## ON THE $(f, d_n)$ -METHOD OF SUMMABILITY

## GASTON SMITH

**1. Introduction.** Let f(z) be a non-constant entire function and let  $\{d_n\}$  be a sequence of complex numbers such that

$$d_i \neq -f(1)$$
 and  $d_i \neq -f(0)$   $(i \ge 1)$ .

The set of equations

(1.1)  
$$a_{00} = 1,$$
$$a_{0k} = 0 \quad (k \neq 0),$$
$$\prod_{i=1}^{n} \left[ \frac{f(z) + d_i}{f(1) + d_i} \right] = \sum_{k=0}^{\infty} a_{nk} z^k \quad (n \ge 1)$$

defines the elements of a matrix  $A = (a_{nk})$ , where n, k = 0, 1, 2, ...

DEFINITION 1.1. A sequence  $\{t_k\}$ , or a series whose kth partial sum is  $t_k$ , is said to be  $(f, d_n)$ -summable to t if and only if

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk}t_k=t,$$

where the  $a_{nk}$ 's are defined by (1.1).

We obtain several known methods of summability as special cases of the  $(f, d_n)$ -method by placing certain restrictions on f(z) and  $\{d_n\}$ . If f(z) = z and  $d_n = r$ , where r is any complex constant, we get the well-known Euler method (1). If  $f(z) = \lambda z$ ,  $d_n = n$ , and  $\lambda > 0$ , we obtain the Karamata-Stirling method as defined by Vuckovic (6). If f(z) = z and  $d_n = n$  we get the Lototsky method as defined by Agnew (2). If f(z) = z and  $\{d_n\}$  is any real sequence, we get a method defined by Jakimovski (4). If f(z) = z and  $\{d_n\}$  is any complex sequence, we get a method defined by Cowling and Miracle (3).

In this paper we first obtain some regularity conditions for the  $(f, d_n)$ method. Several necessary conditions and four sufficient conditions are obtained. Then we derive some results concerning the effectiveness of this method for summing power series. The paper is concluded with a discussion of some special cases of the  $(f, d_n)$ -method.

Throughout the paper we frequently make use of the following notations. The symbol f(z) denotes an entire function. When z = x + iy we denote Re{f(z)} by u(x, y) or u and Im{f(z)} by v(x, y) or v. The principal argument of  $d_n$  is denoted by  $\theta_n$ . Also, we let a + ib = f(1),  $x_n + iy_n = d_n$ , and  $\rho_n = |d_n|$ .

Received November 25, 1963.

2. Regularity conditions for the  $(f, d_n)$ -method. It is well known that a linear method of summability defined by the matrix  $C = (c_{nk})$  is regular if and only if

(2.1) 
$$\sum_{k=0}^{\infty} |c_{nk}| \leq M \qquad (n \geq 0),$$

(2.2) 
$$\lim_{n\to\infty}c_{nk}=0 \qquad (k \ge 0),$$

(2.3) 
$$\lim_{n\to\infty}\sum_{k=0}^{\infty}c_{nk}=1,$$

where M is a constant independent of n.

# A. Necessary conditions for the regularity of the $(f, d_n)$ -method.

Lемма 2.1. If

$$\prod_{i=1}^{\infty} (1-a_i) = 0,$$

 $a_i$  is real, and  $a_i < 1$  for all *i*, then there are infinitely many  $a_i$ 's such that  $a_i > 0$ .

THEOREM 2.1. A necessary condition in order that the  $(f, d_n)$ -method be regular is that there exist a strictly increasing sequence of natural numbers  $\{n_k\}$  such that

(2.4) 
$$\sum_{k=1}^{\infty} \left[ 1 - \left| \frac{f(0) + d_{nk}}{f(1) + d_{nk}} \right|^2 \right] = \infty.$$

*Proof.* Suppose that the  $(f, d_n)$ -method is regular. Letting z = 0 in (1.1) we get

(2.5) 
$$a_{n0} = \prod_{i=1}^{n} \left[ \frac{f(0) + d_i}{f(1) + d_i} \right].$$

Since regularity condition (2.2) implies that

$$\lim_{n\to\infty}a_{n0}=0,$$

it follows that

(2.6) 
$$\prod_{i=1}^{\infty} \left[ \frac{f(0)+d_i}{f(1)+d_i} \right] = 0.$$

The relation (2.6) implies that

(2.7) 
$$\prod_{i=1}^{\infty} \left| \frac{f(0) + d_i}{f(1) + d_i} \right|^2 = 0$$

so that

(2.8) 
$$\prod_{i=1}^{\infty} \left[ 1 - \left\{ 1 - \left| \frac{f(0) + d_i}{f(1) + d_i} \right|^2 \right\} \right] = 0.$$

Let

(2.9) 
$$a_i = 1 - \left| \frac{f(0) + d_i}{f(1) + d_i} \right|^2.$$

Using (2.9), the relation (2.8) may be written in the form

(2.10) 
$$\prod_{i=1}^{\infty} (1 - a_i) = 0,$$

where  $a_i < 1$  and  $a_i$  is real. By Lemma 2.1, there are infinitely many  $a_i$ 's which are positive. Construct a sequence  $\{a_{nk}\}$  which consists of all of the positive  $a_i$ 's arranged according to increasing magnitude of the subscripts. Consequently (2.10) implies that

$$\prod_{k=1}^{\infty} (1-a_{nk}) = 0,$$

where  $0 < a_{nk} < 1$ . Hence by a well-known theorem on infinite products we get

(2.11) 
$$\sum_{k=1}^{\infty} a_{nk} = \infty.$$

It follows from (2.9) and (2.11) that

$$\sum_{k=1}^{\infty} \left[ 1 - \left| \frac{f(0) + d_{nk}}{f(1) + d_{nk}} \right|^2 \right] = \infty$$

so that the theorem is proved.

COROLLARY 2.1. If f(0) and f(1) are real, a necessary condition in order that the  $(f, d_n)$ -method be regular is that there exist a strictly increasing sequence of natural numbers  $\{n_k\}$  such that

$$\sum_{k=1}^{\infty} \left[ \frac{f(0) + f(1) + 2x_{n_k}}{|f(1) + d_{n_k}|^2} \right] = \pm \infty.$$

COROLLARY 2.2. A necessary condition in order that the  $(f, d_n)$ -method be regular is that

$$|f(1) + d_n| > |f(0) + d_n|$$

for infinitely many values of n. If f(0) and f(1) are real, a necessary condition for regularity is that

$$x_n > -\frac{1}{2}[f(0) + f(1)] > -f(1)$$

for infinitely many values of n when f(1) > f(0) and

$$x_n < -\frac{1}{2}[f(0) + f(1)] < -f(1)$$

for infinitely many values of n when f(1) < f(0).

