ON THE (f, d_{n})-METHOD OF SUMMABILITY

GASTON SMITH

1. Introduction. Let $f(z)$ be a non-constant entire function and let $\left\{d_{n}\right\}$ be a sequence of complex numbers such that

$$
d_{i} \neq-f(1) \quad \text { and } \quad d_{i} \neq-f(0) \quad(i \geqslant 1) .
$$

The set of equations

$$
\begin{align*}
a_{00} & =1, \\
a_{0 k} & =0 \quad(k \neq 0), \tag{1.1}\\
\prod_{i=1}^{n}\left[\frac{f(z)+d_{i}}{f(1)+d_{i}}\right] & =\sum_{k=0}^{\infty} a_{n k} z^{k} \quad(n \geqslant 1)
\end{align*}
$$

defines the elements of a matrix $A=\left(a_{n k}\right)$, where $n, k=0,1,2, \ldots$.
Defintion 1.1. A sequence $\left\{t_{k}\right\}$, or a series whose kth partial sum is t_{k}, is said to be (f, d_{n})-summable to t if and only if

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k} t_{k}=t,
$$

where the $a_{n k}$'s are defined by (1.1).
We obtain several known methods of summability as special cases of the $\left(f, d_{n}\right)$-method by placing certain restrictions on $f(z)$ and $\left\{d_{n}\right\}$. If $f(z)=z$ and $d_{n}=r$, where r is any complex constant, we get the well-known Euler method (1). If $f(z)=\lambda z, d_{n}=n$, and $\lambda>0$, we obtain the Karamata-Stirling method as defined by Vuckovic (6). If $f(z)=z$ and $d_{n}=n$ we get the Lototsky method as defined by Agnew (2). If $f(z)=z$ and $\left\{d_{n}\right\}$ is any real sequence, we get a method defined by Jakimovski (4). If $f(z)=z$ and $\left\{d_{n}\right\}$ is any complex sequence, we get a method defined by Cowling and Miracle (3).
In this paper we first obtain some regularity conditions for the (f, d_{n})method. Several necessary conditions and four sufficient conditions are obtained. Then we derive some results concerning the effectiveness of this method for summing power series. The paper is concluded with a discussion of some special cases of the $\left(f, d_{n}\right)$-method.

Throughout the paper we frequently make use of the following notations. The symbol $f(z)$ denotes an entire function. When $z=x+i y$ we denote $\operatorname{Re}\{f(z)\}$ by $u(x, y)$ or u and $\operatorname{Im}\{f(z)\}$ by $v(x, y)$ or v. The principal argument of d_{n} is denoted by θ_{n}. Also, we let $a+i b=f(1), x_{n}+i y_{n}=d_{n}$, and $\rho_{n}=\left|d_{n}\right|$.

Received November 25, 1963.
2. Regularity conditions for the ($f, \boldsymbol{d}_{\boldsymbol{n}}$)-method. It is well known that a linear method of summability defined by the matrix $C=\left(c_{n k}\right)$ is regular if and only if

$$
\begin{align*}
\sum_{k=0}^{\infty}\left|c_{n k}\right| & \leqslant M \quad(n \geqslant 0), \tag{2.1}\\
\lim _{n \rightarrow \infty} c_{n k} & =0 \quad(k \geqslant 0), \tag{2.2}\\
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} c_{n k} & =1 \tag{2.3}
\end{align*}
$$

where M is a constant independent of n.

A. Necessary conditions for the regularity of the (f, d_{n})-method.

Lemma 2.1. If

$$
\prod_{i=1}^{\infty}\left(1-a_{i}\right)=0
$$

a_{i} is real, and $a_{i}<1$ for all i, then there are infinitely many a_{i} 's such that $a_{i}>0$.

Theorem 2.1. A necessary condition in order that the $\left(f, d_{n}\right)$-method be regular is that there exist a strictly increasing sequence of natural numbers $\left\{n_{k}\right\}$ such that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[1-\left|\frac{f(0)+d_{n k}}{f(1)+d_{n k}}\right|^{2}\right]=\infty \tag{2.4}
\end{equation*}
$$

Proof. Suppose that the $\left(f, d_{n}\right)$-method is regular. Letting $z=0$ in (1.1) we get

$$
\begin{equation*}
a_{n 0}=\prod_{i=1}^{n}\left[\frac{f(0)+d_{i}}{f(1)+d_{i}}\right] . \tag{2.5}
\end{equation*}
$$

Since regularity condition (2.2) implies that

$$
\lim _{n \rightarrow \infty} a_{n 0}=0
$$

it follows that

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left[\frac{f(0)+d_{i}}{f(1)+d_{i}}\right]=0 \tag{2.6}
\end{equation*}
$$

The relation (2.6) implies that

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left|\frac{f(0)+d_{i}}{f(1)+d_{i}}\right|^{2}=0 \tag{2.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left[1-\left\{1-\left|\frac{f(0)+d_{i}}{f(1)+d_{i}}\right|^{2}\right\}\right]=0 \tag{2.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
a_{i}=1-\left|\frac{f(0)+d_{i}}{f(1)+d_{i}}\right|^{2} . \tag{2.9}
\end{equation*}
$$

Using (2.9), the relation (2.8) may be written in the form

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1-a_{i}\right)=0 \tag{2.10}
\end{equation*}
$$

where $a_{i}<1$ and a_{i} is real. By Lemma 2.1, there are infinitely many a_{i} 's which are positive. Construct a sequence $\left\{a_{n k}\right\}$ which consists of all of the positive a_{i} 's arranged according to increasing magnitude of the subscripts. Consequently (2.10) implies that

$$
\prod_{k=1}^{\infty}\left(1-a_{n k}\right)=0
$$

where $0<a_{n k}<1$. Hence by a well-known theorem on infinite products we get

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{n k}=\infty . \tag{2.11}
\end{equation*}
$$

It follows from (2.9) and (2.11) that

$$
\sum_{k=1}^{\infty}\left[1-\left|\frac{f(0)+d_{n k}}{f(1)+d_{n k}}\right|^{2}\right]=\infty
$$

so that the theorem is proved.
Corollary 2.1. If $f(0)$ and $f(1)$ are real, a necessary condition in order that the $\left(f, d_{n}\right)$-method be regular is that there exist a strictly increasing sequence of natural numbers $\left\{n_{k}\right\}$ such that

$$
\sum_{k=1}^{\infty}\left[\frac{f(0)+f(1)+2 x_{n k}}{\left|f(1)+d_{n k}\right|^{2}}\right]= \pm \infty .
$$

Corollary 2.2. A necessary condition in order that the (f, d_{n})-method be regular is that

$$
\left|f(1)+d_{n}\right|>\left|f(0)+d_{n}\right|
$$

for infinitely many values of n. If $f(0)$ and $f(1)$ are real, a necessary condition for regularity is that

$$
x_{n}>-\frac{1}{2}[f(0)+f(1)]>-f(1)
$$

for infinitely many values of n when $f(1)>f(0)$ and

$$
x_{n}<-\frac{1}{2}[f(0)+f(1)]<-f(1)
$$

for infinitely many values of n when $f(1)<f(0)$.

