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Abstract

A proper ideal I of a ring R is said to be strongly irreducible if for each pair of ideals A and B of
R, A ∩ B ⊆ I implies that either A ⊆ I or B ⊆ I . In this paper we study strongly irreducible ideals in
different rings. The relations between strongly irreducible ideals of a ring and strongly irreducible ideals
of localizations of the ring are also studied. Furthermore, a topology similar to the Zariski topology
related to strongly irreducible ideals is introduced. This topology has the Zariski topology defined by
prime ideals as one of its subspace topologies.
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1. Introduction

Throughout this paper all rings are commutative with identity. A proper ideal I of
a ring R is said to be strongly irreducible if for each pair of ideals A and B of R,
A ∩ B ⊆ I implies that either A ⊆ I or B ⊆ I (see [2]). Obviously a proper ideal I is
strongly irreducible if and only if for each x, y ∈ R, Rx ∩ Ry ⊆ I implies that x ∈ I or
y ∈ I . It is easy to see that every prime ideal is a strongly irreducible ideal. Also every
strongly irreducible ideal is an irreducible ideal. In this paper, we find the relations
between strongly irreducible ideals, primary ideals and prime ideals in some rings.
We also find some properties of strongly irreducible ideals. The relations between
strongly irreducible ideals of a ring and strongly irreducible ideals of localizations of
the ring are studied. We introduce a topology on the set of strongly irreducible ideals in
such a way that the Zariski topology is a subspace of this topology and some properties
of this topology are given.
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146 A. Azizi [2]

2. Strongly irreducible ideals in different rings

Recall that a ring R is said to be a Laskerian ring, if every proper ideal of R has a
primary decomposition. We know that every Noetherian ring is a Laskerian ring.

THEOREM 2.1. Let R be a ring.
(i) If I is a strongly irreducible ideal of R, then I is a prime ideal if and only if

I =
√

I (I is a radical ideal).
(ii) For each proper ideal J of R, there is a minimal strongly irreducible ideal

over J .
(iii) If R is a Laskerian ring, then every strongly irreducible ideal is a primary ideal.
(iv) If R is an absolutely flat ring, then an ideal is strongly irreducible if and only if

it is a primary ideal.

PROOF. (i) If I is a prime ideal, then obviously I =
√

I . Now let I =
√

I and AB ⊆ I ,
where A and B are ideals of R. Then A ∩ B ⊆

√
A ∩ B =

√
AB ⊆

√
I = I , and since

I is a strongly irreducible ideal of R, A ⊆ I or B ⊆ I .
(ii) Let

T = {I | I is a strongly irreducible ideal of R containing J }.

Since every maximal ideal is strongly irreducible, T 6= ∅. By Zorn’s lemma T has a
minimal element with respect to ⊇.

(iii) Let I be a strongly irreducible ideal and
⋂n

i=1 qi be a primary decomposition
for I . Then,

⋂n
i=1 qi ⊆ I , and since I is a strongly irreducible ideal, for some j ,

1 ≤ j ≤ n, q j ⊆ I =
⋂n

i=1 qi ⊆ q j .
(iv) We know that in an absolutely flat ring, maximal ideals, prime ideals and

primary ideals are the same (see [1, p. 55, Exercise 3 and p. 35, Exercise 27]), so
it is enough to show that every strongly irreducible ideal I is a prime ideal. Let
ab ∈ I . Since R is an absolutely flat ring, there are elements r1, r2 ∈ R such that
a = a2r1 and b = b2r2. Let t ∈ Ra ∩ Rb, then t = as1 = bs2, for some s1, s2 ∈ R.
Now t = as1 = a2r1s1 = as1ar1 = bs2ar1 ∈ Rab, then Ra ∩ Rb ⊆ Rab ⊆ I . Since I
is a strongly irreducible ideal, Ra ⊆ I or Rb ⊆ I . 2

It is easy to see that in a unique factorization domain (UFD) R, every two elements
have a least common multiple. For each x, y ∈ R, we denote the least common
multiple of x and y by [x, y].

