
ON THE (/, d„)-METHOD OF SUMMABILITY 

GASTON SMITH 

1. Introduction. Let f(z) be a non-constant entire function and let {dn} 
be a sequence of complex numbers such that 

dt * - / ( l ) and dt * - / ( 0 ) (i > 1). 

The set of equations 

#00 = 1 » 

(1.1) co» = 0 (k^ 0), 

7(z) + d,~ 
•JM+di. 

defines the elements of a matrix A = (awfc), where n, k = 0, 1, 2, 
n = £a»*s* (»>1) 

DEFINITION 1.1. 4̂ sequence {tk}, or a series whose kth partial sum is tk, is 
said to be (J, dn)-summable to t if and only if 

co 

lim X) ank h = t, 

where the ank's are defined by (1.1). 

We obtain several known methods of summability as special cases of the 
(/, dn)-method by placing certain restrictions on f(z) and {dn\. If f(z) = z 
and dn = r, where r is any complex constant, we get the well-known Euler 
method (1). If f(z) = \z, dn = n, and X > 0, we obtain the Karamata-Stirling 
method as defined by Vuckovic (6). If f(z) = z and dn = n we get the Lototsky 
method as defined by Agnew (2). If f(z) = z and {dn} is any real sequence, 
we get a method defined by Jakimovski (4). If f(z) = z and {dn} is any com
plex sequence, we get a method defined by Cowling and Miracle (3). 

In this paper we first obtain some regularity conditions for the (f, dn)-
method. Several necessary conditions and four sufficient conditions are 
obtained. Then we derive some results concerning the effectiveness of this 
method for summing power series. The paper is concluded with a discussion 
of some special cases of the (J, dn)-method. 

Throughout the paper we frequently make use of the following notations. 
The symbol f(z) denotes an entire function. When z = x + iy we denote 
Re{/(s)j by u(x, y) or u and Im{/(z)} by v(x, y) or v. The principal argument 
of dn is denoted by dn. Also, we let a + ib = / ( l ) , xn + iyn = dn, and pn = \dn\. 

Received November 25, 1963. 

506 

https://doi.org/10.4153/CJM-1965-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-051-1


A METHOD OF SUMMABILITY 507 

2. Regularity conditions for the (/, dn)-method. It is well known that 
a linear method of summability defined by the matrix C = (cnk) is regular 
if and only if 

ao 

(2.1) 

(2.2) 

X) \Cnk\ < M 
k=0 

(» > 0), 

lim cnk = 0 
n->oo 

(* > 0), 

oo 

lim X) cnk = 1, (2.3) 

where ikf is a constant independent of n. 

A. Necessary conditions for the regularity of the (/, dn ) -method. 

LEMMA 2.1. If 

A (1 - a<) = 0, 

at is real, and a* < 1 for all i, then there are infinitely many a^s such that 
at > 0. 

THEOREM 2.1. A necessary condition in order that the (f, dn)-method be regular 
is that there exist a strictly increasing sequence of natural numbers {nk} such that 

(2.4) /(Q) + 4t r 1 = œ 

4*1 J i/d) + 
Proof. Suppose that the (/, dw)-method is regular. Letting z = 0 in (1.1) 

we get 

(2.5) a-°- lU/(D + dJ-
Since regularity condition (2.2) implies that 

lim ano = 0, 
w->oo 

it follows that 

(2.6) 

The relation (2.6) implies that 

(2.7) 

so that 

(2.8) 

fr [7(0) + 4] = 
U L/(i) + <*J u-

fr /(Q) + d, 
U l/d)+ d, 

U L1 I1 l/(i)+ dj /J 
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508 GASTON SMITH 

/(0) + dt 
/(l) + dt 

Let 

(2.9) a, = 1 -

Using (2.9), the relation (2.8) may be written in the form 

(2.10) A (1 - at) = 0, 
i=l 

where at < 1 and at is real. By Lemma 2.1, there are infinitely many a / s 
which are positive. Construct a sequence {ank} which consists of all of the 
positive diS arranged according to increasing magnitude of the subscripts. 
Consequently (2.10) implies that 

oo 

n (i - o = o. 
where 0 < ank < 1. Hence by a well-known theorem on infinite products we 
get 

(2.11) Z) On* = °° • 

It follows from (2.9) and (2.11) that 

so that the theorem is proved. 