COROLLARY 2.3. A necessary condition in order that the  $(f, d_n)$ -method be regular is that  $f(0) \neq f(1)$ .

We can now prove the main result concerning necessary conditions for the regularity of the  $(f, d_n)$ -method.

THEOREM 2.2. A necessary condition in order that the  $(f, d_n)$ -method be regular is that

(2.12) 
$$\sum_{n=1}^{\infty} \frac{1}{|f(0) + d_n|} = \infty.$$

*Proof.* Suppose that

$$\sum_{n=1}^{\infty} \frac{1}{|f(0) + d_n|}$$

is convergent. It follows that

(2.13) 
$$\lim_{n\to\infty}\frac{1}{|f(0)+d_n|}=0.$$

The relation (2.13) implies that there exists a positive integer N such that for all n > N we have

(2.14) 
$$\frac{1}{|f(0) + d_n|^2} < \frac{1}{|f(0) + d_n|}.$$

It follows from Corollary 2.2 that

$$|f(0) + d_n|^2 < |f(1) + d_n|^2$$

holds for the infinitely many values  $\{n_k\}$  for which Theorem 2.1 is true. Hence

(2.15) 
$$\frac{|f(0) + d_n|}{|f(1) + d_n|^2} < \frac{1}{|f(0) + d_n|}$$

for the infinitely many values  $\{n_k\}$  for which Theorem 2.1 is true. Let f(0) = c + di and let

$$L_{nk} = \left| rac{\left| f(1) + d_{nk} 
ight|^2 - \left| f(0) + d_{nk} 
ight|^2}{\left| f(1) + d_{nk} 
ight|^2} 
ight| \, .$$

Now it follows from (2.14) and (2.15) that

(2.16) 
$$L_{n_k} \leq \frac{(a-c)^2 + 2|a-c| + (b-d)^2 + 2|b-d|}{|f(0) + d_{n_k}|}$$

From the supposition and relation (2.16) we find that

$$\sum_{k=1}^{\infty} L_{nk}$$

converges. Therefore

$$\sum_{k=1}^{\infty} \; rac{|f(1)+d_{nk}|^2 - |f(0)+d_{nk}|^2}{|f(1)+d_{nk}|^2}$$

converges, which contradicts Theorem 2.1.

COROLLARY 2.4. If  $d_n \neq 0$ , a necessary condition in order that the  $(f, d_n)$ -method be regular is that

$$\sum_{n=1}^{\infty} \rho_n^{-1} = \infty.$$

COROLLARY 2.5. A necessary condition in order that the  $(f, d_n)$ -method be regular is that

$$\sum_{n=1}^{\infty} \frac{1}{|f(1) + d_n|} = \infty.$$

If we take f(z) = z in relation (1), then Theorem 2.2 becomes a known result (3).

## B. Sufficient conditions for the regularity of the $(f, d_n)$ -method.

LEMMA 2.2. Suppose that  $d_n$  is real,  $d_n \ge 0$ , and that the Taylor expansion of f(z) about the origin has non-negative coefficients. Then the  $(f, d_n)$ -method is regular if and only if

$$\sum_{n=1}^{\infty} \frac{1}{f(1)+d_n} = \infty.$$

Proof. The necessity of the condition follows from Corollary 2.5.

Sufficiency. Letting z = 1 in relation (1.1), we get

$$\sum_{k=0}^{\infty} a_{nk} = 1;$$

so regularity condition (2.3) holds. Since  $d_n$  is real and non-negative and the coefficients of the expansion of f(z) about the origin are non-negative, it follows that  $|a_{nk}| = a_{nk}$ . Hence regularity condition (2.1) holds. Also since the coefficients of the expansion of f(z) about the origin are non-negative and f(z) is non-constant, it follows that f(0) < f(1). Now choose  $\epsilon > 0$  so that  $f(0) + 2\epsilon < f(1)$  and let C be a circle with centre at the origin such that

$$|f(t) - f(0)| < \epsilon$$
 for all  $t \in C$ .

Hence for  $t \in C$  we have that

$$|f(t)| \leq f(0) + \epsilon < f(1) - \epsilon.$$

We may represent  $a_{nk}$  in the form

$$a_{nk} = \frac{1}{2\pi i} \int_C \prod_{i=1}^n \frac{f(t) + d_i}{f(1) + d_i} \cdot \frac{dt}{t^{k+1}}$$

so that

$$a_{nk} = |a_{nk}| \leq \frac{1}{2\pi R^k} \int_0^{2\pi} \prod_{i=1}^n \left| \frac{f(t) + d_i}{f(1) + d_i} \right| d\theta.$$

Since  $1 + x \leq e^x$  for x real, we obtain

$$\begin{aligned} \left| \frac{f(t) + d_i}{f(1) + d_i} \right| &\leq \exp\left\{ -1 + \frac{|f(t) + d_i|}{f(1) + d_i} \right\} \\ &\leq \exp\left\{ \frac{|f(t)| - f(1)}{f(1) + d_i} \right\} \\ &\leq \exp\left\{ -\frac{\epsilon}{f(1) + d_i} \right\}. \end{aligned}$$

Hence it follows that

$$a_{nk} \leqslant R^{-k} \exp\left\{-\epsilon \sum_{i=1}^{n} \frac{1}{f(1)+d_i}\right\}.$$

Therefore

$$\lim_{n\to\infty}a_{nk}=0,$$

which proves the lemma.

The preceding lemma generalizes a result of Jakimovski (4).

THEOREM 2.3. Suppose that

$$\sum_{i=1}^{\infty} \frac{1}{|f(1) + d_i|} = \infty, \qquad \sum_{i=1}^{\infty} \frac{(\mathrm{Im}\sqrt{d_i})^2}{|f(1) + d_i|^2} < \infty,$$

and that the Taylor expansion of f(z) about the origin has non-negative coefficients. Then the  $(f, d_n)$ -method is regular.