THEOREM 2.2. Let R be a UFD and let I be a proper ideal of R.
(i) I is strongly irreducible if and only if for each x, y ∈ R, [x, y] ∈ I implies that

x ∈ I or y ∈ I .
(ii) I is strongly irreducible if and only if pn1

1 pn2
2 . . . pnk

k ∈ I , where pi are distinct
prime elements of R and ni are natural numbers, implies that p

n j
j ∈ I , for some

j , 1 ≤ j ≤ k.
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(iii) If I is a nonzero principal ideal, then I is strongly irreducible if and only if the
generator of I is a power of a prime element of R.

(iv) Every strongly irreducible ideal is a primary ideal.

PROOF. (i) Let I be a strongly irreducible ideal and for x, y ∈ R, [x, y] ∈ I . If
[x, y] = c, then obviously Rx ∩ Ry = Rc ⊆ I . So Rx ⊆ I or Ry ⊆ I .

Conversely, for each x, y ∈ R, let [x, y] ∈ I imply that x ∈ I or y ∈ I . If
Rx ∩ Ry ⊆ I , we have [x, y] ∈ Rx ∩ Ry ⊆ I , so x ∈ I or y ∈ I .

(ii) If I is strongly irreducible, then clearly by part (i), we have the result.
For the converse, for x, y ∈ R \ {0}, let [x, y] ∈ I , and

x = pn1
1 pn2

2 pn3
3 . . . pnk

k qm1
1 qm2

2 qm3
3 . . . qms

s , y = pt1
1 pt2

2 pt3
3 . . . ptk

k r l1
1 r l2

2 r l3
3 . . . r lu

u ,

be prime decompositions for x and y, respectively. Therefore,

[x, y] = pα1
1 pα2

2 pα3
3 . . . pαk

k qm1
1 qm2

2 qm3
3 . . . qms

s r l1
1 r l2

2 r l3
3 . . . r lu

u ,

where αi = max{ni , ti } for each i . Since [x, y] ∈ I , by the assumption, we have one
of the following:
(a) for some i , pαi

i ∈ I ;
(b) for some i , qmi

i ∈ I ;

(c) for some i , r li
i ∈ I .

If (a) holds and αi = ni , then obviously, x ∈ I . If (a) is satisfied and αi = ti , then
y ∈ I . For the case (b), x ∈ I . If (c) is satisfied, then y ∈ I .

Hence by part (i), I is a strongly irreducible ideal of R.
(iii) Let I = Ra be a nonzero strongly irreducible ideal of R, and

a = pn1
1 pn2

2 pn3
3 . . . pnk

k be a prime decomposition for a. By part (ii), for some i ,
pni

i ∈ I . Hence, Rpni
i = I .

Conversely, let for a prime element p of R, I = Rpn . If for distinct prime elements
p1, p2, . . . , pk of R and natural numbers n1, n2, . . . , nk , pn1

1 pn2
2 . . . pnk

k ∈ I = Rpn ,
then pn

| pn1
1 pn2

2 . . . pnk
k . So, for some j , 1 ≤ j ≤ k, we have p = p j and n ≤ n j .

Therefore, p
n j
j ∈ I . Thus, by part (ii), I is a strongly irreducible ideal.

(iv) Let I be a strongly irreducible ideal and xy ∈ I , where x, y ∈ R \ {0}, and let

x = pn1
1 pn2

2 pn3
3 . . . pnk

k qm1
1 qm2

2 qm3
3 . . . qms

s , y = pt1
1 pt2

2 pt3
3 . . . ptk

k r l1
1 r l2

2 r l3
3 . . . r lu

u ,

be prime decompositions for x and y, respectively. Since xy ∈ I , by part (ii), we have
one of the following:
(a) for some i , pni +ti

i ∈ I ;
(b) for some i , qmi

i ∈ I ;

(c) for some i , r li
i ∈ I .