/(0) + rf. 
/(I) + ^ ']-

COROLLARY 2.1. Iff(0) and / ( l ) ar^ reaZ, a necessary condition in order that 
the (J, dn)-method be regular is that there exist a strictly increasing sequence of 
natural numbers {nk} such that 

fs r/(o)+/(i) + 2*»fci 
fclL |/(l) +4,|2 J 

=fc«. 

COROLLARY 2.2. A necessary condition in order that the (f, dn) -method be 
regular is that 

1/(1) + dn\ > |/(0) + dn\ 

for infinitely many values of n. If f(0) and / ( l ) are real, a necessary condition 
for regularity is that 

x«> - f [ f (0 )+ / ( l ) ]> - / ( l ) 

for infinitely many values of n when / ( l ) > /(0) and 

*»< - i [ f (0)+/( i ) ] < - / ( i ) 

/or infinitely many values of n when / ( l ) < / ( 0 ) . 
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COROLLARY 2.3. A necessary condition in order that the (/, dn)-method be 
regular is that /(0) 7^/(1). 

We can now prove the main result concerning necessary conditions for the 
regularity of the (/, rfw)-method. 

THEOREM 2.2. A necessary condition in order that the (/, dn)-method be regular 
is that 

(2.12) ^ 
a 1/(0) + dn\ 

Proof. Suppose that 

^ 1 

H 1/(0) + 41 
is convergent. It follows that 

The relation (2.13) implies that there exists a positive integer N such that 
for all n > N we have 

(2"14) 1/(0) + dnf < 1/(0) + dn\ • 
It follows from Corollary 2.2 that 

|/(0) + 4|2 < 1/(1) + 4|2 

holds for the infinitely many values {nk\ for which Theorem 2.1 is true. Hence 

/ 9 1 ^ 1/(0)+4.1 . l 
k*'b) 1/(1) + dn\2 < |/(0) + dn\ 
for the infinitely many values {nk} for which Theorem 2.1 is true. Let /(0) 
= c + di and let 

AiA ~~ 
1/(1) + 4 , i 2 - 1/(0)+4, 

1/(1) + dnX 
Now it follows from (2.14) and (2.15) that 

(a - c)2 + 2|a - c | + (ft - rf)2 + 2|6 - rf| 
(2-16) i w < 1/(0)+ <U 
From the supposition and relation (2.16) we find that 

CO 

k=l 

converges. Therefore 
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510 GASTON SMITH 

r 
|/(1) + dnk\

2- \f(0)+d, 
|2 

fik\ 

|/(i) + dnk 

converges, which contradicts Theorem 2.1. 

COROLLARY 2.4. If dn 9e 0, a necessary condition in order that the (/, dn)-
method be regular is that 

COROLLARY 2.5. .4 necessary condition in order that the (/, dn)-method be 
regular is that 

OO 1 

S 1/(1) + 4! = °° ' 
If we take f(z) = z in relation (1), then Theorem 2.2 becomes a known 

result (3). 

B. Sufficient conditions for the regularity of the (/, d n ) -method. 

LEMMA 2.2. Suppose that dn is real, dn > 0, and that the Taylor expansion of 
f(z) about the origin has non-negative coefficients. Then the (f,dn) -method is 
regular if and only if 

CO -1 

Proof. The necessity of the condition follows from Corollary 2.5. 

Sufficiency. Letting z = 1 in relation (1.1), we get 
oo 

2L* ank — 1 > 

so regularity condition (2.3) holds. Since dn is real and non-negative and the 
coefficients of the expansion olf(z) about the origin are non-negative, it follows 
that \ank\ = ank. Hence regularity condition (2.1) holds. Also since the co
efficients of the expansion of f{z) about the origin are non-negative and f(z) 
is non-constant, it follows that /(0) < / ( l ) . Now choose c > 0 so that 
/(0) + 2e < . / ( l ) and let C be a circle with centre at the origin such that 

1/(0 - / ( 0 ) | < e for all te C. 

Hence for t £ C we have that 

l / ( O K / ( 0 ) + € < / ( D - 6 . 

