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Abstract  The explicit defining equations of a new family of curves whose members have a trivial
automorphism group are given. Each member is defined for characteristic zero and all but a finite
number of characteristics greater than zero. This family, in conjunction with a previously appearing
family of the author’s, provides explicit examples of algebraic curves which possess only the trivial
automorphism for each genus greater than three. The family is then used to construct Riemann surfaces
without anticonformal automorphisms and Klein surfaces with no non-trivial automorphisms.
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1. Introduction

It is well known that a generic curve or Riemann surface of genus greater than two has
a trivial automorphism group, but there are few explicit examples with their defining
equations in the literature. Cronheim [3] produced examples of curves with a trivial
automorphism group which are defined for characteristic p > 0, however the definition
of each curve depends on the chosen p. Thus each example is shown to yield a trivial
automorphism group for only a single characteristic. In [1], Accola determined a pro-
cedure which yields examples of Riemann surfaces with trivial automorphism groups.
Madden and Valentini [7], in the course of showing that every group can be realized
as the full automorphism group of an algebraic function field of positive characteristic,
explicitly constructed a family of curves with trivial automorphism groups, defined for
arbitrary characteristic (including 0). Each of these curves has genus 13. Mednykh [8]
and Everitt [4] produced families of Riemann surfaces without automorphisms by using
a fundamental region for each surface or its associated Fuchsian group, however they did
not find defining algebraic equations for the families.
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In [10], the author presented an explicit family of curves whose members possess trivial
automorphism groups. The doubly infinite family presented there contains curves with
a trivial automorphism group for each genus g = (n — 1)(m — 1)/2, where m and n
are relatively prime integers which satisfy n > m + 1 > 3. In addition, each member
of the family excludes only finitely many characteristics; the only assumption made is
that the characteristic equals zero, or does not divide (m — 1)mn. It is easy to see that
this family yields examples of curves with a trivial automorphism group for each genus
greater than three of the form 3k or 3k + 1 (by choosing m = 3), but not every genus of
the form 3k + 2 is represented (consider g = 5). In this paper, for each genus of the form
g =n(m—1)/2, where n—1 and m are relatively prime integers satisfying n > m+1 > 3,
we present an m parameter family of curves with trivial automorphism groups. The only
restriction is that the characteristic of the field does not divide n(n — 1)m. Clearly this
family contains examples for each genus greater than three of the form 3k or 3k + 2, so
this family in conjunction with the family presented in [10] furnish examples of curves
with trivial automorphism groups for each genus greater than three.

After proving that members of the above-mentioned family have a trivial automor-
phism group, we determine conditions which will ensure that, when defined over C, its
members have no anticonformal automorphisms. We then show how the family can be
used to give explicit equations of Klein surfaces which possess no non-trivial automor-
phisms.

In the following section we construct the above-mentioned family of curves. Each curve
C in the family has a Weierstrass point P with a unique gap sequence; thus, an auto-
morphism of C' must fix P. It is proved that only the identity automorphism fixes P,
thus the automorphism group of C is trivial.

2. Construction

We adhere to the notation used in [10]. In particular the order of a function f at a point
R of a curve is denoted by ordg f, with a similar notation used for differentials. If D is
a divisor, the set of functions f such that (f) + D > 0 is denoted by L(D). We say that
m is a gap at R if there is no function f with (f)e = mR. If m is a gap at R, it is a
gap at the image of R under an automorphism of the curve. If ¢ is an automorphism of
a curve, we denote the induced automorphism of the function field of the curve by o*.

Let k denote an arbitrary algebraically closed field and let A% denote two-dimensional
affine space with coordinates (x,y). Let n > m + 1 be positive integers such that n — 1
and m are relatively prime and m > 3. We assume that the characteristic of the field
does not divide n(n — 1)m. Let C denote the affine locus of the equation

f(x,y) =y" +yp(z) + aor = 0. (2.1)
In (2.1), p(x) is any element of k[z] of degree m such that x, but not 22, divides p(x),

and the coefficient of x™~1 is 0. In addition, ag € k* is chosen to make (2.1) non-singular
in A2,
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The requirement that C' be non-singular in A? is easily accomplished. Recall that
singularities occur at points where f =0, f; =0 and f, = 0. From (2.1) we have

fo=wp (@) +ao,  fy=ny""" +p(a). (2.2)

At singular points nf —y f, = 0. This yields

—napgT
y = W)i)(x)' (2.3)
Substituting this into f, = 0, we obtain
(n — D)p(x) — nxp'(z) = 0. (2.4)
Let 1,9, ..., %, be the not necessarily distinct solutions of (2.4). Note that these values

are independent of ag. Thus, singular points have coordinates

—naogx;
( = 1>p<xi>)' (25)

Now choose ag such that none of these points satisfy f, = 0. Then C is non-singular.