If (a) holds, let n be a natural number where n ≥ ni/ti , then (n + 1)ti ≥ ni + ti ,
so pni +ti

i | p(n+1)ti
i , and clearly, p(n+1)ti

i | yn+1, therefore, pni +ti
i | yn+1. Now since

pni +ti
i ∈ I , yn+1

∈ I .
For the case (b), since qmi

i | x , x ∈ I . For the case (c), evidently y ∈ I . 2
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COROLLARY 2.3. Let R be a UFD.
(i) Every principal ideal of R is a strongly irreducible ideal if and only if it is a

primary ideal.
(ii) Every strongly irreducible ideal of R can be generated by a set of prime powers.

PROOF. (i) If I is a strongly irreducible ideal, then by Theorem 2.2(iv), I is a primary
ideal. Conversely, let I be a nonzero primary ideal. Then let I = Ra, where 0 6= a ∈ R.
Let a = pn1

1 pn2
2 pn3

3 . . . pnk
k be a prime decomposition for a. If k > 1, then since

pn1
1 pn2

2 pn3
3 . . . pnk

k ∈ I and I is a primary ideal, there exists a natural number n, and a
number j , 1 ≤ j ≤ k such that p

nn j
j ∈ I = Rpn1

1 pn2
2 pn3

3 . . . pnk
k , which is impossible.

Thus, k = 1, that is, I = Rpn1
1 . Now by Theorem 2.2(iii), I is a strongly irreducible

ideal.
(ii) Let X be a generator set for a strongly irreducible ideal I of R. If 0 6= x ∈ X ,

then let x = pn1
1 pn2

2 pn3
3 . . . pnk

k be a prime decomposition for x . By Theorem 2.2(ii),
for some i , pni

i ∈ I , and obviously Rx ⊆ Rpni
i . Thus, I can be generated by a set of

prime powers. 2

EXAMPLE 1. Let K be a field and R = K [x, y], where x and y are independent
indeterminates. Then R is a Noetherian UFD. If I = 〈x, y2

〉, then I is a primary
ideal, since

√
〈x, y2〉 = 〈x, y〉, which is a maximal ideal of K [x, y]. Furthermore, I

is generated by a set of prime powers. Note that (x + y)y ∈ I , x + y /∈ I and y /∈ I .
So, by Theorem 2.2(ii), I is not a strongly irreducible ideal.

3. Localization and strongly irreducible ideals

Let R be a ring and let S be a multiplicatively closed subset of R. For each ideal I
of the ring S−1 R, we consider

I c
= {x ∈ R | x/1 ∈ I } = I ∩ R, and C = {I c

| I is an ideal of S−1 R}.

THEOREM 3.1. Let R be a ring and S be a multiplicatively closed subset of R. Then
there is a one-to-one correspondence between the strongly irreducible ideals of S−1 R
and strongly irreducible ideals of R contained in C which do not meet S.

PROOF. Let I be a strongly irreducible ideal of S−1 R. Obviously, I c
6= R, I c

∈ C
and I c

∩ S = ∅. Let A ∩ B ⊆ I c, where A and B are ideals of R. Then we have
(S−1 A) ∩ (S−1 B) = S−1(A ∩ B) ⊆ S−1(I c) = I . Hence, S−1 A ⊆ I or S−1 B ⊆ I ,
and so A ⊆ (S−1 A)c

⊆ I c or B ⊆ (S−1 B)c
⊆ I c. Thus, I c is a strongly irreducible

ideal of R.
Conversely, let I be a strongly irreducible ideal of R, I ∩ S = ∅ and I ∈ C .