We may represent ank in the form 

ank~2^iJa\Àf(l)+dt't
k+1 

so that 
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Since 1 + x < ex for x real, we obtain 

fit) + d, 
/(I) + d( 

fit) + di 
fiD + d, 

<r w J 1 _u \fO) + di\\ 
< e x p r 1 + /oy+rf:/ 
< ̂ (1/0)1-/(1)1 

< e x p r7ôH^ 
Hence it follows that 

/ 1 I 

Therefore 
lim ank = 0, 
«H>00 

which proves the lemma. 

The preceding lemma generalizes a result of Jakimovski (4). 

THEOREM 2.3. Suppose that 

T5* 1 

1/(1) + <*< h |/(i) + 4|2 < • 
a;zd / t o the Taylor expansion of f(z) about the origin has non-negative coefficients. 
Then the (/, dn) -method is regular. 

Proof. Letting z = 1 in relation (1.1), we get 

E ^ = i ; 

so regularity condition (2.3) holds. Let C be any circle with centre at the 
origin. The elements anJc are given by the formula 

(2.17) °* = £iSctL 
'fit) + dt~] dt_ 

J'tk+1-I fil) + di 

By expanding the product on the right of (2.17), it follows that 

ft \f il) + dt] ank = ̂ ~. f {[f(0]" + lfit)r1id1 + d2+... + dn) 

•m-2 dt 
+ \f(t)]H (di d2+... + 4 - i 4 ) + (d1d2... dn)} fk . 
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512 GASTON SMITH 

Since [f(t)]n is an entire function, we may write, 

(2.i8) [f(or = £***'. 

It follows that 

(2.19) I I [/(I) + dt] ank = pkn+ (dl + d2+...+ dn)pk^ 

+ (di d2 + . . . + 4 - i dn)pktn-2 + . . . + (did2. . . dn)pk0. 

Therefore 

(2.20) E M fi I/O)+<*,| 
fc=0 i = l 

CO 

< ^L, {Pkn + ( p i + • • • + Pn)Pk,n-l + . . . + ( p i • • • Pn)£fco}. 
k=Q 

Let B — (bnk) be the matrix corresponding to the (/, pn)-method. Hence 

(2.21) £ |6rt| 11 1/(1) + Pi] 
fc=0 t = l 

cx> 

= X ) { ^ n + (P i + • • . + Pn)Pk,n-l + • • • + ( p i • • • Pn)/>*o}. 

Now from relations (2.20) and (2.21), it follows that 

GO w co n 

(2.22) Z M II 1/(1) + dt\< £ IM IT Lf(l) + P.]. 

However, since all of the elements of B are non-negative, 

(2.23) £ |6nt| =ê*»*= 1-
/c=0 k=0 

The relations (2.22) and (2.23) imply that 

^ &**<&[$&%]• 
Since 1 + # < ex for all real x and / ( l ) + pM > |/(1) + d„\, it follows that 

/o 9 ^ / ( I ) + P. <- f / ( l ) + Pu T 

.̂25) | / ( 1 ) + 4 | < L | / ( 1 ) + 4 | J 

* p l +Li/(i) + 4 | J / 
/ , ( I m V 4 ) 2 

https://doi.org/10.4153/CJM-1965-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-051-1


A METHOD OF SUMMABILITY 513 

From (2.24) and (2.25) we obtain 

(2.26) SW<4'?,^}' 
It follows from (2.26) and the hypothesis that there exists a real number M 
such that 

(2.27) E M < M 

for all n. So the regularity condition (2.1) is satisfied. 
Now from (2.19) and the analogous relation involving bnk we find that 

(2.28) \ank\<\bnk\n |/(i) + £ | -

The relation 

implies that 

It follows that 

(2.29) 

since 

Z 1/(1) + 41 

l 

fci i/(D +dn\ +2/(1). 

1 

SA /(I) + Kl 

1 .. 1 

/(D + K r I/a) + 4i + 2/(i)-
By Lemma 2.2 and relation (2.29), we find that the (/, pw)-method is regular 
so that 

lim bn1c = 0. 
W->oo 

Moreover (2.25) implies that 

r r / ( D + Pi 
l\ |/(l)+d,| 

is bounded. Therefore we have 

lim ank = 0, 
rc-»oo 

which proves the theorem. 

COBOLLARY 2.6. If 
oo -I oo 

^ \*ri\ r A I = °° > I ] #»2 converges 
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514 GASTON SMITH 

and the Taylor expansion off(z) about the origin has real non-negative coefficients, 
then the (/, dn) -method is regular. 