Corollary 2.3. A necessary condition in order that the $\left(f, d_{n}\right)$-method be regular is that $f(0) \neq f(1)$.

We can now prove the main result concerning necessary conditions for the regularity of the (f, d_{n})-method.

Theorem 2.2. A necessary condition in order that the $\left(f, d_{n}\right)$-method be regular is that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left|f(0)+d_{n}\right|}=\infty \tag{2.12}
\end{equation*}
$$

Proof. Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(0)+d_{n}\right|}
$$

is convergent. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\left|f(0)+d_{n}\right|}=0 \tag{2.13}
\end{equation*}
$$

The relation (2.13) implies that there exists a positive integer N such that for all $n>N$ we have

$$
\begin{equation*}
\frac{1}{\left|f(0)+d_{n}\right|^{2}}<\frac{1}{\left|f(0)+d_{n}\right|} \tag{2.14}
\end{equation*}
$$

It follows from Corollary 2.2 that

$$
\left|f(0)+d_{n}\right|^{2}<\left|f(1)+d_{n}\right|^{2}
$$

holds for the infinitely many values $\left\{n_{k}\right\}$ for which Theorem 2.1 is true. Hence

$$
\begin{equation*}
\frac{\left|f(0)+d_{n}\right|}{\left|f(1)+d_{n}\right|^{2}}<\frac{1}{\left|f(0)+d_{n}\right|} \tag{2.15}
\end{equation*}
$$

for the infinitely many values $\left\{n_{k}\right\}$ for which Theorem 2.1 is true. Let $f(0)$ $=c+d i$ and let

$$
L_{n k}=\left|\frac{\left|f(1)+d_{n k}\right|^{2}-\left|f(0)+d_{n k}\right|^{2}}{\left|f(1)+d_{n k}\right|^{2}}\right|
$$

Now it follows from (2.14) and (2.15) that

$$
\begin{equation*}
L_{n k} \leqslant \frac{(a-c)^{2}+2|a-c|+(b-d)^{2}+2|b-d|}{\left|f(0)+d_{n k}\right|} \tag{2.16}
\end{equation*}
$$

From the supposition and relation (2.16) we find that

$$
\sum_{k=1}^{\infty} L_{n k}
$$

converges. Therefore

$$
\sum_{k=1}^{\infty} \frac{\left|f(1)+d_{n k}\right|^{2}-\left|f(0)+d_{n k}\right|^{2}}{\left|f(1)+d_{n k}\right|^{2}}
$$

converges, which contradicts Theorem 2.1.
Corollary 2.4. If $d_{n} \neq 0, a$ necessary condition in order that the $\left(f, d_{n}\right)$ method be regular is that

$$
\sum_{n=1}^{\infty} \rho_{n}^{-1}=\infty
$$

Corollary 2.5. A necessary condition in order that the $\left(f, d_{n}\right)$-method be regular is that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|}=\infty
$$

If we take $f(z)=z$ in relation (1), then Theorem 2.2 becomes a known result (3).

B. Sufficient conditions for the regularity of the $\left(\boldsymbol{f}, \boldsymbol{d}_{\boldsymbol{n}}\right)$-method.

Lemma 2.2. Suppose that d_{n} is real, $d_{n} \geqslant 0$, and that the Taylor expansion of $f(z)$ about the origin has non-negative coefficients. Then the $\left(f, d_{n}\right)$-method is regular if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{f(1)+d_{n}}=\infty .
$$

Proof. The necessity of the condition follows from Corollary 2.5.
Sufficiency. Letting $z=1$ in relation (1.1), we get

$$
\sum_{k=0}^{\infty} a_{n k}=1
$$

so regularity condition (2.3) holds. Since d_{n} is real and non-negative and the coefficients of the expansion of $f(z)$ about the origin are non-negative, it follows that $\left|a_{n k}\right|=a_{n k}$. Hence regularity condition (2.1) holds. Also since the coefficients of the expansion of $f(z)$ about the origin are non-negative and $f(z)$ is non-constant, it follows that $f(0)<f(1)$. Now choose $\epsilon>0$ so that $f(0)+2 \epsilon<f(1)$ and let C be a circle with centre at the origin such that

$$
|f(t)-f(0)|<\epsilon \quad \text { for all } t \in C
$$

Hence for $t \in C$ we have that

$$
|f(t)| \leqslant f(0)+\epsilon<f(1)-\epsilon
$$

We may represent $a_{n k}$ in the form

$$
a_{n k}=\frac{1}{2 \pi i} \int_{C} \prod_{i=1}^{n} \frac{f(t)+d_{i}}{f(1)+d_{i}} \cdot \frac{d t}{t^{k+1}}
$$

so that

$$
a_{n k}=\left|a_{n k}\right| \leqslant \frac{1}{2 \pi R^{k}} \int_{0}^{2 \pi} \prod_{i=1}^{n}\left|\frac{f(t)+d_{i}}{f(1)+d_{i}}\right| d \theta .
$$

Since $1+x \leqslant e^{x}$ for x real, we obtain

$$
\begin{aligned}
\left|\frac{f(t)+d_{i}}{f(1)+d_{i}}\right| & \leqslant \exp \left\{-1+\frac{\left|f(t)+d_{i}\right|}{f(1)+d_{i}}\right\} \\
& \leqslant \exp \left\{\frac{|f(t)|-f(1)}{f(1)+d_{i}}\right\} \\
& \leqslant \exp \left\{-\frac{\epsilon}{f(1)+d_{i}}\right\} .
\end{aligned}
$$

Hence it follows that

$$
a_{n k} \leqslant R^{-k} \exp \left\{-\epsilon \sum_{i=1}^{n} \frac{1}{f(1)+d_{i}}\right\} .
$$

Therefore

$$
\lim _{n \rightarrow \infty} a_{n k}=0,
$$

which proves the lemma.
The preceding lemma generalizes a result of Jakimovski (4).
Theorem 2.3. Suppose that

$$
\sum_{i=1}^{\infty} \frac{1}{\left|f(1)+d_{i}\right|}=\infty, \quad \sum_{i=1}^{\infty} \frac{\left(\operatorname{Im} \sqrt{ } d_{i}\right)^{2}}{\left|f(1)+d_{i}\right|^{2}}<\infty
$$

and that the Taylor expansion of $f(z)$ about the origin has non-negative coefficients. Then the $\left(f, d_{n}\right)$-method is regular.