Since I ∩ S = ∅, S−1 I 6= S−1 R. Let A ∩ B ⊆ S−1 I , where A and B are ideals of
S−1 R. Then Ac

∩ Bc
= (A ∩ B)c

⊆ (S−1 I )c. Now since I ∈ C , (S−1 I )c
= I . So

Ac
∩ Bc

⊆ I . Consequently, Ac
⊆ I or Bc

⊆ I . Thus, A = S−1(Ac) ⊆ S−1 I or
B = S−1(Bc) ⊆ S−1 I . Therefore, S−1 I is a strongly irreducible ideal of S−1 R. 2
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COROLLARY 3.2. Let R be a ring and let S be a multiplicatively closed subset of R.
(i) If I is a strongly irreducible and a primary ideal of R which does not meet S,

then S−1 I is a strongly irreducible (and a primary) ideal of S−1 R.
(ii) If R is a UFD, a Noetherian ring or an absolutely flat ring, then there is a one-

to-one correspondence between the strongly irreducible ideals of S−1 R and the
strongly irreducible ideals of R which do not meet S.

PROOF. (i) Since I is a primary ideal of R and I ∩ S = ∅, (S−1 I )c
= I , then I ∈ C .

Now, by Theorem 3.1, S−1 I is a strongly irreducible ideal of S−1 R.
(ii) By Theorem 2.1(iii) and (iv), and by Theorem 2.2(iv), in UFDs, Noetherian

rings and absolutely flat rings, every strongly irreducible ideal I is a primary ideal.
Now, by part (i), S−1 I is a strongly irreducible ideal of S−1 R. Also, by Theorem 3.1,
for each strongly irreducible ideal I of S−1 R, I c is a strongly irreducible ideal of R
which does not meet S. 2

The next proposition shows the importance of the rings for which every primary
ideal is a strongly irreducible ideal.

PROPOSITION 3.3. If R is a ring for which every primary ideal is a strongly
irreducible ideal, then every minimal primary decomposition for each ideal of R
is unique.

PROOF. Let A =
⋂n

i=1 qi =
⋂m

i=1 q ′

i , be two minimal primary decompositions for an
ideal A of R. Let n ≤ m. We have

⋂n
i=1 qi ⊆ q ′

1 and, since q ′

1 is a strongly irreducible
ideal, for some j , 1 ≤ j ≤ n, q j ⊆ q ′

1. On the other hand,
⋂m

i=1 q ′

i ⊆ q j . Since q j
is a strongly irreducible ideal, for some k, 1 ≤ k ≤ m, we have q ′

k ⊆ q j ⊆ q ′

1. Since⋂m
i=1 q ′

i is a minimal primary decomposition, q ′

k = q ′

1 and so k = 1. Hence, q ′

1 = q j .
Without loss of generality, let q ′

1 = q1. Similarly we can show that q ′

2 = qt for some
t , 1 ≤ t ≤ n, and since q ′

2 6= q ′

1, qt 6= q1. That is, t 6= 1. Therefore, without loss of
generality, we can assume that q ′

2 = q2. The same argument will show that for each t ,
1 ≤ t ≤ m, q ′

i = qi and n = m. 2

The following result will help us to find the rings for which every primary ideal is a
strongly irreducible ideal.

LEMMA 3.4. If R is a ring, then the following are equivalent.
(i) Every primary ideal of R is a strongly irreducible ideal.
(ii) For any prime ideal P of R, every primary ideal of RP is a strongly irreducible

ideal.
(iii) For any maximal ideal P of R, every primary ideal of RP is a strongly irreducible

ideal.

PROOF. (i) ⇒ (ii). Let I be a primary ideal of RP . We know that I c is a primary ideal
of R, I c

∩ (R \ P) = ∅, I c
∈ C and, by the assumption, I c is a strongly irreducible

ideal of R. Now, by Theorem 3.1, I = (I c)P is a strongly irreducible ideal of RP .
(ii) ⇒ (iii). The proof is clear.
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(iii) ⇒ (i). Let I be a primary ideal of R and let m be a maximal ideal of R
containing I . Then, Im is a primary ideal of Rm and so, by our assumption, Im is a
strongly irreducible ideal of Rm . Now by Theorem 3.1, (Im)c is a strongly irreducible
ideal of R, and since I is a primary ideal of R, (Im)c

= I , that is, I is a strongly
irreducible ideal of R. 2

LEMMA 3.5. If R is a ring, then the following are equivalent.
(i) Every proper ideal of R is a strongly irreducible ideal.
(ii) Every two ideals of R are comparable.