Proof. Since the inequality x2 + 2 cos x — 2 > 0 holds for all real xy it 
follows that 

(2.30) -2ap n cos 6n -\" 2apn <C apn 6n
2, 

where a > 0 is valid for all n. Using (2.30) and the fact that there exists a 
positive integer N such that cos dn> h f° r all n > N, we obtain 

(2.31) 4a 
lm\/dn 

/(I) + 4 
— 2a pn cos 6n + 2apn 

\a + dn\2 

aPn On  
a2 + 2apn cos 6n + pn

2 

2 
apn On" ^ n 2 

^ Vn • 2apn cos 6n 

Now we can apply Theorem 2.3, which completes the proof. 

COROLLARY 2.7. Suppose that 

X) uvn , j i = œ . Z) — converges 
ZA 1/(1) + 4 | Pn 

^/zere /^6 swra 0?z //ze n'g/rô ranges over all n for which pn is positive, Re {4} > 
—/(l)/2, awd 2/ze Taylor expansion of f(z) about the origin has real non-negative 
coefficients. Then the (/, dn)-method is regular. 

COROLLARY 2.8. Suppose that 
oo -i oo 

X if,-|x , 7 I = °°, X) Pn 0«2 converges, 

2 |0»| < 7T, awd ^ e coefficients of the expansion of f(z) about the origin are real 
and non-negative. Then the (/, dn)-method is regular. 

3. Power series. 

THEOREM 3.1. Suppose that 

X ~ = °° » lim 0n = 0, lim pw = oo , 
Pn w->co n-»oo 

?#/zere //*e s^ra ranges over all n for which pn is positive. Then the (f, dn) -method 
sums the geometric series 

oo 

(3-D Z s* 
A=0 

to (1 — z)~l for all values of z such that Re{/(s)} < Re{/(1)}. 
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Proof, The partial sums of (3.1) are given by 

(3.2) Sk{z) = (1 - s)-i - (1 - s)-i s*+*. 

Let 
oo 

0"n(«) = ]C ank Sk{z). 
fc=0 

We may represent orn(z) in the form 

515 

It is sufficient to show that 

ft [/(*) + 4l 
U L/(i) + 4J ./(D + 4. 

for all 3 such that Re{/(z)} < Re{/(1)}. 
Since 1 + x < ez for real x, it follows that 

0 

(3.4) 7(g) + dn 
\fO-) + d„ 

1 }2uxn + 2vyn — 2axn — 2byn + H 
K expi i/(D+d»r 

> { ^ [(^ — a) cos Arc + (fl — &) sin 
< expi | / ( 1 ) + 4 |2 j -r 2 | / ( 1 ) + 4p , 

in M l 
+ 

H 

where H = u2 + u2 — a2 — 62. Using the hypothesis, we find that 

. p„ [(« - a) cos fln + (v - &) sin dn] 
!™ |/(D+<4f = M ~ a 

and 

lim Hpn 
2|/(1) + 4 | 

0. 

Hence there exist a l > 0 and an integer iV > 0 such that for all n > N 
we have 

, . _i pw[(^ — a) cos gw + (v — b) sin flw] # 
(d.5) - X * > | / ( 1 ) + ^ | 2 + 2 | / ( l ) + 4 r 

From (3.5) it follows that 

(3.6) m + dn 

f(D+dn 

< exp{— Kpn1] 

for all « > N. Therefore by (3.6) we obtain 

(3.7) n /(*) + 4 
/(D+4 <n 

/ (z) + 4 
/(D+*. exp^ ÈKPA-
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Since 

]C Pn1 = 

we conclude from (3.7) that 

fr [/(«) + 4.1 = 0 
-7(1) +dn 

This completes the proof. 

THEOREM 3.2. Suppose that 

Pn1 = °° , lim 0W = 0, lim pw = » , 
W->oo W-»oo 

wftere /fee sum ranges over all positive pn. Then 

lim crn(z) = «> 
»->oo 

/or a// 2 such that Re{/(s)} > Re{/(1)}, where crn(z) and Sk(z) are defined as 
in Theorem 3.1. 