Proof. Letting $z=1$ in relation (1.1), we get

$$
\sum_{k=0}^{\infty} a_{n k}=1 ;
$$

so regularity condition (2.3) holds. Let C be any circle with centre at the origin. The elements $a_{n k}$ are given by the formula

$$
\begin{equation*}
a_{n k}=\frac{1}{2 \pi i} \int_{C} \prod_{i=1}^{n}\left[\frac{f(t)+d_{i}}{f(1)+d_{i}}\right] \cdot \frac{d t}{t^{k+1}} . \tag{2.17}
\end{equation*}
$$

By expanding the product on the right of (2.17), it follows that

$$
\begin{aligned}
\prod_{i=1}^{n}\left[f(1)+d_{i}\right] a_{n k}= & \frac{1}{2 \pi i} \int_{C}\left\{[f(t)]^{n}+[f(t)]^{n-1}\left(d_{1}+d_{2}+\ldots+d_{n}\right)\right. \\
& \left.+[f(t)]^{n-2}\left(d_{1} d_{2}+\ldots+d_{n-1} d_{n}\right)+\left(d_{1} d_{2} \ldots d_{n}\right)\right\} \frac{d t}{t^{k+1}}
\end{aligned}
$$

Since $[f(t)]^{n}$ is an entire function, we may write,

$$
\begin{equation*}
[f(t)]^{n}=\sum_{j=0}^{\infty} p_{j n} t^{j} \tag{2.18}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\prod_{i=1}^{n}\left[f(1)+d_{i}\right] & a_{n k}=p_{k n}+\left(d_{1}+d_{2}+\ldots+d_{n}\right) p_{k, n-1} \tag{2.19}\\
& +\left(d_{1} d_{2}+\ldots+d_{n-1} d_{n}\right) p_{k, n-2}+\ldots+\left(d_{1} d_{2} \ldots d_{n}\right) p_{k 0}
\end{align*}
$$

Therefore

$$
\begin{align*}
\sum_{k=0}^{\infty}\left|a_{n k}\right| & \prod_{i=1}^{n}\left|f(1)+d_{i}\right| \tag{2.20}\\
& \leqslant \sum_{k=0}^{\infty}\left\{p_{k n}+\left(\rho_{1}+\ldots+\rho_{n}\right) p_{k, n-1}+\ldots+\left(\rho_{1} \ldots \rho_{n}\right) p_{k 0}\right\}
\end{align*}
$$

Let $B=\left(b_{n k}\right)$ be the matrix corresponding to the $\left(f, \rho_{n}\right)$-method. Hence

$$
\begin{align*}
\sum_{k=0}^{\infty}\left|b_{n k}\right| & \prod_{i=1}^{n}\left[f(1)+\rho_{i}\right] \tag{2.21}\\
& =\sum_{k=0}^{\infty}\left\{p_{k n}+\left(\rho_{1}+\ldots+\rho_{n}\right) p_{k, n-1}+\ldots+\left(\rho_{1} \ldots \rho_{n}\right) p_{k 0}\right\}
\end{align*}
$$

Now from relations (2.20) and (2.21), it follows that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{n k}\right| \prod_{i=1}^{n}\left|f(1)+d_{i}\right| \leqslant \sum_{k=0}^{\infty}\left|b_{n k}\right| \prod_{i=1}^{n}\left[f(1)+\rho_{i}\right] . \tag{2.22}
\end{equation*}
$$

However, since all of the elements of B are non-negative,

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|b_{n k}\right|=\sum_{k=0}^{\infty} b_{n k}=1 . \tag{2.23}
\end{equation*}
$$

The relations (2.22) and (2.23) imply that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{n k}\right| \leqslant \prod_{i=1}^{n}\left[\frac{f(1)+\rho_{i}}{\left|f(1)+d_{i}\right|}\right] . \tag{2.24}
\end{equation*}
$$

Since $1+x \leqslant e^{x}$ for all real x and $f(1)+\rho_{n} \geqslant\left|f(1)+d_{n}\right|$, it follows that

$$
\begin{align*}
\frac{f(1)+\rho_{n}}{\left|f(1)+d_{n}\right|} & \leqslant\left[\frac{f(1)+\rho_{n}}{\left|f(1)+d_{n}\right|}\right]^{2} \tag{2.25}\\
& \leqslant \exp \left\{-1+\left[\frac{f(1)+\rho_{n}}{\left|f(1)+d_{n}\right|}\right]^{2}\right\} \\
& \leqslant \exp \left\{4 a \cdot \frac{\left(\operatorname{Im} \sqrt{ } d_{n}\right)^{2}}{\left|f(1)+d_{n}\right|^{2}}\right\} .
\end{align*}
$$

From (2.24) and (2.25) we obtain

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{n k}\right| \leqslant \exp \left\{4 a \cdot \sum_{i=1}^{n} \frac{\left(\operatorname{Im} \sqrt{ } d_{i}\right)^{2}}{\left|f(1)+d_{i}\right|^{2}}\right\} . \tag{2.26}
\end{equation*}
$$

It follows from (2.26) and the hypothesis that there exists a real number M such that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{n k}\right| \leqslant M \tag{2.27}
\end{equation*}
$$

for all n. So the regularity condition (2.1) is satisfied.
Now from (2.19) and the analogous relation involving $b_{n k}$ we find that

$$
\begin{equation*}
\left|a_{n k}\right| \leqslant\left|b_{n k}\right| \prod_{i=1}^{n} \frac{f(1)+\rho_{i}}{\left|f(1)+d_{i}\right|} . \tag{2.28}
\end{equation*}
$$

The relation

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|}=\infty
$$

implies that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|+2 f(1)}=\infty .
$$

It follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{f(1)+\left|d_{n}\right|}=\infty \tag{2.29}
\end{equation*}
$$

since

$$
\frac{1}{f(1)+\left|d_{n}\right|} \geqslant \frac{1}{\left|f(1)+d_{n}\right|+2 f(1)} .
$$

By Lemma 2.2 and relation (2.29), we find that the $\left(f, \rho_{n}\right)$-method is regular so that

$$
\lim _{n \rightarrow \infty} b_{n k}=0 .
$$

Moreover (2.25) implies that

$$
\prod_{i=1}^{n} \frac{f(1)+\rho_{i}}{\left|f(1)+d_{i}\right|}
$$

is bounded. Therefore we have

$$
\lim _{n \rightarrow \infty} a_{n k}=0,
$$

which proves the theorem.
Corollary 2.6. If

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|}=\infty, \quad \sum_{n=1}^{\infty} \theta_{n}{ }^{2} \text { converges }
$$

and the Taylor expansion of $f(z)$ about the origin has real non-negative coefficients, then the (f, d_{n})-method is regular.