PROOF. (i) ⇒ (ii). Let I and J be two proper ideals of R. Note that I ∩ J is a strongly
irreducible ideal, and I ∩ J ⊆ I ∩ J . So I ⊆ I ∩ J ⊆ J or J ⊆ I ∩ J ⊆ I .

(ii) ⇒ (i). The proof is obvious. 2

Recall that a ring R is said to be an arithmetical ring, if for all ideals I , J and K of
R, I + (J ∩ K ) = (I + J ) ∩ (I + K ). (See [2] or [3].)

LEMMA 3.6. A ring R is arithmetical if and only if for each maximal ideal P of R,
every two ideals of the ring RP are comparable.

PROOF. See [3, Theorem 1]. 2

Recall that a ring R is said to be a Zerlegung Primideale ring (ZPI-ring) if every
proper ideal of R can be written as a product of prime ideals of R. Note that ZPI-
rings, almost multiplication rings, Prüfer domains and almost Dedekind domains are
generalizations of Dedekind domains (see [4, Chapters VI and IX]).

THEOREM 3.7. Let R be a ring.
(i) Every localization of a ZPI-ring is a ZPI-ring.
(ii) In a local ZPI-ring, every two ideals are comparable.
(iii) In an arithmetical ring, every primary ideal is a strongly irreducible ideal.
(iv) If R is a ZPI-ring, then an ideal is a strongly irreducible ideal if and only if it is

a primary ideal.
(v) If R is an almost multiplication ring, a Prüfer domain or an almost Dedekind

domain, then every primary ideal is a strongly irreducible ideal.

PROOF. (i) Let S be a multiplicatively closed subset of R and let J be a proper ideal of
S−1 R. Since R is a ZPI-ring, J c

= P1 P2 . . . Pn , where Pi are prime ideals of R. Then,
for each i , S−1(Pi ) = S−1 R or S−1(Pi ) is a prime ideal of S−1 R. So, J = S−1(J c)

can be written as a product of prime ideals of S−1 R, that is, S−1 R is a ZPI-ring.
(ii) Let R be a ZPI-ring and let m be a maximal ideal of R. By [4, Theorem 9.10],

R is a Noetherian ring. If m2
= m, then by Nakayama’s lemma m = 0, so R is a field,

and the proof is completed.
If m2

6= m, let x ∈ m \ m2. Then m2
⊂ m2

+ Rx ⊆ m. By [4, Theorem 9.10], there
are no ideals of R strictly between m2 and m. So m2

+ Rx = m and by Nakayama’s
lemma, m = Rx .
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Now let P be a nonzero prime ideal of R and 0 6= y ∈ P . By the Krull intersection
theorem, we have

⋂
+∞

n=1 mn
= 0. Thus, there is a natural number n such that y ∈ mn

and y /∈ mn+1. Since y ∈ mn
= Rxn , there exists an element u ∈ R such that y = uxn ,

and since y /∈ mn+1, u /∈ m. Then u is a unit element of R. Hence, xn
= u−1 y ∈ P . We

know that P is a prime ideal of R, so x ∈ P , that is m = P . So m is the only nonzero
prime ideal of R and since every ideal is a product of prime ideals, every proper ideal
of R is a power of m. Therefore, every two ideals of R are comparable.

(iii) Let R be an arithmetical ring. By Lemma 3.6, for every maximal ideal P of R,
every two ideals of RP are comparable. So, by Lemma 3.5, every proper ideal of RP
and obviously every primary ideal of RP is a strongly irreducible ideal of RP . Then,
by Lemma 3.4, every primary ideal of R is strongly irreducible ideal.