Proof. Assume that z is given such that Re{/(z)} > Re{/(1)}. It is sufficient 
to show that 

(3.8) 

Since 

we have 

n [><*> +*»1 = » 

lim dn = 0 and lim pw = oo , 

lim{|/(*)-d»|2- |/(1) + dnf | = ». 
W->00 

Hence there exists an integer N > 0 such that 

I/a) + 4i ^ 
when n > N. It follows that 

T̂ T /(g) + r f j 
L1! 1 / (1 )+ d» I 

if and only if 

(3.9) 

We note that 

71=1 L 

m + dn 

i - m + dn 
f(l)+d„ 

2pn(u — a) cos 6n + 2pn(v — 6) sin 6n + H 
1/(1) +"412 
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where H = u2 + v2 — a2 — b2. Using the same procedure as in the proof of 
Theorem 3.1, we find that 

r 2pn [(u — a) cos 6n + {v — b) sin 6n 
{Z l/d) + dn\

2 -2{u-a). 
Hence there exist a K > 0 and an integer N > 0 such that for all n > N 
we have 

Since 
Z) PrT1 = °° , 

> 

the relation (3.10) implies that 

Ê[- i + 
n=l L 

M + d, 2] 
f(l) + dn\ J 

00 . 

By (3.9) we have 

so that 

(3.11) 

fr \f(z) + dn 

L\ 1/(1)+ 4 

n 
/(g) + dn 

/(l) + 4 
The asserted result follows from (3.11). 

THEOREM 3.3. Suppose that z is given such that \f(z) + p\ < |/(1) + p\ and 
that 

lim pn = p and lim 6n = 0. 

Then the (/, dn)-method sums the geometric series (3.1) to (1 — z)"1. 

Proof. We follow the same procedure as in Theorem 3.1. Thus we have 

Let H = ^2 + v2 — a2 — 62. Since 1 + # < ex for real x, we obtain 

< exp^ /(*) + dn 
1/(1)+4. 

It follows from the hypothesis that 

/2Pn[(n - a) cos flw + (v - b) sin flw] + H{ 
\ 2|/(l)+4!2 / 

r 2pn[(u — a) cos 6n+ (v — b) sin fln] + H _ 2p(u — a) + H 
™ 2 | / ( 1 ) + 4 | 2 " 2| /(l) + p | 2 < U * 

Hence there exist a Z > 0 and an integer N > 0 such that 
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2p„[(u - a) cos Bn + (v - b) sin 6n] + H _ - , 

2|/(D + 4|2 < (3.13) 

for n > N. Hence we obtain the relation 

n 

n i = l 

m + dt\ f? \m + d{\ J A ) 
TaT+ l̂ < U l/W+^l e x p r S*/ 

so that 

n ["/(*) + dn ;]-°-i1! L/(l)+4 
THEOREM 3.4. Suppose that 

lim p„ = p, lim 0tt = 0, p ^ —/(l), 
tt->oo W->co 

awd £ to s is given such that \f(z) + p\ > |/(1) + p|. TAen 

l im <rw(2) = oo. 
w-><x> 

Proof. Since |/(s) + p| < |/(1) + p|, there exists an a such that 0 < a < 
and 
(3.14) |/(2) + p|2 > |/(1) + p|2 (1 + 2a). 

Let H = u2 + v2 - a2 - £2. I t follows from (3.14) that 

H>2p{u-a) + 2 c | / ( l ) + p | 2 

so that 

(3.15) |/(Z) + 4 | 2 - 1/(1) + dn\
2 >2(u-a) (Pn cos 0n - p) 

+ 2 p > - b) sin 0n + 2a |/(1) + p|2. 

By hypothesis there exists an integer N > 0 such that for n > N 

(3.16) \2(u - a) (pn cos 6n - p) + 2(v - b)Pn sin 0„| < a |/(1) + p|2. 

The relations (3.15) and (3.16) imply that 

(3.17) |/(2) + dn\
2 - |/(1) + dn\

2 > a |/(1) + p|2. 

Since 0 < a < 8, it follows from (3.17) that 

lim 
n-)co 

m + dn > 1 + a/4 > 1 

so that we have 

(3.i8) n 

It follows from (3.18) that 

/(g) + dn 

/(l)+ 41 

lim an(z) = co 

and the theorem is proved. 
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THEOREM 3.5. If 

lim pn = 0, 

then the (/, dn)-method sums the geometric series (3.1) to (1 — z)~l for all z such 
that \f(z)\ < 1/(1)I. 