Proof. Since the inequality $x^{2}+2 \cos x-2 \geqslant 0$ holds for all real x, it follows that

$$
\begin{equation*}
-2 a \rho_{n} \cos \theta_{n}+2 a \rho_{n} \leqslant a \rho_{n} \theta_{n}^{2} \tag{2.30}
\end{equation*}
$$

where $a>0$ is valid for all n. Using (2.30) and the fact that there exists a positive integer N such that $\cos \theta_{n}>\frac{1}{2}$ for all $n>N$, we obtain

$$
\begin{align*}
4 a\left|\frac{\operatorname{Im} \sqrt{ } d_{n}}{f(1)+d_{n}}\right|^{2} & =\frac{-2 a \rho_{n} \cos \theta_{n}+2 a \rho_{n}}{\left|a+d_{n}\right|^{2}} \tag{2.31}\\
& \leqslant \frac{a \rho_{n} \theta_{n}{ }^{2}}{a^{2}+2 a \rho_{n} \cos \theta_{n}+\rho_{n}{ }^{2}} \\
& \leqslant \frac{a \rho_{n} \theta_{n}{ }^{2}}{2 a \rho_{n} \cos \theta_{n}} \leqslant \theta_{n}{ }^{2}
\end{align*}
$$

Now we can apply Theorem 2.3, which completes the proof.
Corollary 2.7. Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|}=\infty, \quad \sum \frac{\theta_{n}{ }^{2}}{\rho_{n}} \text { converges }
$$

where the sum on the right ranges over all n for which ρ_{n} is positive, $\operatorname{Re}\left\{d_{n}\right\} \geqslant$ $-f(1) / 2$, and the Taylor expansion of $f(z)$ about the origin has real non-negative coefficients. Then the $\left(f, d_{n}\right)$-method is regular.

Corollary 2.8. Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|}=\infty, \quad \sum_{n=1}^{\infty} \rho_{n} \theta_{n}^{2} \text { converges },
$$

$2\left|\theta_{n}\right| \leqslant \pi$, and the coefficients of the expansion of $f(z)$ about the origin are real and non-negative. Then the $\left(f, d_{n}\right)$-method is regular.

3. Power series.

Theorem 3.1. Suppose that

$$
\sum \frac{1}{\rho_{n}}=\infty, \quad \lim _{n \rightarrow \infty} \theta_{n}=0, \quad \lim _{n \rightarrow \infty} \rho_{n}=\infty,
$$

where the sum ranges over all n for which ρ_{n} is positive. Then the $\left(f, d_{n}\right)$-method sums the geometric series

$$
\begin{equation*}
\sum_{k=0}^{\infty} z^{k} \tag{3.1}
\end{equation*}
$$

to $(1-z)^{-1}$ for all values of z such that $\operatorname{Re}\{f(z)\}<\operatorname{Re}\{f(1)\}$.

Proof. The partial sums of (3.1) are given by

$$
\begin{equation*}
S_{k}(z)=(1-z)^{-1}-(1-z)^{-1} z^{k+1} . \tag{3.2}
\end{equation*}
$$

Let

$$
\sigma_{n}(z)=\sum_{k=0}^{\infty} a_{n k} S_{k}(z)
$$

We may represent $\sigma_{n}(z)$ in the form

$$
\begin{equation*}
\sigma_{n}(z)=\frac{1}{1-z}-\frac{z}{1-z} \prod_{i=1}^{n}\left[\frac{f(z)+d_{i}}{f(1)+d_{i}}\right] . \tag{3.3}
\end{equation*}
$$

It is sufficient to show that

$$
\prod_{i=1}^{\infty}\left[\frac{f(z)+d_{n}}{f(1)+d_{n}}\right]=0
$$

for all z such that $\operatorname{Re}\{f(z)\}<\operatorname{Re}\{f(1)\}$.
Since $1+x \leqslant e^{x}$ for real x, it follows that

$$
\begin{align*}
\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|^{2} & \leqslant \exp \left\{\frac{2 u x_{n}+2 v y_{n}-2 a x_{n}-2 b y_{n}+H}{\left|f(1)+d_{n}\right|^{2}}\right\} \tag{3.4}\\
& \leqslant \exp \left\{\frac{\rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]}{\left|f(1)+d_{n}\right|^{2}}\right\}+\frac{H}{2\left|f(1)+d_{n}\right|^{2}}
\end{align*}
$$

where $H=u^{2}+v^{2}-a^{2}-b^{2}$. Using the hypothesis, we find that

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}{ }^{2}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]}{\left|f(1)+d_{n}\right|^{2}}=u-a
$$

and

$$
\lim _{n \rightarrow \infty} \frac{H \rho_{n}}{2\left|f(1)+d_{n}\right|^{2}}=0 .
$$

Hence there exist a $K>0$ and an integer $N>0$ such that for all $n>N$ we have

$$
\begin{equation*}
-K \rho_{n}^{-1}>\frac{\rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]}{\left|f(1)+d_{n}\right|^{2}}+\frac{H}{2\left|f(1)+d_{n}\right|^{2}} . \tag{3.5}
\end{equation*}
$$

From (3.5) it follows that

$$
\begin{equation*}
\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right| \leqslant \exp \left\{-K \rho_{n}^{-1}\right\} \tag{3.6}
\end{equation*}
$$

for all $n>N$. Therefore by (3.6) we obtain

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right| \leqslant \prod_{i=1}^{N-1}\left|\frac{\prime(z)+d_{n}}{f(1)+d_{n}}\right| \cdot \quad \exp \left\{\sum_{i=N}^{\infty} K \rho_{i}^{-1}\right\} . \tag{3.7}
\end{equation*}
$$

Since

$$
\sum_{i=N}^{\infty} \rho_{n}^{-1}=\infty
$$

we conclude from (3.7) that

$$
\prod_{n=1}^{\infty}\left[\frac{f(z)+d_{n}}{f(1)+d_{n}}\right]=0 .
$$

This completes the proof.
Theorem 3.2. Suppose that

$$
\rho_{n}^{-1}=\infty, \quad \lim _{n \rightarrow \infty} \theta_{n}=0, \quad \lim _{n \rightarrow \infty} \rho_{n}=\infty,
$$

where the sum ranges over all positive ρ_{n}. Then

$$
\lim _{n \rightarrow \infty} \sigma_{n}(z)=\infty
$$

for all z such that $\operatorname{Re}\{f(z)\}>\operatorname{Re}\{f(1)\}$, where $\sigma_{n}(z)$ and $S_{k}(z)$ are defined as in Theorem 3.1.