*Proof.* Letting z = 1 in relation (1.1), we get

$$\sum_{k=0}^{\infty} a_{nk} = 1;$$

so regularity condition (2.3) holds. Let C be any circle with centre at the origin. The elements  $a_{nk}$  are given by the formula

(2.17) 
$$a_{nk} = \frac{1}{2\pi i} \int_{C} \prod_{i=1}^{n} \left[ \frac{f(t) + d_{i}}{f(1) + d_{i}} \right] \cdot \frac{dt}{t^{k+1}}.$$

By expanding the product on the right of (2.17), it follows that

$$\prod_{i=1}^{n} [f(1) + d_i] a_{nk} = \frac{1}{2\pi i} \int_C \{ [f(t)]^n + [f(t)]^{n-1} (d_1 + d_2 + \ldots + d_n) + [f(t)]^{n-2} (d_1 d_2 + \ldots + d_{n-1} d_n) + (d_1 d_2 \ldots d_n) \} \frac{dt}{t^{k+1}}.$$

Since  $[f(t)]^n$  is an entire function, we may write,

(2.18) 
$$[f(t)]^n = \sum_{j=0}^{\infty} p_{jn} t^j.$$

It follows that

(2.19) 
$$\prod_{i=1}^{n} [f(1) + d_i] a_{nk} = p_{kn} + (d_1 + d_2 + \ldots + d_n) p_{k,n-1} + (d_1 d_2 + \ldots + d_{n-1} d_n) p_{k,n-2} + \ldots + (d_1 d_2 \ldots d_n) p_{k0}.$$

Therefore

(2.20) 
$$\sum_{k=0}^{\infty} |a_{nk}| \prod_{i=1}^{n} |f(1) + d_{i}| \\ \leqslant \sum_{k=0}^{\infty} \{p_{kn} + (\rho_{1} + \ldots + \rho_{n})p_{k,n-1} + \ldots + (\rho_{1} \ldots \rho_{n})p_{k0}\}.$$

Let  $B = (b_{nk})$  be the matrix corresponding to the  $(f, \rho_n)$ -method. Hence

(2.21) 
$$\sum_{k=0}^{\infty} |b_{nk}| \prod_{i=1}^{n} [f(1) + \rho_i]$$
$$= \sum_{k=0}^{\infty} \{p_{kn} + (\rho_1 + \ldots + \rho_n)p_{k,n-1} + \ldots + (\rho_1 \ldots \rho_n)p_{k0}\}.$$

Now from relations (2.20) and (2.21), it follows that

(2.22) 
$$\sum_{k=0}^{\infty} |a_{nk}| \prod_{i=1}^{n} |f(1) + d_i| \leq \sum_{k=0}^{\infty} |b_{nk}| \prod_{i=1}^{n} [f(1) + \rho_i].$$

However, since all of the elements of B are non-negative,

(2.23) 
$$\sum_{k=0}^{\infty} |b_{nk}| = \sum_{k=0}^{\infty} b_{nk} = 1.$$

The relations (2.22) and (2.23) imply that

(2.24) 
$$\sum_{k=0}^{\infty} |a_{nk}| \leqslant \prod_{i=1}^{n} \left[ \frac{f(1) + \rho_i}{|f(1) + d_i|} \right].$$

Since  $1 + x \leq e^x$  for all real x and  $f(1) + \rho_n \geq |f(1) + d_n|$ , it follows that

(2.25) 
$$\frac{f(1) + \rho_n}{|f(1) + d_n|} \leq \left[\frac{f(1) + \rho_n}{|f(1) + d_n|}\right]^2 \leq \exp\left\{-1 + \left[\frac{f(1) + \rho_n}{|f(1) + d_n|}\right]^2\right\} \leq \exp\left\{4a \cdot \frac{(\operatorname{Im}\sqrt{d_n})^2}{|f(1) + d_n|^2}\right\}.$$

From (2.24) and (2.25) we obtain

(2.26) 
$$\sum_{k=0}^{\infty} |a_{nk}| \leq \exp\left\{4a \cdot \sum_{i=1}^{n} \frac{(\operatorname{Im}\sqrt{d_i})^2}{|f(1) + d_i|^2}\right\}.$$

It follows from (2.26) and the hypothesis that there exists a real number M such that

$$(2.27) \qquad \qquad \sum_{k=0}^{\infty} |a_{nk}| \leqslant M$$

for all *n*. So the regularity condition (2.1) is satisfied. Now from (2.19) and the analogous relation involving  $b_{nk}$  we find that

(2.28) 
$$|a_{nk}| \leq |b_{nk}| \prod_{i=1}^{n} \frac{f(1) + \rho_i}{|f(1) + d_i|}.$$

The relation

$$\sum_{n=1}^{\infty} \frac{1}{|f(1)+d_n|} = \infty$$

implies that

$$\sum_{n=1}^{\infty} \frac{1}{|f(1) + d_n| + 2f(1)} = \infty.$$

It follows that

$$\sum_{n=1}^{\infty} \frac{1}{f(1) + |d_n|} = \infty$$

since

$$\frac{1}{f(1) + |d_n|} \ge \frac{1}{|f(1) + d_n| + 2f(1)}.$$

By Lemma 2.2 and relation (2.29), we find that the  $(f, \rho_n)$ -method is regular so that

$$\lim_{n\to\infty}b_{nk}=0.$$

Moreover (2.25) implies that

$$\prod_{i=1}^{n} \frac{f(1) + \rho_{i}}{|f(1) + d_{i}|}$$

is bounded. Therefore we have

$$\lim_{n\to\infty}a_{nk}=0,$$

which proves the theorem.

COROLLARY 2.6. If

$$\sum_{n=1}^{\infty} \frac{1}{|f(1) + d_n|} = \infty, \qquad \sum_{n=1}^{\infty} \theta_n^2 \text{ converges}$$

#### GASTON SMITH

and the Taylor expansion of f(z) about the origin has real non-negative coefficients, then the  $(f, d_n)$ -method is regular.