(iv) According to [4, Theorem 9.10], every ZPI-ring is a Noetherian ring. Then R
is a Noetherian ring and so, by Theorem 2.1(iii), every strongly irreducible ideal is a
primary ideal.

By part (i), for every prime ideal P of R, RP is a local ZPI-ring and, by part (ii),
every two ideals of RP are comparable. Hence, by Lemma 3.6, R is an arithmetical
ring and, by part (iii), every primary ideal of R is a strongly irreducible ideal.

(v) Let R be an almost multiplication ring. By [4, Theorem 9.23], for every prime
ideal P of R, RP is a ZPI-ring. Thus, by part (iv), every primary ideal of RP is a
strongly irreducible ideal of RP . Now, by Lemma 3.4, every primary ideal of R is a
strongly irreducible ideal of R.

If R is a Prüfer domain, then, by [4, Corollary 6.7], for every maximal ideal P of
R, RP is a valuation ring. Hence, by Lemma 3.6, R is an arithmetical ring. Now, by
part (iii), every primary ideal of R is a strongly irreducible ideal.

If R is an almost Dedekind domain, then for every maximal ideal P of R, RP is a
valuation ring (see [4, p. 201]). Hence, by Lemma 3.6, R is an arithmetical ring and,
by part (iii), every primary ideal of R is a strongly irreducible ideal. 2

4. Zariski topology

If R is a ring, we consider SSpec(R) to be the set of all strongly irreducible ideals
of R. We call SSpec(R), the strongly irreducible spectrum of R. In this section, a
topology on SSpec(R) is introduced. This topology is defined exactly similar to the
Zariski topology defined by prime ideals, and the set of prime ideals (Spec(R)) is a
subspace topology of SSpec(R).

If I is an ideal of R, we define the variety of I , denoted by SV(I ), as

SV(I ) = {P ∈ SSpec(R) | I ⊆ P}.

Also for each a ∈ R and for each ideal I of R, let

OP(I ) = {P ∈ SSpec(R) | I * P}, OP(a) =OP(Ra).

ST (R) = {OP(I ) | I is an ideal of R}.
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THEOREM 4.1. Let R be a ring and a, b ∈ R.
(i) ST (R) is a topology on SSpec(R).
(ii) If OP(a) = ∅, then a is a nilpotent element of R.
(iii) OP(a) = SSpec(R) if and only if a is a unit element of R.
(iv) For each pair of ideals I and J of R, if OP(I ) =OP(J ), then

√
I =

√
J .

(v) SSpec(R) is a quasi-compact topological space.
(vi) SSpec(R) is a T0 topological space.

PROOF. (i) Note that OP(0) = ∅ and OP(R) = SSpec(R).
Let {Iα}α∈J and {Ik}

n
k=1 be two families of ideals of R. We show that

(a)
⋃
α∈J

OP(Iα) =OP
(∑

α∈J

Iα

)
.

(b)

n⋂
k=1

OP(Ik) =OP
( n⋂

k=1

Ik

)
.

(a) P ∈
⋃

α∈J OP(Iα) ⇐⇒ Iα0 * P , for some α0 ∈ J ⇐⇒
∑

α∈J Iα * P ⇐⇒

P ∈OP(
∑

α∈J Iα).
(b) P ∈

⋂n
k=1 OP(Ik) ⇐⇒ Ik * P , for each k, 1 ≤ k ≤ n.

Now since P is a strongly irreducible ideal,

Ik * P for each k, 1 ≤ k ≤ n ⇐⇒

n⋂
k=1

Ik * P ⇐⇒ P ∈OP
( n⋂

k=1

Ik

)
.

(ii) If OP(a) = ∅, then a is in every strongly irreducible ideal. So a is in every
prime ideal, hence, a is a nilpotent element.

(iii) OP(a) = SSpec(R) ⇐⇒ a /∈ P , for all P ∈ SSpec(R) H⇒ a /∈ P , for all
maximal ideal P H⇒ a is a unit.