Observe that z divides p(x) and agz. Thus, applying Eisenstein’s criterion, we obtain
that (2.1) is the irreducible polynomial for y over k(x).

We note from (2.1) that = has a zero of order n at (0,0), and y has a zero of order 1
at (0,0) as its unique zero on C.

Let P2 denote two-dimensional projective space over k with homogeneous coordinates
(X,Y,Z). Let C denote the locus in P? of the homogenization of (2.1), namely

F(X,Y,Z)=Y"+YP(X,Z)+ apXZ"". (2.6)

Here P(X, Z) is a homogeneous polynomial of degree n — 1 such that P(z,1) = p(z).
Setting Z = 0 in (2.6), we obtain that F'(X,Y,0) = Y™, so (1,0,0) is the only point at
infinity. It is easily seen to be a singular point, and we now examine this point closely.
Let C' be the non-singular projective model for (2.6). Note that = X/Z andy = Y/Z
have pole divisors of degrees n and m, respectively, on C’. We note that at (1,0,0) the
function 1/ = Z/X has a zero. Thus x has a pole there, and thus it has a pole at any
point on C’ which lies over (1,0, 0). Since y has no pole in A2, it must have a pole at some
point P € C’" which lies over (1,0,0). Comparing the orders of the terms in (2.1) at the
point P, we obtain n(ordp y) = ord, y + m(ordp x). Thus (n — 1) ordpy = m(ordp x).
Since n — 1 and m are relatively prime, m divides ordp y, and thus —m = ordpy and
1 —mn = ordp z. Since n is the degree of the pole divisor of z, we see that there is exactly
one other point @ # P on C’ which lies over (1,0,0). Since (0, 0) is the unique point on
C where y has a zero, and y has order one there, we obtain ordg y = m — 1. Thus P and
@ are the unique points of C’ which lie over (1,0,0) and we may view C’ as C'|J{P, Q}.
In particular we have () =n(0,0) 4+ (1 —n)P — @, and (y) = (0,0) — mP + (m — 1)Q.

Lemma 2.1. Let w = dz/fy, = —dy/f5. Then (w) = (mn —n—m)P + (m —2)Q and
the genus of C' is g = n(m —1)/2.
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Proof. If x — a is a local parameter at (a,b) = R € C, then f,(R) # 0. Similarly, if
y— b is a local parameter, then f,(R) # 0. Thus w has order 0 at all points of C. At P we
have ordp(w) = ordp(—dy/fs) = mn —n —m. At Q, ordg(w) = ordg(dz/f,) =m — 2.
This proves the first part of the lemma. Recall that the degree of a differential is 2g — 2.
Thus g = n(m —1)/2. O

2.1. Gap sequences at points of C’

Let D =2g+41=mn(m—1)+ 1. We determine the gap sequence at P and a basis for
L(DP). We require the following proposition.

Proposition 2.2. Let N and M denote positive integers and let (N, M) = 1. Then

M—-1

iN N —1)(M -1
; {M] = % (2.7)
Proof. See [9]. O
Lemma 2.3. A basis for L(DP) is
T={z"y’ |i(n—1)+jm<D,i>0,j>0andifi>0, thenj >0} (2.8)

Proof. Note that the element xy/ € T has a pole of order i(n — 1)+ jm at P, and no
pole at @, so T'C L(DP). We calculate which positive integers ¢t < D are not orders of
poles of elements of T'. Since n— 1 and m are relatively prime, 0,n—1,2(n—1),...,(m—
1)(n — 1) form a complete set of residues mod m. Thus, given ¢ < D there is an i with
0 < i <m—1such that t = i(n—1)modm. If ¢ > i(n— 1) +m, there is a positive j such
that ¢ = i(n — 1) 4+ jm, so t is the order of a pole of an element of T'. On the other hand,
if t <i(n—1)+m, no element of T will have a pole of order ¢, since only elements of the
form 2y’ will have poles of orders congruent to ¢. Thus the number of positive integers
t < D with ¢t = i(n — 1) mod m which are not orders of poles of elements of T' equals the
number of integers congruent to i(n — 1) and less than i(n — 1) + m. This value is easily
seen to be [i(n —1)/m]+1if ¢ > 0 and 0 if ¢ = 0. From Proposition 2.2,

TS [Z(HT; 1)} _ (n — 2)2(m — 1). (2.9)

i=1
Thus there are exactly (n —2)(m—1)/24+m—1=n(m—1)/2 = g integers ¢ < D which
are not orders of elements of T'. Since a point has precisely g gaps, each of which is less

than 2g < 29+ 1 = D, and we have determined that the set T yields precisely g gaps,
we have that T spans L(DP). O

Recall the definition of w from Lemma 2.1, and let W = (w) = (nm —n—m)P + (m —
2)Q. To compute gaps at other points of C’ we use the following lemma.