*Proof.* Since the inequality  $x^2 + 2\cos x - 2 \ge 0$  holds for all real x, it follows that

(2.30) 
$$-2a\rho_n\cos\theta_n+2a\rho_n\leqslant a\rho_n\,\theta_n^2,$$

where a > 0 is valid for all *n*. Using (2.30) and the fact that there exists a positive integer N such that  $\cos \theta_n > \frac{1}{2}$  for all n > N, we obtain

(2.31) 
$$4a \left| \frac{\operatorname{Im} \sqrt{d_n}}{f(1) + d_n} \right|^2 = \frac{-2a\rho_n \cos \theta_n + 2a\rho_n}{|a + d_n|^2}$$
$$\leqslant \frac{a\rho_n \theta_n^2}{a^2 + 2a\rho_n \cos \theta_n + \rho_n^2}$$
$$\leqslant \frac{a\rho_n \theta_n^2}{2a\rho_n \cos \theta_n} \leqslant \theta_n^2.$$

Now we can apply Theorem 2.3, which completes the proof.

COROLLARY 2.7. Suppose that

$$\sum_{n=1}^{\infty} \frac{1}{|f(1) + d_n|} = \infty, \qquad \sum \frac{\theta_n^2}{\rho_n} \text{ converges}$$

where the sum on the right ranges over all n for which  $\rho_n$  is positive,  $\operatorname{Re}\{d_n\} \ge -f(1)/2$ , and the Taylor expansion of f(z) about the origin has real non-negative coefficients. Then the  $(f, d_n)$ -method is regular.

COROLLARY 2.8. Suppose that

$$\sum_{n=1}^{\infty} \frac{1}{|f(1)+d_n|} = \infty, \qquad \sum_{n=1}^{\infty} \rho_n \theta_n^2 \text{ converges,}$$

 $2 |\theta_n| \leq \pi$ , and the coefficients of the expansion of f(z) about the origin are real and non-negative. Then the  $(f, d_n)$ -method is regular.

## 3. Power series.

THEOREM 3.1. Suppose that

$$\sum \frac{1}{\rho_n} = \infty$$
,  $\lim_{n \to \infty} \theta_n = 0$ ,  $\lim_{n \to \infty} \rho_n = \infty$ ,

where the sum ranges over all n for which  $\rho_n$  is positive. Then the  $(f, d_n)$ -method sums the geometric series

$$(3.1) \qquad \qquad \sum_{k=0}^{\infty} z^k$$

to  $(1-z)^{-1}$  for all values of z such that  $\operatorname{Re}\{f(z)\} < \operatorname{Re}\{f(1)\}$ .

Proof. The partial sums of (3.1) are given by

$$(3.2) S_k(z) = (1-z)^{-1} - (1-z)^{-1} z^{k+1}.$$

Let

$$\sigma_n(z) = \sum_{k=0}^{\infty} a_{nk} S_k(z).$$

We may represent  $\sigma_n(z)$  in the form

(3.3) 
$$\sigma_n(z) = \frac{1}{1-z} - \frac{z}{1-z} \prod_{i=1}^n \left[ \frac{f(z) + d_i}{f(1) + d_i} \right].$$

It is sufficient to show that

$$\prod_{i=1}^{\infty} \left[ \frac{f(z) + d_n}{f(1) + d_n} \right] = 0$$

for all z such that  $\operatorname{Re}\{f(z)\} < \operatorname{Re}\{f(1)\}$ . Since  $1 + x \leq e^x$  for real x, it follows that

(3.4) 
$$\left| \frac{f(z) + d_n}{f(1) + d_n} \right|^2 \leq \exp\left\{ \frac{2ux_n + 2vy_n - 2ax_n - 2by_n + H}{|f(1) + d_n|^2} \right\}$$
  
 $\leq \exp\left\{ \frac{\rho_n [(u - a)\cos\theta_n + (v - b)\sin\theta_n]}{|f(1) + d_n|^2} \right\} + \frac{H}{2|f(1) + d_n|^2},$ 

where  $H = u^2 + v^2 - a^2 - b^2$ . Using the hypothesis, we find that

$$\lim_{n \to \infty} \frac{\rho_n^{\ 2}[(u-a)\cos\theta_n + (v-b)\sin\theta_n]}{|f(1) + d_n|^2} = u - a$$

and

$$\lim_{n\to\infty} \quad \frac{H\rho_n}{2|f(1)+d_n|^2}=0.$$

Hence there exist a K > 0 and an integer N > 0 such that for all n > N we have

(3.5) 
$$-K\rho_n^{-1} > \frac{\rho_n[(u-a)\cos\theta_n + (v-b)\sin\theta_n]}{|f(1) + d_n|^2} + \frac{H}{2|f(1) + d_n|^2}.$$

From (3.5) it follows that

(3.6) 
$$\left|\frac{f(z)+d_n}{f(1)+d_n}\right| \leq \exp\{-K\rho_n^{-1}\}$$

for all n > N. Therefore by (3.6) we obtain

(3.7) 
$$\prod_{n=1}^{\infty} \left| \frac{f(z) + d_n}{f(1) + d_n} \right| \leq \prod_{i=1}^{N-1} \left| \frac{f(z) + d_n}{f(1) + d_n} \right| \cdot \exp\left\{ \sum_{i=N}^{\infty} K \rho_i^{-1} \right\}.$$

Since

$$\sum_{i=N}^{\infty}\rho_n^{-1} = \infty$$

we conclude from (3.7) that

$$\prod_{n=1}^{\infty} \left[ \frac{f(z) + d_n}{f(1) + d_n} \right] = 0.$$

This completes the proof.

THEOREM 3.2. Suppose that

$$\rho_n^{-1} = \infty, \quad \lim_{n \to \infty} \theta_n = 0, \quad \lim_{n \to \infty} \rho_n = \infty,$$

where the sum ranges over all positive  $\rho_n$ . Then

$$\lim_{n\to\infty}\sigma_n(z) = \infty$$

for all z such that  $\operatorname{Re}\{f(z)\} > \operatorname{Re}\{f(1)\}\)$ , where  $\sigma_n(z)$  and  $S_k(z)$  are defined as in Theorem 3.1.

*Proof.* Assume that z is given such that  $\operatorname{Re}\{f(z)\} > \operatorname{Re}\{f(1)\}$ . It is sufficient to show that

(3.8) 
$$\prod_{n=1}^{\infty} \left[ \frac{f(z) + d_n}{f(1) + d_n} \right] = \infty.$$

Since

$$\lim_{n\to\infty}\theta_n=0 \quad \text{and} \quad \lim_{n\to\infty}\rho_n=\infty,$$

we have

$$\lim_{n\to\infty} \{ |f(z) - d_n|^2 - |f(1) + d_n|^2 \} = \infty.$$

Hence there exists an integer N > 0 such that

$$\left|\frac{f(z)+d_n}{f(1)+d_n}\right| > 1$$

when n > N. It follows that

$$\prod_{n=1}^{\infty} \left| \frac{f(z) + d_n}{f(1) + d_n} \right|^2 = \infty$$

.