Proof. If / ( l ) = 0, the result follows immediately since there is no value 
of z for which |/(z)| < |/(1)|. So for the remainder of the proof we may suppose 
that / ( l ) ^ 0. 

Since 1 + x < ex for real x, we get 

/(*) + dn 

f(l)+dn 

JH + 2Pn[(u - a) cos 6n + (v - b) sin dn] 
< e x p l 2|/(1) + 4 | 2 

where H = u2 + v2 — a2 — b2. From the hypothesis we obtain 

H 

}• 

r H + 2pn[(u — a) cos 6n + (v — b) sin 6n]  

Z 2|/(D + 4 | 2 ~ 21/(1)1* • 
Hence there exist a i£ > 0 and an integer iV > 0 such that for all n > N 

(3.19) 

From (3.19) it follows that 

_ H + 2pn[(u — a) cos fl„ + (v — b) sin 6„] 
A > 2|/(1) + 4 | 2 

n /(»)+^ 
/ ( D + ^ <n 

i V - l 

n 
r = l 

/(*) + <*« 
/(!)+<*< expi-Z^r. 

which implies the theorem. 

THEOREM 3.6. Suppose that 

lim p„ = 0 

awd £to s is given such that \f(z)\ > |/(1)|. Then 

l im o-w(s) = oo. 
n-»oo 

Proof. From the hypothesis it follows that 

lim (|/(2) + 4 | 2 - | /(D + dn\
2} = |/(z)|2 - | / (D| 2 > 0. 

n-w» 

Hence there exist an a > 0 and an integer N > 0 such that 

!/(») +4.1 
/ ( I ) + 4 

> l + « 

for n > N. Therefore 

n m + dn 

f(D+dn 
from which the theorem follows. 
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In this section we have determined certain domains in the complex plane 
for which the (/, dn)-method of summability sums the geometric series (3.1) 
to its analytic continuation (1 — z)~l. There are several known results (5) 
which give information concerning the efficiency of a linear method of sum
mability for summing a power series with positive radius of convergence to 
its analytic continuation. By using results of the type found in (5) and the 
theorems of this section one can determine a domain for which the (f, dn)-
method sums a power series with positive radius of convergence to its analytic 
continuation. 

4. Special cases. 

A. Let f{z) = eu{z~~l), where u is real and w ^ O , and let dn = n — 1 for 
n > 1. 

THEOREM 4.1. The (eu[z~l], n — l)-method is regular if and only if u > 0. 

Proof. If u > 0, then the (eu[z~1],n — l)-method is regular by Theorem 
2.3. Now suppose that u < 0. By substituting eu{z~x) for f(z) and n — 1 for 
dn in (1.1) and then letting z = 0, we obtain 

rr \e~u + k - i l 
ano = Q L — i — J • 

Since u < 0, we have aw0 > 1 for each n. Hence the regularity condition (2.2) 
is not satisfied. Therefore if the (eu[z~~1], n — l)-method is regular, then u > 0. 

Since the hypotheses of Theorem 3.1 are satisfied, it follows that the 
(eu[z~l], n — l)-method sums the geometric series 

oo 

(4.1) ! > » 

to (1 — z)~l for all z such that 

Re{eu<z-»} < 1; 

that is, for all values of z which satisfy 

(4.2) é ^ - ^ c o s ^ < 1. 

The domain in which the (eu{z~l]
yn — l)-method sums the geometric series 

is indicated in Figure 1. 

THEOREM 4.2. The (eu[z~1], n — \)-method of summability provides a method 
of analytic continuation of the geometric series (4.1) to (1 — z)~l for all z j* 1. 

Proof. The proof consists of showing that given any z ^ 1, a u can be 
chosen so that the (eu[z~1], n — l)-sum of the geometric series (4.1) is (1 — z)~l. 
Assume that z is given. 

Case 1. y 5* 0, x arbitrary. Choose u so that 

TT/2 \y\ < u < 3TT/2 \y\. 

Hence TT/2 < \uy\ < 3T/2 and therefore eu(x~l) cos uy < 1. 
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z-plane 

FIGURE 1 

(The unshaded part of the plane is the domain of summability.) 