Lemma 2.4. Let t be a positive integer. Then t is a gap at R € C' if and only if
LW —(t—1)R) # L(W —tR).
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Proof. A trivial consequence of the Riemann-Roch Theorem [5, 6] applied to
L((t — 1)R) and L(tR). a

Lemma 2.5. Let R = (a,b) € C. Then ordg(y —b) < m.

Proof. We may assume that R # (0,0), since the divisor (y) implies the truth of the
lemma at (0,0). Since the pole divisor of y has degree m, it is sufficient to show that
ordg(y—b) # m. If this were not the case, then (a, b) would be the unique point of C' where
y has the value b. Thus, substituting b for y in (2.1), we obtain 0 = " + bp(z) + agx =
c(z—a)™ for some c € k*. This contradicts that the coefficient of ™~ in p(z) is zero. [

Lemma 2.6. Let R = (a,b) € C. Then m is a gap at R.

Proof. From Lemma 2.4 it is sufficient to show that L(W — (m—1))R # L(W —mR),
in other words, that there is a function g € L(W) with ordg(g) = m—1. If y —b is a local
parameter at R, let g = (y —b)™ 1. Then ordg(g) = m—1 and —ordp(g) = (m—1)m <
(m—1n—-1)=mn—n—-—m+1,s0g € L(W). If ordg(y —b) =7 > 1, then (z — a)
is a local parameter at R. In addition, Lemma 2.5 yields that » < m. In this case define
g=(y—0b)(x—a)™'~". Then ordr(g) = m — 1 and g € L(W), since ordg(g) = r and
—ordp(g) =m+(m—1—-r)(n—1) < mn—m —n. Thus m is a gap at all points of
C. O

Lemma 2.7. m is a gap at Q.

Proof. Again applying Lemma 2.4 it is sufficient to show that L(W — (m — 1)Q) #
L(W — mQ), in other words, that there exists a ¢ € L((nm — n — m)P) such that
ordg g = 1. In this case g = yz™ 2 has the required properties. Thus m is a gap at

Q. |
Theorem 2.8. P is the unique point of C' for which m is not a gap.
Proof. This follows directly from Lemmas 2.3, 2.6 and 2.7. g

2.2. The automorphism group of C’

Theorem 2.8 implies that any automorphism of ¢’ must fix P. We now prove that
the only automorphism of C” which fixes P is the identity automorphism, thus the auto-
morphism group of C’ is trivial. In order to simplify the calculations we first make a
birational change of coordinates. Recalling the form of p(x) we rewrite (2.1) as

Y y(amx™ + o™ 2 -+ ar2) + agr = 0. (2.10)
Thus
YT b an (2y)™ + oy (2y)" T 4 ay™ T (y) + aoy™ P (2y) = 0. (2.11)
Letting ¢t = xy we obtain

YT L g ™ 4 Aoyt T 4 ay™ T + agy™ 2t = 0. (2.12)
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Thus
tm + bm_2y2tm—2 e bem—QtQ 4 (b1ym_1 + boym—Q)t + b/yn+m—1 — 07 (213)

where b; = a;/am, and b’ = 1/a,,. Note that (t) = (n+1)(0,0)+ (1 —n—m)P+(m—2)Q.
Since the pole divisor of y has degree m, we have [k(C”") : k(y)] = m, thus (2.13) is the
irreducible polynomial for ¢ over k(y). Note that y and ¢ have poles precisely at P, and
their respective orders are m and n+m — 1. Considering the basis T in (2.8) we conclude
that if o € Aut(C"), then o*(y) = ay+ 5, and o*(t) = h(y) +7t, where o,y € k*, § € k,
and h(y) € k[y] has degree less than (m +n — 1)/m. Thus

0= (h(y) + 7)™ + bm—a(ay + B)*(h(y) +yt)" > + - + ba(ay + B)"*(h(y) + 7t)?
+ (bi(ay + B)" " +bolay + 8)™ ) (h(y) + 1) + V' (ay + 3)" ™1 (2.14)

In particular, (2.14) is an irreducible polynomial for ¢ over k(y). By our assumptions on
the characteristic of k, (2.14) has a non-zero coefficient for ™1 if h(y) is not the zero
polynomial, contradicting (2.13). Thus h(y) = 0, so

0= (V)" 4 bm—2(ay + B)* (7)™ > + -+ ba(ay + 5)" 2 (71)*
+ (b1 (ay + B)™ 1+ bo(ay + B)™ ) (vt) + V' (ay + B)" T (2.15)

Since (2.15) has b’ ™~! as its constant term, we see from (2.13) that 3 = 0. Thus

0= ()" + bm—2(cy)*(y)™ > + -+ + ba(ay) ™ > (y1)?
+ (b1(ay)™ ! + bo(ay)™ ) (yt) + b (ay)" ™1 (2.16)

Comparing (2.13) and (2.16) we conclude

ym=1 )2t (2.17)

Yoy = bi(ay)" vt Aoy 2t = bo(ay

This easily forces @ = 1, which forces v = 1. Thus the automorphism group of C” is
trivial.