Proof. Assume that z is given such that $\operatorname{Re}\{f(z)\}>\operatorname{Re}\{f(1)\}$. It is sufficient to show that

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left[\frac{f(z)+d_{n}}{f(1)+d_{n}}\right]=\infty . \tag{3.8}
\end{equation*}
$$

Since

$$
\lim _{n \rightarrow \infty} \theta_{n}=0 \text { and } \lim _{n \rightarrow \infty} \rho_{n}=\infty,
$$

we have

$$
\lim _{n \rightarrow \infty}\left\{\left|f(z)-d_{n}\right|^{2}-\left|f(1)+d_{n}\right|^{2}\right\}=\infty .
$$

Hence there exists an integer $N>0$ such that

$$
\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|>1
$$

when $n>N$. It follows that

$$
\prod_{n=1}^{\infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|^{2}=\infty
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[1-\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|^{2}\right]=\infty . \tag{3.9}
\end{equation*}
$$

We note that

$$
1-\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|^{2}=\frac{2 \rho_{n}(u-a) \cos \theta_{n}+2 \rho_{n}(v-b) \sin \theta_{n}+H}{\left|f(1)+d_{n}\right|^{2}},
$$

where $H=u^{2}+v^{2}-a^{2}-b^{2}$. Using the same procedure as in the proof of Theorem 3.1, we find that

$$
\lim _{n \rightarrow \infty} \frac{2 \rho_{n}{ }^{2}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]+\rho_{n} H}{\left|f(1)+d_{n}\right|^{2}}=2(u-a) .
$$

Hence there exist a $K>0$ and an integer $N>0$ such that for all $n>N$ we have

$$
\begin{equation*}
\frac{2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]+H}{\left|f(1)+d_{n}\right|^{2}}>K \rho_{n}^{-1} . \tag{3.10}
\end{equation*}
$$

Since

$$
\sum \rho_{n}{ }^{-1}=\infty,
$$

the relation (3.10) implies that

$$
\sum_{n=1}^{\infty}\left[-1+\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|^{2}\right]=\infty
$$

By (3.9) we have

$$
\prod_{n=1}^{\infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|^{2}=\infty
$$

so that

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|=\infty . \tag{3.11}
\end{equation*}
$$

The asserted result follows from (3.11).
Theorem 3.3. Suppose that z is given such that $|f(z)+\rho|<|f(1)+\rho|$ and that

$$
\lim _{n \rightarrow \infty} \rho_{n}=\rho \text { and } \lim _{n \rightarrow \infty} \theta_{n}=0
$$

Then the $\left(f, d_{n}\right)$-method sums the geometric series (3.1) to $(1-z)^{-1}$.
Proof. We follow the same procedure as in Theorem 3.1. Thus we have

$$
\begin{equation*}
\sigma_{n}(z)=\frac{1}{1-z}-\frac{z}{1-z} \prod_{i=1}^{n}\left[\frac{f(z)+d_{i}}{f(1)+d_{i}}\right] \tag{3.12}
\end{equation*}
$$

Let $H=u^{2}+v^{2}-a^{2}-b^{2}$. Since $1+x \leqslant e^{x}$ for real x, we obtain

$$
\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right| \leqslant \exp \left\{\frac{2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]+H}{2\left|f(1)+d_{n}\right|^{2}}\right\} .
$$

It follows from the hypothesis that

$$
\lim _{n \rightarrow \infty} \frac{2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]+H}{2\left|f(1)+d_{n}\right|^{2}}=\frac{2 \rho(u-a)+H}{2|f(1)+\rho|^{2}}<0 .
$$

Hence there exist a $K>0$ and an integer $N>0$ such that

$$
\begin{equation*}
\frac{2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]+H}{2\left|f(1)+d_{n}\right|^{2}}<-K \tag{3.13}
\end{equation*}
$$

for $n>N$. Hence we obtain the relation

$$
\prod_{i=1}^{n}\left|\frac{f(z)+d_{i}}{f(1)+d_{i}}\right| \leqslant \prod_{i=1}^{N-1}\left|\frac{f(z)+d_{i}}{f(1)+d_{i}}\right| \exp \left\{-\sum_{i=N}^{n} K\right\}
$$

so that

$$
\prod_{n=1}^{\infty}\left[\frac{f(z)+d_{n}}{f(1)+d_{n}}\right]=0 .
$$

Theorem 3.4. Suppose that

$$
\lim _{n \rightarrow \infty} \rho_{n}=\rho, \quad \lim _{n \rightarrow \infty} \theta_{n}=0, \quad \rho \neq-f(1),
$$

and that z is given such that $|f(z)+\rho|>|f(1)+\rho|$. Then

$$
\lim _{n \rightarrow \infty} \sigma_{n}(z)=\infty
$$

Proof. Since $|f(z)+\rho|<|f(1)+\rho|$, there exists an α such that $0<\alpha<8$ and

$$
\begin{equation*}
|f(z)+\rho|^{2}>|f(1)+\rho|^{2}(1+2 \alpha) \tag{3.14}
\end{equation*}
$$

Let $H=u^{2}+v^{2}-a^{2}-b^{2}$. It follows from (3.14) that

$$
H \geqslant 2 \rho(u-a)+2 \alpha|f(1)+\rho|^{2}
$$

so that

$$
\begin{gather*}
\left|f(z)+d_{n}\right|^{2}-\left|f(1)+d_{n}\right|^{2} \geqslant 2(u-a)\left(\rho_{n} \cos \theta_{n}-\rho\right) \tag{3.15}\\
+2 \rho_{n}(v-b) \sin \theta_{n}+2 \alpha|f(1)+\rho|^{2} .
\end{gather*}
$$

By hypothesis there exists an integer $N>0$ such that for $n>N$
(3.16) $\quad\left|2(u-a)\left(\rho_{n} \cos \theta_{n}-\rho\right)+2(v-b) \rho_{n} \sin \theta_{n}\right|<\alpha|f(1)+\rho|^{2}$.

The relations (3.15) and (3.16) imply that

$$
\begin{equation*}
\left|f(z)+d_{n}\right|^{2}-\left|f(1)+d_{n}\right|^{2} \geqslant \alpha|f(1)+\rho|^{2} . \tag{3.17}
\end{equation*}
$$

Since $0<\alpha<8$, it follows from (3.17) that

$$
\lim _{n \rightarrow \infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right| \geqslant 1+\alpha / 4>1
$$

so that we have

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|=\infty \tag{3.18}
\end{equation*}
$$

It follows from (3.18) that

$$
\lim _{n \rightarrow \infty} \sigma_{n}(z)=\infty
$$

and the theorem is proved.

