
behaviours could have influenced our findings. We have
focused our attention on models using nutrient composition
data from food intake only; thus, we potentially underestimate
total nutrient intakes, including supplements. Carotenoids from
supplements have been suggested to have greater bioavail-
ability than those derived from foods and thus may make an
important contribution to plasma carotenoid concentrations(6).
In this cohort, no fundamental differences were apparent

between models combining food and supplement contributions
and those using food contributions only, although some addi-
tional inter-quintile differences in fracture risk were apparent
for preformed retinol analyses when supplements were inclu-
ded, a likely result of the extension of the upper intake range.
Previous studies have shown that the absorption of carotenoids
is positively associated with dietary lipid intake, in particular,
MUFA intake, and it may also be affected by dietary fibre(43).
However, in our dietary BUA model, the effect of inclusion of
dietary fat or fibre was minimal (data not shown). Food pre-
paration may also affect carotenoid stability, which, combined
with food carotenoid content variability due to cultivation
practices, season and ripening status(6), may have reduced the
accuracy of carotenoid intake estimations from the food diaries
used in this study. In addition to the direct influence of dietary
carotenoid intake, plasma carotenoid concentrations are
influenced by the rate of uptake into and efflux from other
tissues(54). Inter-individual variability in these processes may
thus make plasma concentrations less reliable as a biomarker of
dietary intake and may partly explain the discrepancies
between diet and plasma results presented here. Indeed it has
been suggested that adipose tissue concentrations are likely to
give a better indication of long-term carotenoid status(55,56).
Metabolism and absorption of carotenoids, and thus their
measurable plasma concentrations, may also be influenced by
other physiological or lifestyle factors, including the inflamma-
tory profile(57), adiposity(58) and smoking(59). The inflammatory
profile may be particularly relevant to the cohort analysed
here, as chronic low-grade inflammation is common in older
populations and thus should be investigated by future studies
with reference to bone health.

Conclusions

This study has shown positive associations of dietary intake and
plasma concentration of specific carotenoids with a quantitative
ultrasound measure of bone density status and lower fracture
risk in a general population group. The results are insufficiently
consistent to make definitive conclusions, but are nevertheless
supportive of the hypothesis that dietary intakes of fruit
and vegetables rich in carotenoids and other antioxidants are
beneficial to adult bone, which, once confirmed by clinical
trials, may provide a valuable approach for public health
strategies to improve bone health in our ageing population.
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