. .....

if and only if

(3.9) 
$$\sum_{n=1}^{\infty} \left[ 1 - \left| \frac{f(z) + d_n}{f(1) + d_n} \right|^2 \right] = \infty.$$

We note that

$$1 - \left| \frac{f(z) + d_n}{f(1) + d_n} \right|^2 = \frac{2\rho_n(u - a)\cos\theta_n + 2\rho_n(v - b)\sin\theta_n + H}{|f(1) + d_n|^2},$$

where  $H = u^2 + v^2 - a^2 - b^2$ . Using the same procedure as in the proof of Theorem 3.1, we find that

$$\lim_{n\to\infty}\frac{2\rho_n^2\left[(u-a)\cos\theta_n+(v-b)\sin\theta_n\right]+\rho_nH}{\left|f(1)+d_n\right|^2}=2(u-a).$$

Hence there exist a K > 0 and an integer N > 0 such that for all n > N we have

(3.10) 
$$\frac{2\rho_n[(u-a)\cos\theta_n + (v-b)\sin\theta_n] + H}{|f(1) + d_n|^2} > K\rho_n^{-1}.$$

Since

$$\sum \rho_n^{-1} = \infty,$$

the relation (3.10) implies that

$$\sum_{n=1}^{\infty} \left[ -1 + \left| \frac{f(z) + d_n}{f(1) + d_n} \right|^2 \right] = \infty.$$

By (3.9) we have

$$\prod_{n=1}^{\infty} \left| \frac{f(z) + d_n}{f(1) + d_n} \right|^2 = \infty$$

so that

(3.11) 
$$\prod_{n=1}^{\infty} \left| \frac{f(z) + d_n}{f(1) + d_n} \right| = \infty$$

The asserted result follows from (3.11).

THEOREM 3.3. Suppose that z is given such that  $|f(z) + \rho| < |f(1) + \rho|$  and that

$$\lim_{n\to\infty}\rho_n=\rho\quad\text{and}\quad\lim_{n\to\infty}\theta_n=0.$$

Then the  $(f, d_n)$ -method sums the geometric series (3.1) to  $(1 - z)^{-1}$ .

*Proof.* We follow the same procedure as in Theorem 3.1. Thus we have

(3.12) 
$$\sigma_n(z) = \frac{1}{1-z} - \frac{z}{1-z} \prod_{i=1}^n \left[ \frac{f(z) + d_i}{f(1) + d_i} \right].$$

Let  $H = u^2 + v^2 - a^2 - b^2$ . Since  $1 + x \le e^x$  for real x, we obtain

$$\left|\frac{f(z)+d_n}{f(1)+d_n}\right| \leq \exp\left\{\frac{2\rho_n[(u-a)\cos\theta_n+(v-b)\sin\theta_n]+H}{2|f(1)+d_n|^2}\right\}.$$

It follows from the hypothesis that

$$\lim_{n \to \infty} \frac{2\rho_n[(u-a)\cos\theta_n + (v-b)\sin\theta_n] + H}{2|f(1) + d_n|^2} = \frac{2\rho(u-a) + H}{2|f(1) + \rho|^2} < 0.$$

Hence there exist a K > 0 and an integer N > 0 such that

(3.13) 
$$\frac{2\rho_n[(u-a)\cos\theta_n + (v-b)\sin\theta_n] + H}{2|f(1) + d_n|^2} < -K$$

for n > N. Hence we obtain the relation

$$\prod_{i=1}^{n} \left| \frac{f(z) + d_{i}}{f(1) + d_{i}} \right| \leq \prod_{i=1}^{N-1} \left| \frac{f(z) + d_{i}}{f(1) + d_{i}} \right| \exp\left\{ -\sum_{i=N}^{n} K \right\}$$

so that

$$\prod_{n=1}^{\infty} \left[ \frac{f(z) + d_n}{f(1) + d_n} \right] = 0.$$

THEOREM 3.4. Suppose that

$$\lim_{n\to\infty}\rho_n=\rho,\qquad \lim_{n\to\infty}\theta_n=0,\qquad \rho\neq -f(1),$$

and that z is given such that  $|f(z) + \rho| > |f(1) + \rho|$ . Then  $\lim_{n \to \infty} \sigma_n(z) = \infty.$ 

*Proof.* Since  $|f(z) + \rho| < |f(1) + \rho|$ , there exists an  $\alpha$  such that  $0 < \alpha < 8$  and

(3.14)  $|f(z) + \rho|^2 > |f(1) + \rho|^2 (1 + 2\alpha).$ Let  $H = u^2 + v^2 - a^2 - b^2$ . It follows from (3.14) that  $H \ge 2\rho(u - a) + 2\alpha |f(1) + \rho|^2$ 

so that

(3.15) 
$$|f(z) + d_n|^2 - |f(1) + d_n|^2 \ge 2(u - a)(\rho_n \cos \theta_n - \rho) + 2\rho_n(v - b) \sin \theta_n + 2\alpha |f(1) + \rho|^2.$$

By hypothesis there exists an integer N > 0 such that for n > N(3.16)  $|2(u - a)(\rho_n \cos \theta_n - \rho) + 2(v - b)\rho_n \sin \theta_n| < \alpha |f(1) + \rho|^2$ . The relations (3.15) and (3.16) imply that

(3.17) 
$$|f(z) + d_n|^2 - |f(1) + d_n|^2 \ge \alpha |f(1) + \rho|^2.$$

Since  $0 < \alpha < 8$ , it follows from (3.17) that

$$\lim_{n \to \infty} \left| \frac{f(z) + d_n}{f(1) + d_n} \right| \ge 1 + \alpha/4 > 1$$

so that we have

(3.18) 
$$\prod_{n=1}^{\infty} \left| \frac{f(z) + d_n}{f(1) + d_n} \right| = \infty.$$

It follows from (3.18) that

$$\lim_{n\to\infty}\sigma_n(z) = \infty$$

and the theorem is proved.