3. Symmetries and Klein surfaces

We now assume that C” is defined over the complex numbers C and determine conditions
on the defining equation for C’ which ensure that it possesses no anticonformal auto-
morphisms. Recall that there is a one-to-one correspondence between the anticonformal
automorphisms of the Riemann surface ¢’ and the automorphisms of C(x,y) = C(t,y)
which fix R but not C. Recall that anticonformal automorphisms preserve the orders of
functions at the points of the surface.

Consider (2.13) and let ¢ now denote an anticonformal automorphism. For exactly the
same reasons as in the conformal case, o*(y) = ay + 0, and o*(t) = h(y) + ~t, where
a,y € C*, B € C, and h(y) € C[y] has degree less than (m + n — 1)/m. If o is an
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anticonformal automorphism, then (2.13) yields that
0= (h(y) + 7)™ + bm—2(ay + B)* (h(y) + 7)™ + -+ + balay + 8)" 2 (hly) + 711)*
+ (bi(ay + B)" ™ + bo(ay + B)™72) (h(y) +7t) + ' (ay + B)" ™ (3.1)

In particular, (3.1) is an irreducible polynomial for ¢ over C(y). Note that (3.1) has a
non-zero coefficient of #™~1 if h(y) is not the zero polynomial, contradicting (2.13). Thus
h(y) =0, so

0= (7)™ + bm—z(ay + B)*(yt)" 7 + -+ + ba(ay + H)" 7 (4)
+ (bi(ay + B)™ " +bo(ay + B)" ) (yt) + ' (ay + B)" " (3.2)
Since (3.2) has 0’8" ™! as its constant term, we see from (2.13) that 8 = 0. Thus
0= (Y1) + bm—2(ay)*(yt)"~* + -+ + ba(ay)"™ ~* (v1)”
+ (ba(ay)™ ™" + bo(ay)™ ) (vt) + ' (ay)" 7L (3.3)
Comparing (2.13) and (3.3) we conclude that 4™b" = b'a"+™~1 and
Y1y = by (ay)™ e, Y™boy™ 2t = bo(ay)™ 2t (3.4)
This yields that

= — 3.5
and

o bli)/a"
b

For i satisfying 2 < i < m — 2, (2.13) and (3.3) also yield that (v/a)® = by—i/bm—;-
To ensure that C’ possesses no anticonformal automorphisms, it is sufficient to choose a
value for one b,,_; for which this is not true. Clearly such values can always be chosen.
Therefore, with such a choice of b,,_;, C’ possesses no anticonformal automorphisms.
Note that in terms of the original equation (2.10), to ensure that C” has no anticonformal
automorphismes, it is sufficient to define one a,,_; for an i with 2 < i < m — 2 so that

(ao (a0a1 >n>z 7& Am—iGm
ao \ aoa1 Uil

We now show how the family constructed in §2 can be modified to yield the defining
equations of Klein surfaces with a trivial automorphism group. It is well known that the

categories of algebraic function fields over C and the category of Riemann surfaces are
functorially equivalent. In a similar manner, the categories of algebraic function fields

over R and the category of compact Klein surfaces are functorially equivalent [2]. In
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particular, if a Klein surface S, corresponding to the algebraic function field F, possesses
a non-trivial automorphism, then E possesses a non-trivial automorphism which fixes R
(but not necessarily C). In addition, i = /=1 € E, if and only if S is a Riemann surface.

We now construct a family of Klein surfaces with trivial automorphism groups. Let
f(z,y) be defined as in (2.1) over C, with the appropriate restrictions on p(z) and ag
so that the resulting Riemann surface possesses no non-trivial automorphisms. Assume,
in addition, that the coefficients of f(x,y) are chosen to be real numbers. Recall that it
was shown that f(x,y) is the irreducible polynomial for y over C(z) and thus [C(z,y) :
C(x)] = n. This implies that [R(z,y) : R(z)] = n, that i ¢ R(z,y), and that C(x,y) =
R(z,y)(i). Let S be the compact Klein surface corresponding to E := R(x,y). We now
show that E possesses no field automorphism which fixes R. Assume ¢ : E — F is a field
automorphism which fixes R. Then ¢ extends to an automorphism of the polynomial
ring E|[z] by defining ¢(z) = z. Since C(z,y) = E[z]/(2? + 1), ¢ extends to a non-trivial
automorphism of C(z,y), which is the identity on C. This contradicts that C(z,y) was
proved in §2 to possess no non-trivial automorphisms.

Acknowledgements. I thank Emilio Bujalance for his helpful comments concerning
this paper.
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