Theorem 3.5. If

$$
\lim _{n \rightarrow \infty} \rho_{n}=0
$$

then the $\left(f, d_{n}\right)$-method sums the geometric series (3.1) to $(1-z)^{-1}$ for all z such that $|f(z)|<|f(1)|$.

Proof. If $f(1)=0$, the result follows immediately since there is no value of z for which $|f(z)|<|f(1)|$. So for the remainder of the proof we may suppose that $f(1) \neq 0$.

Since $1+x \leqslant e^{x}$ for real x, we get

$$
\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right| \leqslant \exp \left\{\frac{H+2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]}{2\left|f(1)+d_{n}\right|^{2}}\right\},
$$

where $H=u^{2}+v^{2}-a^{2}-b^{2}$. From the hypothesis we obtain

$$
\lim _{n \rightarrow \infty} \frac{H+2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]}{2\left|f(1)+d_{n}\right|^{2}}=\frac{H}{2|f(1)|^{2}} .
$$

Hence there exist a $K>0$ and an integer $N>0$ such that for all $n>N$

$$
\begin{equation*}
-K>\frac{H+2 \rho_{n}\left[(u-a) \cos \theta_{n}+(v-b) \sin \theta_{n}\right]}{2\left|f(1)+d_{n}\right|^{2}} \tag{3.19}
\end{equation*}
$$

From (3.19) it follows that

$$
\prod_{i=1}^{n}\left|\frac{f(z)+d_{i}}{f(1)+d_{i}}\right| \leqslant \prod_{i=1}^{N-1}\left|\frac{f(z)+d_{i}}{f(1)+d_{i}}\right| \exp \left\{-\sum_{i=N}^{n} K\right\},
$$

which implies the theorem.
Theorem 3.6. Suppose that

$$
\lim _{n \rightarrow \infty} \rho_{n}=0
$$

and that z is given such that $|f(z)|>|f(1)|$. Then

$$
\lim _{n \rightarrow \infty} \sigma_{n}(z)=\infty .
$$

Proof. From the hypothesis it follows that

$$
\lim _{n \rightarrow \infty}\left\{\left|f(z)+d_{n}\right|^{2}-\left|f(1)+d_{n}\right|^{2}\right\}=|f(z)|^{2}-|f(1)|^{2}>0
$$

Hence there exist an $\alpha>0$ and an integer $N>0$ such that

$$
\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|>1+\alpha
$$

for $n>N$. Therefore

$$
\prod_{n=1}^{\infty}\left|\frac{f(z)+d_{n}}{f(1)+d_{n}}\right|=\infty,
$$

from which the theorem follows.

In this section we have determined certain domains in the complex plane for which the $\left(f, d_{n}\right)$-method of summability sums the geometric series (3.1) to its analytic continuation $(1-z)^{-1}$. There are several known results (5) which give information concerning the efficiency of a linear method of summability for summing a power series with positive radius of convergence to its analytic continuation. By using results of the type found in (5) and the theorems of this section one can determine a domain for which the $\left(f, d_{n}\right)$ method sums a power series with positive radius of convergence to its analytic continuation.

4. Special cases.

A. Let $f(z)=e^{u(z-1)}$, where u is real and $u \neq 0$, and let $d_{n}=n-1$ for $n \geqslant 1$.

Theorem 4.1. The ($e^{u[z-1]}, n-1$)-method is regular if and only if $u>0$.
Proof. If $u>0$, then the $\left(e^{u[z-1]}, n-1\right)$-method is regular by Theorem 2.3. Now suppose that $u<0$. By substituting $e^{u(z-1)}$ for $f(z)$ and $n-1$ for d_{n} in (1.1) and then letting $z=0$, we obtain

$$
a_{n 0}=\prod_{k=1}^{n}\left[\frac{e^{-u}+k-1}{k}\right] .
$$

Since $u<0$, we have $a_{n 0}>1$ for each n. Hence the regularity condition (2.2) is not satisfied. Therefore if the ($e^{u[z-1]}, n-1$)-method is regular, then $u>0$.

Since the hypotheses of Theorem 3.1 are satisfied, it follows that the ($e^{u[z-1]}, n-1$)-method sums the geometric series

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \tag{4.1}
\end{equation*}
$$

to $(1-z)^{-1}$ for all z such that

$$
\operatorname{Re}\left\{e^{u(z-1)}\right\}<1
$$

that is, for all values of z which satisfy

$$
\begin{equation*}
e^{u(x-1)} \cos u y<1 \tag{4.2}
\end{equation*}
$$

The domain in which the ($e^{u[z-1]}, n-1$)-method sums the geometric series is indicated in Figure 1.

Theorem 4.2. The ($e^{u[z-1]}, n-1$)-method of summability provides a method of analytic continuation of the geometric series (4.1) to $(1-z)^{-1}$ for all $z \neq 1$.

Proof. The proof consists of showing that given any $z \neq 1$, a u can be chosen so that the $\left(e^{u[z-1]}, n-1\right)$-sum of the geometric series (4.1) is $(1-z)^{-1}$. Assume that z is given.

Case 1. $y \neq 0, x$ arbitrary. Choose u so that

$$
\pi / 2|y|<u<3 \pi / 2|y| .
$$

Hence $\pi / 2<|u y|<3 \pi / 2$ and therefore $e^{u(x-1)} \cos u y<1$.

Figure 1
(The unshaded part of the plane is the domain of summability.)
Case 2. $y=0, x<1$. Choose any positive u. Then $e^{u(x-1)} \cos u y<1$.
Case 3. $y=0, x>1$. Choose any negative u. Then $e^{u(x-1)} \cos u y<1$.
B. Let $f(z)=e^{u(z-1)}$, where u is real and $u \neq 0$, and let $d_{n}=q \geqslant 0$ for all n.

Theorem 4.3. The $\left(e^{u[z-1]}, q\right)$-method is regular if and only if $u>0$.
The proof of Theorem 4.3 is analogous to that of Theorem 4.1. It follows from Theorem 3.3 that the ($e^{u[z-1]}, q$)-method sums the geometric series (4.1) to $(1-z)^{-1}$ for all z such that

$$
\left|e^{u(z-1)}+q\right|<1+q
$$

Theorem 4.4. If $u>0$, the domain for which the ($e^{u[z-1]}, q$)-method sums the geometric series (4.1) to $(1-z)^{-1}$ contains the half-plane $\operatorname{Re}\{z\}<1$ and is contained in the domain defined by $\operatorname{Re}\left\{e^{u(z-1)}\right\}<1$.