THEOREM 3.5. If

$$\lim_{n\to\infty} \rho_n = 0,$$

then the  $(f, d_n)$ -method sums the geometric series (3.1) to  $(1 - z)^{-1}$  for all z such that |f(z)| < |f(1)|.

*Proof.* If f(1) = 0, the result follows immediately since there is no value of z for which |f(z)| < |f(1)|. So for the remainder of the proof we may suppose that  $f(1) \neq 0$ .

Since  $1 + x \leq e^x$  for real x, we get

$$\left|\frac{f(z)+d_n}{f(1)+d_n}\right| \leq \exp\left\{\frac{H+2\rho_n[(u-a)\cos\theta_n+(v-b)\sin\theta_n]}{2|f(1)+d_n|^2}\right\},\,$$

where  $H = u^2 + v^2 - a^2 - b^2$ . From the hypothesis we obtain

$$\lim_{n \to \infty} \quad \frac{H + 2\rho_n[(u-a)\cos\theta_n + (v-b)\sin\theta_n]}{2|f(1) + d_n|^2} = \frac{H}{2|f(1)|^2}.$$

Hence there exist a K > 0 and an integer N > 0 such that for all n > N

(3.19) 
$$-K > \frac{H + 2\rho_n [(u-a)\cos\theta_n + (v-b)\sin\theta_n]}{2|f(1) + d_n|^2}$$

From (3.19) it follows that

$$\prod_{i=1}^{n} \left| \frac{f(z) + d_{i}}{f(1) + d_{i}} \right| \leq \prod_{i=1}^{N-1} \left| \frac{f(z) + d_{i}}{f(1) + d_{i}} \right| \exp \left\{ -\sum_{i=N}^{n} K \right\},$$

which implies the theorem.

THEOREM 3.6. Suppose that

$$\lim_{n\to\infty}\rho_n=0$$

and that z is given such that |f(z)| > |f(1)|. Then

$$\lim_{n\to\infty}\sigma_n(z) = \infty$$

*Proof.* From the hypothesis it follows that

$$\lim_{n\to\infty} \{|f(z) + d_n|^2 - |f(1) + d_n|^2\} = |f(z)|^2 - |f(1)|^2 > 0.$$

Hence there exist an  $\alpha > 0$  and an integer N > 0 such that

$$\left|\frac{f(z)+d_n}{f(1)+d_n}\right| > 1+\alpha$$

for n > N. Therefore

$$\prod_{n=1}^{\infty} \left| \frac{f(\mathbf{z}) + d_n}{f(1) + d_n} \right| = \infty,$$

from which the theorem follows.

#### GASTON SMITH

In this section we have determined certain domains in the complex plane for which the  $(f, d_n)$ -method of summability sums the geometric series (3.1) to its analytic continuation  $(1 - z)^{-1}$ . There are several known results (5) which give information concerning the efficiency of a linear method of summability for summing a power series with positive radius of convergence to its analytic continuation. By using results of the type found in (5) and the theorems of this section one can determine a domain for which the  $(f, d_n)$ method sums a power series with positive radius of convergence to its analytic continuation.

## 4. Special cases.

A. Let  $f(z) = e^{u(z-1)}$ , where u is real and  $u \neq 0$ , and let  $d_n = n - 1$  for  $n \ge 1$ .

THEOREM 4.1. The  $(e^{u[z-1]}, n-1)$ -method is regular if and only if u > 0.

*Proof.* If u > 0, then the  $(e^{u[z-1]}, n-1)$ -method is regular by Theorem 2.3. Now suppose that u < 0. By substituting  $e^{u(z-1)}$  for f(z) and n-1 for  $d_n$  in (1.1) and then letting z = 0, we obtain

$$a_{n0} = \prod_{k=1}^{n} \left[ \frac{e^{-u} + k - 1}{k} \right].$$

Since u < 0, we have  $a_{n0} > 1$  for each *n*. Hence the regularity condition (2.2) is not satisfied. Therefore if the  $(e^{u[z-1]}, n-1)$ -method is regular, then u > 0.

Since the hypotheses of Theorem 3.1 are satisfied, it follows that the  $(e^{u[z-1]}, n-1)$ -method sums the geometric series

(4.1) 
$$\sum_{n=0}^{\infty} z^n$$

to  $(1 - z)^{-1}$  for all z such that

$$\operatorname{Re}\{e^{u(z-1)}\} < 1;$$

that is, for all values of z which satisfy

$$(4.2) e^{u(x-1)}\cos uy < 1$$

The domain in which the  $(e^{u[z-1]}, n-1)$ -method sums the geometric series is indicated in Figure 1.

THEOREM 4.2. The  $(e^{u[z-1]}, n-1)$ -method of summability provides a method of analytic continuation of the geometric series (4.1) to  $(1-z)^{-1}$  for all  $z \neq 1$ .

*Proof.* The proof consists of showing that given any  $z \neq 1$ , a *u* can be chosen so that the  $(e^{u[z-1]}, n-1)$ -sum of the geometric series (4.1) is  $(1-z)^{-1}$ . Assume that z is given.

Case 1.  $y \neq 0$ , x arbitrary. Choose u so that

$$\pi/2 |y| < u < 3\pi/2 |y|.$$

Hence  $\pi/2 < |uy| < 3\pi/2$  and therefore  $e^{u(x-1)} \cos uy < 1$ .



FIGURE 1 (The unshaded part of the plane is the domain of summability.)

Case 2. y = 0, x < 1. Choose any positive *u*. Then  $e^{u(x-1)} \cos uy < 1$ . Case 3. y = 0, x > 1. Choose any negative *u*. Then  $e^{u(x-1)} \cos uy < 1$ .

**B.** Let  $f(z) = e^{u(z-1)}$ , where u is real and  $u \neq 0$ , and let  $d_n = q \ge 0$  for all n.

THEOREM 4.3. The  $(e^{u[z-1]}, q)$ -method is regular if and only if u > 0.

The proof of Theorem 4.3 is analogous to that of Theorem 4.1. It follows from Theorem 3.3 that the  $(e^{u[z-1]}, q)$ -method sums the geometric series (4.1) to  $(1-z)^{-1}$  for all z such that

$$|e^{u(z-1)} + q| < 1 + q.$$

THEOREM 4.4. If u > 0, the domain for which the  $(e^{u[z-1]}, q)$ -method sums the geometric series (4.1) to  $(1 - z)^{-1}$  contains the half-plane  $\operatorname{Re}\{z\} < 1$  and is contained in the domain defined by  $\operatorname{Re}\{e^{u(z-1)}\} < 1$ .