Case 2. y = 0, x < 1. Choose any positive u. Then eu{x~l) cos uy < 1. 

Case 3. y — 0, x > 1. Choose any negative u. Then eu(x~}) cos uy < 1. 

B. Let f(z) = ew(2_1), where w is real and w ^ O , and let dn = g > 0 for 
all w. 

THEOREM 4.3. 77^ (eM[2-11, q)-method is regular if and only if u > 0. 

The proof of Theorem 4.3 is analogous to that of Theorem 4.1. I t follows 
from Theorem 3.3 that the (eu[z~1], g)-method sums the geometric series (4.1) 
to (1 — z)~] for all z such that 

\eu(z-l) + q \ < i + q t 

THEOREM 4.4. If u > 0, the domain for which the (eu[z~1], q)-method sums the 
geometric series (4.1) to (1 — z)~l contains the half-plane Re {2} < 1 and is con
tained in the domain defined by Re{ew(z_1)} < 1. 

Proof. Suppose that Re{z} = x < 1. Then 

|^(*-i) + q\ < ^C-D + q < 1 + q, 

which implies that the (eu[z~1], q)-sum of the geometric series (4.1) is (1 — z)~l. 
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Suppose that Re{z} = x > 1 and eu^x~l) cos uy > 1. Then the point z = x + iy 
is not in the domain of summability since 

(4.3) ewx-v + 2qeu<x-» cos uy > 1 + 2q. 

The relation (4.3) implies that 

so that we obtain 
(4.4) \<?i*-» + g| > 1 + g. 

If x > 1, then each of the relations (4.3) and (4.4) can be replaced by strict 
inequality and the desired result follows from Theorem 3.4. If x — 1, then 
cos uy = 1 so that neither the {eu{z~l], q)-method nor the (ew[2~n,w — 1)-
method sums the geometric series (4.1) to (1 — z)~l for such a z. 

THEOREM 4.5. If p > q, the domain of summability in which the (eu[2~l], p)-
method sums the geometric series (4.1) includes the corresponding domain of 
summability of the (eu{z~l],q)-method. 

Proof. When x < 1, both methods under consideration sum the geometric 
series (4.1) to (1 — z)~l. Neither method sums the geometric series to 
(1 — s ) - 1 for a value of z for which eu(x~l) cos uy > 1. So assume that 
gw(z-i) c o s Uy < 1. The domains of summability corresponding to p and q are 
defined by the inequalities 

(4.5) e2u{z-i) + 2p[eu<x-» cos uy - 1] - 1 < 0 

and 

(4.6) e^*-» + 2q[eu(x-v cos uy - 1] - 1 < 0 

respectively. But since p > q and eu{x~l) cos uy — 1 < 0, 

2q[eu(x~» cos uy] > 2p[e^x~l) cos uy]. 

Therefore if z is a point such that (4.6) is satisfied, then (4.5) is satisfied. 
Hence the theorem follows. 

C. Let f{z) = azm, a > 0, m a positive integer. 

THEOREM 4.6. Let a be given such that 0 < a < T/2. Suppose there exist an 
e > 0 and an integer N > 0 such that 6n > a and pn > e /#r a// w > N. TÂ w 
//ze (asw, dn)-method is not regular. 

Proof. Suppose that the (azm, dn) -method is regular. Define \n = pn e x p ( ^ ) , 
where /3n = Bn — a and define bnlc by the relations 

#oo = If 

(4.7) 6o* = 0 (* s* 0), 

fc=0 n 
asm + X, 
a + X7-
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The elements ank of (1.1) can be written in the form 

dt 
2TT* Je iÀ OT. > 

laF + dA 
I a + dtl t 

where/(s) is replaced by azm and C is any circle with the origin as centre. Inte
grating we get 

(4.8) &nk — n 

PI (a + dt) 
£di ' 1 d. w . . .d»*] , 

where s* = 0 or 1 and the sum is taken over all s/s for which 

Si + • • • + Sn = (WW — &)/*». 

Similarly, 

n 
[ E <*iw ^2" • • • <*»5BJ e-ta(mn-k),m. 

n (o+xo 
This implies that 

(4.9) a*/m | E <Zisl • • • 4,1 = |M ft I* + X,|. 
1 = 1 

Hence by (4.9) and (4.8) it follows that 

mn 

X \ank\ 
k=0 

n 

= n a + dt E IU 
fc=0 

so that 

(4.10) 
mn 

k=0 

n 

*l > E i \a + dt 

since 

S l̂nJfcl > z ** = 1. 