Conversely if a is a unit, then obviously a is not in any strongly irreducible ideal.
That is, OP(a) = SSpec(R).

(iv) Suppose that OP(I ) =OP(J ). Since every prime ideal is a strongly
irreducible ideal, every prime ideal of R containing I is also a prime ideal of R
containing J , and vice versa. Therefore,

√
I =

√
J .

(v) Let SSpec(R) =
⋃

α∈J OP(Iα), where {Iα}α∈J is a family of ideals of R. By
equation (a) in the proof of part (i), we have OP(R) = SSpec(R) =OP(

∑
α∈J Iα).

Thus, by part (iv), we have R =
√

R =
√∑

α∈J Iα and, hence, 1 ∈
∑

α∈J Iα . So there
are α1, α2, . . . , αn ∈ J such that 1 ∈

∑n
i=1 Iαi , that is, R =

∑n
i=1 Iαi . Consequently

SSpec(R) =OP(R) =OP(
∑n

i=1 Iαi ) =
⋃n

i=1 OP(Iαi ).
(vi) Let P1, P2 be two distinct points of SSpec(R). If P1 * P2, then obviously

P2 ∈OP(P1) and P1 /∈OP(P1). 2

Recall that a topological space is said to be Noetherian if its closed sets satisfy the
descending chain condition. Also a nonempty closed set V is said to be irreducible
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(reducible) if V cannot (can) be written as the union of two distinct closed sets
(see [5, p. 29, Exercises 4.9 and 4.10]).

PROPOSITION 4.2. Let R be a ring.
(i) If R is a Noetherian ring, then SSpec(R) is a Noetherian topological space.
(ii) If I is an ideal of R such that SV(I ) is an irreducible closed set, then there exists

an irreducible ideal J of R such that SV(I ) = SV(J ).
(iii) If I is an ideal of R and SSpec(R) is a Noetherian topological space, then

SV(I ) can be written as a finite union of irreducible closed sets SV(Ik),
k = 1, 2, . . . , n such that for each k, Ik is an irreducible ideal of R.

(iv) If I is an ideal of a Noetherian ring R, then SV(I ) can be written as a finite
union of irreducible closed sets SV(Ik), k = 1, 2, . . . , n such that for each k, Ik
is an irreducible ideal of R.

PROOF. (i) For each ideal I of R, we consider

3√I = ∩{P : P is a strongly irreducible ideal of R containing I }.

According to the definition of SV(I ), we have SV(I ) = SV(
3
√

I ). Also for each ideal
J of R, SV(I ) ⊆ SV(J ) if and only if 3

√
J ⊆

3
√

I .
Now let . . . ⊆ SV(I3) ⊆ SV(I2) ⊆ SV(I1) be a chain of closed sets of SSpec(R),

where {Ik}
+∞

k=1 is a family of ideals of R. These inclusions imply 3
√

I1 ⊆
3
√

I2
⊆

3
√

I3 . . . ⊆, and since R is a Noetherian ring, there exists a positive number n such
that for each positive number m ≥ n, 3

√
In =

3
√

Im . Consequently

SV(In) = SV(
3
√

In) = SV(
3
√

Im) = SV(Im),

which completes the proof.
(ii) Let S = {L | L is an ideal of R such that SV(L) = SV(I )}. By Zorn’s lemma

S has a maximal element J . If J is reducible, let J = J1 ∩ J2, where J1 and J2
are ideals of R. Then SV(I ) = SV(J ) = SV(J1 ∩ J2) = SV(J1) ∪ SV(J2). Since
SV(I ) is irreducible, let SV(I ) = SV(J1). This is impossible, since J is a maximal
element of S and J ⊂ J1.

(iii) According to [5, Exercise 4.11], in a Noetherian topological space every closed
subset can be written as a union of finitely many irreducible closed sets. Now by
part (ii), the proof is completed.

(iv) Part (i) applies to show that SSpec(R) is a Noetherian topological space. Now
the assertion follows from part (iii). 2
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