*Proof.* Suppose that  $\operatorname{Re}\{z\} = x < 1$ . Then

$$|e^{u(z-1)} + q| \le e^{u(x-1)} + q < 1 + q,$$

which implies that the  $(e^{u[z-1]}, q)$ -sum of the geometric series (4.1) is  $(1 - z)^{-1}$ .

#### GASTON SMITH

Suppose that  $\operatorname{Re}\{z\} = x \ge 1$  and  $e^{u(x-1)} \cos uy \ge 1$ . Then the point z = x + iy is not in the domain of summability since

(4.3) 
$$e^{2u(x-1)} + 2qe^{u(x-1)}\cos uy \ge 1 + 2q.$$

The relation (4.3) implies that

$$e^{u(z-1)} + q|^2 \ge |1+q|^2$$

so that we obtain (4.4)

If x > 1, then each of the relations (4.3) and (4.4) can be replaced by strict inequality and the desired result follows from Theorem 3.4. If x = 1, then  $\cos uy = 1$  so that neither the  $(e^{u[z-1]}, q)$ -method nor the  $(e^{u[z-1]}, n-1)$ -method sums the geometric series (4.1) to  $(1-z)^{-1}$  for such a z.

 $|e^{u(z-1)} + q| \ge 1 + q.$ 

THEOREM 4.5. If p > q, the domain of summability in which the  $(e^{u[z-1]}, p)$ -method sums the geometric series (4.1) includes the corresponding domain of summability of the  $(e^{u[z-1]}, q)$ -method.

**Proof.** When x < 1, both methods under consideration sum the geometric series (4.1) to  $(1 - z)^{-1}$ . Neither method sums the geometric series to  $(1 - z)^{-1}$  for a value of z for which  $e^{u(x-1)} \cos uy \ge 1$ . So assume that  $e^{u(x-1)} \cos uy < 1$ . The domains of summability corresponding to p and q are defined by the inequalities

(4.5) 
$$e^{2u(x-1)} + 2p[e^{u(x-1)}\cos uy - 1] - 1 < 0$$

and

(4.6) 
$$e^{2u(x-1)} + 2q[e^{u(x-1)}\cos uy - 1] - 1 < 0$$

respectively. But since p > q and  $e^{u(x-1)} \cos uy - 1 < 0$ ,

$$2q[e^{u(x-1)}\cos uy] > 2p[e^{u(x-1)}\cos uy].$$

Therefore if z is a point such that (4.6) is satisfied, then (4.5) is satisfied. Hence the theorem follows.

C. Let  $f(z) = az^m$ , a > 0, m a positive integer.

THEOREM 4.6. Let  $\alpha$  be given such that  $0 < \alpha < \pi/2$ . Suppose there exist an  $\epsilon > 0$  and an integer N > 0 such that  $\theta_n > \alpha$  and  $\rho_n > \epsilon$  for all n > N. Then the  $(az^m, d_n)$ -method is not regular.

*Proof.* Suppose that the  $(az^m, d_n)$ -method is regular. Define  $\lambda_n = \rho_n \exp(i\beta_n)$ , where  $\beta_n = \theta_n - \alpha$  and define  $b_{nk}$  by the relations

(4.7)  

$$\begin{aligned}
b_{00} &= 1, \\
b_{0k} &= 0 \quad (k \neq 0), \\
\prod_{i=1}^{n} \left| \frac{az^{m} + \lambda_{i}}{a + \lambda_{i}} \right| &= \sum_{k=0}^{\infty} b_{nk} z^{k} \quad (n \geq 1).
\end{aligned}$$

The elements  $a_{nk}$  of (1.1) can be written in the form

$$a_{nk} = \frac{1}{2\pi i} \int_{C} \prod_{i=1}^{n} \left| \frac{at^{m} + d_{i}}{a + d_{i}} \right| \frac{dt}{t^{k+1}},$$

where f(z) is replaced by  $az^m$  and C is any circle with the origin as centre. Integrating we get

(4.8) 
$$a_{nk} = \frac{a^{k/m}}{\prod_{i=1}^{n} (a+d_i)} \left[ \sum d_1^{s_1} d_2^{s_2} \dots d_n^{s_n} \right],$$

where  $s_i = 0$  or 1 and the sum is taken over all  $s_i$ 's for which

$$s_1 + \ldots + s_n = (mn - k)/m.$$

Similarly,

$$b_{nk} = \frac{a^{k/m}}{\prod_{i=1}^{n} (a + \lambda_i)} \left[ \sum d_1^{s_1} d_2^{s_2} \dots d_n^{s_n} \right] e^{-i\alpha(mn-k)/m}.$$

This implies that

(4.9) 
$$a^{k/m} \left| \sum d_1^{s_1} \dots d_n^{s_n} \right| = |b_{nk}| \prod_{i=1}^n |a + \lambda_i|.$$

Hence by (4.9) and (4.8) it follows that

$$\sum_{k=0}^{mn} |a_{nk}| = \prod_{i=1}^{n} \left| \frac{a+\lambda_i}{a+d_i} \right| \sum_{k=0}^{mn} |b_{nk}|$$

so that

(4.10) 
$$\sum_{k=0}^{mn} |a_{nk}| \ge \prod_{i=1}^{n} \left| \frac{a+\lambda_i}{a+d_i} \right|$$

since

$$\sum_{k=0}^{mn} |b_{nk}| \geqslant \left| \sum_{k=0}^{mn} b_{nk} \right| = 1.$$