Proof. Suppose that $\operatorname{Re}\{z\}=x<1$. Then

$$
\left|e^{u(z-1)}+q\right| \leqslant e^{u(x-1)}+q<1+q,
$$

which implies that the $\left(e^{u[z-1]}, q\right)$-sum of the geometric series (4.1) is $(1-z)^{-1}$.

Suppose that $\operatorname{Re}\{z\}=x \geqslant 1$ and $e^{u(x-1)} \cos u y \geqslant 1$. Then the point $z=x+i y$ is not in the domain of summability since

$$
\begin{equation*}
e^{2 u(x-1)}+2 q e^{u(x-1)} \cos u y \geqslant 1+2 q . \tag{4.3}
\end{equation*}
$$

The relation (4.3) implies that

$$
\left|e^{u(z-1)}+q\right|^{2} \geqslant|1+q|^{2}
$$

so that we obtain

$$
\begin{equation*}
\left|e^{u(z-1)}+q\right| \geqslant 1+q \tag{4.4}
\end{equation*}
$$

If $x>1$, then each of the relations (4.3) and (4.4) can be replaced by strict inequality and the desired result follows from Theorem 3.4. If $x=1$, then $\cos u y=1$ so that neither the $\left(e^{u[z-1]}, q\right)$-method nor the $\left(e^{u[z-1]}, n-1\right)$ method sums the geometric series (4.1) to $(1-z)^{-1}$ for such a z.

Theorem 4.5. If $p>q$, the domain of summability in which the $\left(e^{u[z-i]}, p\right)$ method sums the geometric series (4.1) includes the corresponding domain of summability of the $\left(e^{u[z-1]}, q\right)$-method.

Proof. When $x<1$, both methods under consideration sum the geometric series (4.1) to $(1-z)^{-1}$. Neither method sums the geometric series to $(1-z)^{-1}$ for a value of z for which $e^{u(x-1)} \cos u y \geqslant 1$. So assume that $e^{u(x-1)} \cos u y<1$. The domains of summability corresponding to p and q are defined by the inequalities

$$
\begin{equation*}
e^{2 u(x-1)}+2 p\left[e^{u(x-1)} \cos u y-1\right]-1<0 \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{2 u(x-1)}+2 q\left[e^{u(x-1)} \cos u y-1\right]-1<0 \tag{4.6}
\end{equation*}
$$

respectively. But since $p>\mathrm{q}$ and $e^{u(x-1)} \cos u y-1<0$,

$$
2 q\left[e^{u(x-1)} \cos u y\right]>2 p\left[e^{u(x-1)} \cos u y\right] .
$$

Therefore if z is a point such that (4.6) is satisfied, then (4.5) is satisfied. Hence the theorem follows.
C. Let $f(z)=a z^{m}, a>0, m$ a positive integer.

Theorem 4.6. Let α be given such that $0<\alpha<\pi / 2$. Suppose there exist an $\epsilon>0$ and an integer $N>0$ such that $\theta_{n}>\alpha$ and $\rho_{n}>\epsilon$ for all $n>N$. Then the $\left(a z^{m}, d_{n}\right)$-method is not regular.

Proof. Suppose that the $\left(a z^{m}, d_{n}\right)$-method is regular. Define $\lambda_{n}=\rho_{n} \exp \left(i \beta_{n}\right)$, where $\beta_{n}=\theta_{n}-\alpha$ and define $b_{n k}$ by the relations

$$
\begin{gather*}
b_{00}=1, \\
b_{0 k}=0 \quad(k \neq 0), \tag{4.7}\\
\prod_{i=1}^{n}\left|\frac{a z^{m}+\lambda_{i}}{a+\lambda_{i}}\right|=\sum_{k=0}^{\infty} b_{n k} z^{k} \quad(n \geqslant 1) .
\end{gather*}
$$

The elements $a_{n k}$ of (1.1) can be written in the form

$$
a_{n k}=\frac{1}{2 \pi i} \int_{C} \prod_{i=1}^{n}\left|\frac{a t^{m}+d_{i}}{a+d_{i}}\right| \frac{d t}{t^{k+1}}
$$

where $f(z)$ is replaced by $a z^{m}$ and C is any circle with the origin as centre. Integrating we get
where $s_{i}=0$ or 1 and the sum is taken over all s_{i} 's for which

$$
s_{1}+\ldots+s_{n}=(m n-k) / m
$$

Similarly,

$$
b_{n k}=\frac{a^{k / m}}{\prod_{i=1}^{n}\left(a+\lambda_{i}\right)}\left[\sum{\left.d_{1}^{s 1} d_{2}^{s 2} \ldots d_{n}^{s_{n}}\right] e^{-i \alpha(m n-k) / m} . . . ~}_{\text {. }}\right.
$$

This implies that

$$
\begin{equation*}
a^{k / m}\left|\sum{d_{1}}^{s_{1}} \ldots d_{n}{ }^{s_{n}}\right|=\left|b_{n k}\right| \prod_{i=1}^{n}\left|a+\lambda_{i}\right| \tag{4.9}
\end{equation*}
$$

Hence by (4.9) and (4.8) it follows that

$$
\sum_{k=0}^{m n}\left|a_{n k}\right|=\prod_{i=1}^{n}\left|\frac{a+\lambda_{i}}{a+d_{i}}\right| \sum_{k=0}^{m n}\left|b_{n k}\right|
$$

so that

$$
\begin{equation*}
\sum_{k=0}^{m n}\left|a_{n k}\right| \geqslant \prod_{i=1}^{n}\left|\frac{a+\lambda_{i}}{a+d_{i}}\right| \tag{4.10}
\end{equation*}
$$

since

$$
\sum_{k=0}^{m n}\left|b_{n k}\right| \geqslant\left|\sum_{k=0}^{m n} b_{n k}\right|=1
$$