The assumption that (asw, dw) is regular and relation (4.10) imply that 

\a + \t 

n la + di\ 

is a bounded function of n. By hypothesis and since — T < $n < 7r, there 
exists a positive integer iV such that a < Sn < T for all w > N, which implies 
that Bn> pn> 0. Hence 

\a + \„|2 > la + 4 | : 

so that 
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a + \j\ 
\a + dt\ 

is a monotone function of n for ail n > N. Hence 
n 

is bounded if and only if 

(4.11) 

n 

n 

a + Xt 

a + dt\ 

a + X 
a + dt 

converges. But (4.11) converges if and only if 

•1 + 
U + xJ21 
\a + di\ J 

is convergent. If n > N, then a < I3n + 0n < 2T — a and so 

sm[((3n + dn)/2] > sin (a/2). 

It follows that 

(4.12) - 1 + 
a + Xn\

 2 2apn (cos (3n — cosfln; 

I a + dn | aJ + 2apn cos 0W + pn
2 

(# + Pn) (1 + Pn/a) 

By supposition (azm, dw) is regular, which implies that 

CO 

Z) Pn1 = » • 
n = l 

Since, by hypothesis, pw is bounded away from zero, it follows that 

(4.13) fi n ^^ ,2 = « . 
v n^i (1 + p»/a) 
It now follows from (4.12) and (4.13) that 

co I I -v 2 | 

£ L ~ 1 + I ^ M ! I J= °°-
Hence by (4.10) and (4.11) we find that 

inn 

Z) \ank\ 
tc=0 

is not uniformly bounded for all n, which proves the theorem. 

The following example shows that in Theorem 4.6 the restriction that pn 

be bounded away from zero cannot be removed. 
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EXAMLPE 4.1. Let 

(4.14) dn = n-2e^ 

for all positive integers n and let f(z) = z. Hence 

ttJ I 00 "I 

S WTd7\> S F+^r5 = °° 
and 

OO CO 

Zp»6n2= ( 7T 2 / 16 )E«" 2 = T 4 / 9 6 . 

77ms i£ follows from Corollary 2.8 /to/ £/ze corresponding (z, dn)-method is 
regular. 

Example 4.1 furnishes us with a counterexample to two statements made 
by Cowling and Miracle (3, Theorems 2.2 and 2.4). By replacing r by — IT 
in (4.14), we get a counterexample to (3, Theorem 2.3). 

Even if pn is bounded away from zero, the (azm, dn)-method may be regular 
when 

lim Bn 9^ 0 

as the following example shows. 

EXAMPLE 4.2. Let f(z) = z and let 

_ in if n is not the square of a positive integer, 
n \n • exp {( — l)ni} if n is the square of a positive integer. 

Hence 

1 
— = 0 0 

n S 1/(1)+dn\
> S i + 

and 

E -
n=l Pn 

converges. It follows from Corollary 2.7 that the corresponding (z, dn)-method is 
regular. 

Example 4.2 answers the open problem in (3, p. 424): to find a sequence 
{dn} of type 2 such that 

lim arg (dn) ^ 0 

and such that the (z, dn)-matrix is regular; or to show that no such sequence 
exists. 

THEOREM 4.7. Let a be given such that —w/2 < a < 0. Suppose there exist 
an e > 0 and an integer N > 0 such that 6n < a and pn > e for all n > N. Then 
the (azm, dn) -method is not regular. 
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THEOREM 4.8. Suppose that dn — a for all n and that there exist an e > 0 
and an integer N > 0 such that pn > e for ail n > N. Then if the (azm, dn)-
method is regular, a = 0. 

D. Let f(z) = zm, where m is a positive integer, and let dn = n — 1 for ail 
positive integers n. 

PROPERTY 4.1. The {zm, n)-method is regular for each m. 

PROPERTY 4.2. The (sm, n)-method sums the geometric series to (1 — z)~l for 
all z which satisfy Re{zm} < 1. 

We notice that the (zm, n) -method of summability sums the geometric series 
to (1 — JS)-1 in the generalized Borel polygon. When m = 1, we get the 
Lototsky method (2). 
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