The assumption that  $(az^m, d_n)$  is regular and relation (4.10) imply that

$$\prod_{i=1}^{n} \left| \frac{a + \lambda_{i}}{a + d_{i}} \right|$$

is a bounded function of *n*. By hypothesis and since  $-\pi \leq \theta_n \leq \pi$ , there exists a positive integer *N* such that  $\alpha < \theta_n \leq \pi$  for all  $n \geq N$ , which implies that  $\theta_n > \beta_n > 0$ . Hence

$$|a + \lambda_n|^2 > |a + d_n|^2$$

so that

$$\prod_{i=1}^{n} \left| \frac{a + \lambda_i}{a + d_i} \right|$$

is a monotone function of *n* for all  $n \ge N$ . Hence

$$\prod_{i=1}^{n} \left| \frac{a + \lambda_i}{a + d_i} \right|$$

is bounded if and only if

(4.11) 
$$\prod_{i=1}^{\infty} \left| \frac{a + \lambda_i}{a + d_i} \right|^2$$

converges. But (4.11) converges if and only if

$$\sum_{i=1}^{\infty} \left[ -1 + \left| \frac{a + \lambda_i}{a + d_i} \right|^2 \right]$$

is convergent. If  $n \ge N$ , then  $\alpha < \beta_n + \theta_n < 2\pi - \alpha$  and so

$$\sin[(\beta_n + \theta_n)/2] > \sin(\alpha/2).$$

It follows that

(4.12) 
$$-1 + \left|\frac{a+\lambda_n}{a+d_n}\right|^2 = \frac{2a\rho_n\left(\cos\beta_n - \cos\beta_n\right)}{a^2 + 2a\rho_n\cos\beta_n + \rho_n^2}$$
$$\geq \frac{4a\rho_n\sin^2(\alpha/2)}{(a+\rho_n)^2} \geq 4\sin^2(\alpha/2)\frac{\rho_n/a}{(1+\rho_n/a)^2}.$$

By supposition  $(az^m, d_n)$  is regular, which implies that

$$\sum_{n=1}^{\infty} \rho_n^{-1} = \infty.$$

Since, by hypothesis,  $\rho_n$  is bounded away from zero, it follows that

(4.13) 
$$\sum_{n=1}^{\infty} \frac{\rho_n/a}{(1+\rho_n/a)^2} = \infty.$$

It now follows from (4.12) and (4.13) that

$$\sum_{i=1}^{\infty} \left[ -1 + \left| \frac{a + \lambda_i}{a + d_i} \right|^2 \right] = \infty.$$

Hence by (4.10) and (4.11) we find that

$$\sum_{k=0}^{mn} |a_{nk}|$$

is not uniformly bounded for all n, which proves the theorem.

The following example shows that in Theorem 4.6 the restriction that  $\rho_n$  be bounded away from zero cannot be removed.

EXAMLPE 4.1. Let

(4.14) 
$$d_n = n^{-2} e^{i\pi/4}$$

for all positive integers n and let f(z) = z. Hence

$$\sum_{n=1}^{\infty} \frac{1}{|1+d_n|} \ge \sum_{n=1}^{\infty} \frac{1}{1+n^{-2}} = \infty$$

and

$$\sum_{n=1}^{\infty} \rho_n \theta_n^2 = (\pi^2/16) \sum_{n=1}^{\infty} n^{-2} = \pi^4/96.$$

Thus it follows from Corollary 2.8 that the corresponding  $(z, d_n)$ -method is regular.

Example 4.1 furnishes us with a counterexample to two statements made by Cowling and Miracle (3, Theorems 2.2 and 2.4). By replacing  $\pi$  by  $-\pi$ in (4.14), we get a counterexample to (3, Theorem 2.3).

Even if  $\rho_n$  is bounded away from zero, the  $(az^m, d_n)$ -method may be regular when

$$\lim_{n\to\infty}\theta_n\neq 0$$

as the following example shows.

EXAMPLE 4.2. Let f(z) = z and let

$$d_n = \begin{cases} n \text{ if } n \text{ is not the square of a positive integer,} \\ n \cdot \exp\{(-1)^{n_i}\} \text{ if } n \text{ is the square of a positive integer.} \end{cases}$$

Hence

$$\sum_{n=1}^{\infty} \frac{1}{|f(1) + d_n|} \ge \sum_{n=1}^{\infty} \frac{1}{1+n} = \infty$$

and

$$\sum_{n=1}^{\infty} \frac{\theta_n^2}{\rho_n}$$

converges. It follows from Corollary 2.7 that the corresponding  $(z, d_n)$ -method is regular.

Example 4.2 answers the open problem in (3, p. 424): to find a sequence  $\{d_n\}$  of type 2 such that

$$\lim_{n\to\infty} \arg(d_n)\neq 0$$

and such that the  $(z, d_n)$ -matrix is regular; or to show that no such sequence exists.

THEOREM 4.7. Let  $\alpha$  be given such that  $-\pi/2 < \alpha < 0$ . Suppose there exist an  $\epsilon > 0$  and an integer N > 0 such that  $\theta_n < \alpha$  and  $\rho_n > \epsilon$  for all n > N. Then the  $(az^m, d_n)$ -method is not regular.

#### GASTON SMITH

THEOREM 4.8. Suppose that  $\theta_n = \alpha$  for all n and that there exist an  $\epsilon > 0$ and an integer N > 0 such that  $\rho_n > \epsilon$  for all n > N. Then if the  $(az^m, d_n)$ method is regular,  $\alpha = 0$ .

**D.** Let  $f(z) = z^m$ , where *m* is a positive integer, and let  $d_n = n - 1$  for all positive integers *n*.

PROPERTY 4.1. The  $(z^m, n)$ -method is regular for each m.

PROPERTY 4.2. The  $(z^m, n)$ -method sums the geometric series to  $(1 - z)^{-1}$  for all z which satisfy  $\operatorname{Re}\{z^m\} < 1$ .

We notice that the  $(z^m, n)$ -method of summability sums the geometric series to  $(1 - z)^{-1}$  in the generalized Borel polygon. When m = 1, we get the Lototsky method (2).

#### References

- 1. R. P. Agnew, Euler transformations, Amer. J. Math., 66 (1944), 318-338.
- 2. The Lototsky method for the evaluation of series, Michigan Math. J., 4 (1957), 105-128.
- 3. V. F. Cowling and C. L. Miracle, Some results for the generalized Lototsky transform, Can. J. Math., 14 (1962), 418-435.
- A. Jakimovski, A generalization of the Lototsky method, Michigan Math. J., 6 (1959), 270– 290.
- 5. Y. Okada, Ueber die Annäherung analytischer Funktionen, Math. Z., 23 (1925), 62-71.
- V. Vuckovic, The mutual inclusion of Karamata-Stirling methods of summation, Michigan Math. J., 6 (1959), 291-297.

Hattiesburg, Mississippi