The assumption that $\left(a z^{m}, d_{n}\right)$ is regular and relation (4.10) imply that

$$
\prod_{i=1}^{n}\left|\frac{a+\lambda_{i}}{a+\bar{d}_{i}}\right|
$$

is a bounded function of n. By hypothesis and since $-\pi \leqslant \theta_{n} \leqslant \pi$, there exists a positive integer N such that $\alpha<\theta_{n} \leqslant \pi$ for all $n \geqslant N$, which implies that $\theta_{n}>\beta_{n}>0$. Hence

$$
\left|a+\lambda_{n}\right|^{2}>\left|a+d_{n}\right|^{2}
$$

so that

$$
\underset{n}{n} \left\lvert\, \frac{a+\lambda_{1}}{a+a_{i}}\right.
$$

is a monotone function of n for all $n \geqslant N$. Hence

$$
\prod_{i=1}^{n}\left|\frac{a+\lambda_{i}}{a+d_{i}}\right|
$$

is bounded if and only if

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left|\frac{a+\lambda_{i}}{a+d_{i}}\right|^{2} \tag{4.11}
\end{equation*}
$$

converges. But (4.11) converges if and only if

$$
\sum_{i=1}^{\infty}\left[-1+\left|\frac{a+\lambda_{i}}{a+d_{i}}\right|^{2}\right]
$$

is convergent. If $n \geqslant N$, then $\alpha<\beta_{n}+\theta_{n}<2 \pi-\alpha$ and so

$$
\sin \left[\left(\beta_{n}+\theta_{n}\right) / 2\right]>\sin (\alpha / 2)
$$

It follows that

$$
\begin{align*}
-1 & +\left|\frac{a+\lambda_{n}}{a+d_{n}}\right|^{2}=\frac{2 a \rho_{n}\left(\cos \beta_{n}-\cos \theta_{n}\right)}{a^{2}+2 a \rho_{n} \cos \theta_{n}+\rho_{n}^{2}} \tag{4.12}\\
& \geqslant \frac{4 a \rho_{n} \sin ^{2}(\alpha / 2)}{\left(a+\rho_{n}\right)^{2}} \geqslant 4 \sin ^{2}(\alpha / 2) \frac{\rho_{n} / a}{\left(1+\rho_{n} / a\right)^{2}}
\end{align*}
$$

By supposition ($a z^{m}, d_{n}$) is regular, which implies that

$$
\sum_{n=1}^{\infty} \rho_{n}^{-1}=\infty .
$$

Since, by hypothesis, ρ_{n} is bounded away from zero, it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\rho_{n} / a}{\left(1+\rho_{n} / a\right)^{2}}=\infty . \tag{4.13}
\end{equation*}
$$

It now follows from (4.12) and (4.13) that

$$
\sum_{i=1}^{\infty}\left[-1+\left|\frac{a+\lambda_{i}}{a+d_{i}}\right|^{2}\right]=\infty .
$$

Hence by (4.10) and (4.11) we find that

$$
\sum_{k=0}^{m n}\left|a_{n k}\right|
$$

is not uniformly bounded for all n, which proves the theorem.
The following example shows that in Theorem 4.6 the restriction that ρ_{n} be bounded away from zero cannot be removed.

Examlpe 4.1. Let

$$
\begin{equation*}
d_{n}=n^{-2} e^{i \pi / 4} \tag{4.14}
\end{equation*}
$$

for all positive integers n and let $f(z)=z$. Hence

$$
\sum_{n=1}^{\infty} \frac{1}{\left|1+d_{n}\right|} \geqslant \sum_{n=1}^{\infty} \frac{1}{1+n^{-2}}=\infty
$$

and

$$
\sum_{n=1}^{\infty} \rho_{n} \theta_{n}^{2}=\left(\pi^{2} / 16\right) \sum_{n=1}^{\infty} n^{-2}=\pi^{4} / 96
$$

Thus it follows from Corollary 2.8 that the corresponding $\left(z, d_{n}\right)$-method is regular.

Example 4.1 furnishes us with a counterexample to two statements made by Cowling and Miracle (3, Theorems 2.2 and 2.4). By replacing π by $-\pi$ in (4.14), we get a counterexample to (3, Theorem 2.3).

Even if ρ_{n} is bounded away from zero, the $\left(a z^{m}, d_{n}\right)$-method may be regular when

$$
\lim _{n \rightarrow \infty} \theta_{n} \neq 0
$$

as the following example shows.
Example 4.2. Let $f(z)=z$ and let

$$
d_{n}=\left\{\begin{array}{l}
n \text { if } n \text { is not the square of a positive integer }, \\
n \cdot \exp \left\{(-1)^{n_{i}}\right\} \text { if } n \text { is the square of a positive integer. }
\end{array}\right.
$$

Hence

$$
\sum_{n=1}^{\infty} \frac{1}{\left|f(1)+d_{n}\right|} \geqslant \sum_{n=1}^{\infty} \frac{1}{1+n}=\infty
$$

and

$$
\sum_{n=1}^{\infty} \frac{\theta_{n}{ }^{2}}{\rho_{n}}
$$

converges. It follows from Corollary 2.7 that the corresponding $\left(z, d_{n}\right)$-method is regular.

Example 4.2 answers the open problem in (3, p. 424): to find a sequence $\left\{d_{n}\right\}$ of type 2 such that

$$
\lim _{n \rightarrow \infty} \arg \left(d_{n}\right) \neq 0
$$

and such that the $\left(z, d_{n}\right)$-matrix is regular; or to show that no such sequence exists.

Theorem 4.7. Let α be given such that $-\pi / 2<\alpha<0$. Suppose there exist an $\epsilon>0$ and an integer $N>0$ such that $\theta_{n}<\alpha$ and $\rho_{n}>\epsilon$ for all $n>N$. Then the $\left(a z^{m}, d_{n}\right)$-method is not regular.

Theorem 4.8. Suppose that $\theta_{n}=\alpha$ for all n and that there exist an $\epsilon>0$ and an integer $N>0$ such that $\rho_{n}>\epsilon$ for all $n>N$. Then if the $\left(a z^{m}, d_{n}\right)$ method is regular, $\alpha=0$.
D. Let $f(z)=z^{m}$, where m is a positive integer, and let $d_{n}=n-1$ for all positive integers n.

Property 4.1. The $\left(z^{m}, n\right)$-method is regular for each m.
Property 4.2. The $\left(z^{m}, n\right)$-method sums the geometric series to $(1-z)^{-1}$ for all z which satisfy $\operatorname{Re}\left\{z^{m}\right\}<1$.

We notice that the $\left(z^{m}, n\right)$-method of summability sums the geometric series to $(1-z)^{-1}$ in the generalized Borel polygon. When $m=1$, we get the Lototsky method (2).

References

1. R. P. Agnew, Euler transformations, Amer. J. Math., 66 (1944), 318-338.
2. -_The Lototsky method for the evaluation of series, Michigan Math. J., 4 (1957), 105-128.
3. V. F. Cowling and C. L. Miracle, Some results for the generalized Lototsky transform, Can. J. Math., 14 (1962), 418-435.
4. A. Jakimovski, A generalization of the Lototsky method, Michigan Math. J., 6 (1959), 270290.
5. Y. Okada, Ueber die Annäherung analytischer Funktionen, Math. Z., 23 (1925), 62-71.
6. V. Vuckovic, The mutual inclusion of Karamata-Stirling methods of summation, Michigan Math. J., 6 (1959), 291-297.

Hattiesburg, Mississippi

