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A REMARK ON THE C-NORMALITY OF MAXIMAL
SUBGROUPS OF FINITE GROUPS

by YANMING WANG*
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A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G
and H n N < Hc, where Hc =: Core(H) = n?€C//' is the maximal normal subgroup of G which is contained in
H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to
obtain results about the influence of the set of maximal subgroups on the structure of G.
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1. Introduction

The relationship between the properties of maximal subgroups of a finite group
G and the structure of G have been studied by many people. In fact, the knowledge
of the maximal subgroups of a finite group often yields a wealth of information
about the group itself. The normality of subgroups in a finite group plays an
important role in the study of finite groups. It is well known that a finite group G
is nilpotent if and only if every maximal subgroup of G is normal in G. As for the
class of supersolvable groups, B. Huppert's well known theorem shows that a finite
group G is supersolvable if and only if every maximal subgroup of G has prime
index in G. In term of normality, we have that G is supersolvable if and only if
every maximal subgroup of G is weakly normal in G. [6, Theorem 1.8.7] In [5], we
have shown that G is solvable, if and only if M is c-normal in G for every maximal
subgroup M of G, if and only if there exists a solvable c-normal maximal subgroup
M of G. In this paper, we extend the theorem to a 7t-separable group by using
Lafuente's result on primitive groups [3].

All the groups in this paper are finite, p denotes a prime, n denotes a set of primes
and n the complementary set of primes. M < G means M is a maximal subgroup of
G. For a subgroup H of G, HG denotes Core(H) = ngsGHg. We denote by [N]M the
semi-direct product of N by M.

Definition 1.1. Let G be a group. We call a subgroup H c-normal in G if there exists
a normal subgroup N of G such that HN — G and H n N < HG.
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It is clear that a normal subgroup of G is a c-normal subgroup of G but the converse
is not true. For example, S3 = [C^C^, C2-^53 but C2 is c-normal in S3.

Definition 1.2. A finite group G is called n-separable if every composition factor
of G is either a 7t-group or a Tt'-group.

A finite group G is called n-solvable if every composition factor of G is either a p-
group with p e n or a 7t'-group.

Definition 1.3. Let G be a finite group. We say G is a special primitive group if we
have the following:

(1) G is a primitive group. That is, there exists a maximal subgroup M of G with
Mc = l.

(2) G has a unique nonabelian minimal normal subgroup N and G has one maximal
subgroup U such that UC\N — 1.

The structure of the special primitive groups were characterized in [1], [2] and [3].
We will use the following lemma of [3].

Lemma 1.4. ([3, p. 2032 Corollary]). Let G be a special primitive group. Let N be
the minimal normal subgroup of G. Let U be the maximal subgroup of G with U f~l N = 1.
Let K be a minimal normal subgroup of U. Let S (resp. T) be a simple factor of N
(resp. K). Then S is isomorphic to a section ofT.

2. Preliminaries

Property 2.1. Let G be a group. Then

(1) G is n-separable if and only if every chief factor of G is either a n-group or a
n'-group.

(2) G is n-solvable if and only if every chief factor of G is either a p-group with
p 6 n or a n'-group.

(3) G is p-solvable if and only ifG is p-separable.

(4) Let N <G. Then G is n-separable (resp. n-solvable) if and only if both N and
G/N are n-separable (resp. n-solvable).

(5) G is n-solvable if and only ifG is p-solvable for every pen.

Proof. (l)-(4) follow directly from the definition and induction. Now we prove
(5). If G is p-solvable for every pen, then by definition G is n-solvable. Conversely,
assume G is 7r-solvable. Let N be a minimal normal subgroup of G and pen. If
N is a p'-group, then, by induction, both G/N and N are p-solvable and so is G. If
N is not a p'-group, then N is a p-group by the definition of 7t-separable group.
The same argument shows that G is p-solvable.
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Lemma 2.2. Let G be a group. Then

(1) IfHis c-normal in G, H < K < G, then H is c-normal in K.

(2) Let K<G and K < H. Then H is c-normal in G if and only if H/K is c-normal
in G/K.

Proof. (1) Suppose that H is c-normal in G. Then there exists a normal subgroup
N of G such that HN = G and H n N < Hc. Now K = K n G = H(K n N), K n N is
normal in K, and Hn(Kr\N)<HGr\K<HK. Hence H is c-normal in G.

(2) Suppose that H/K is c-normal in G/K. Then there exists N/K < G/K such that
G/K = (H/K)(N/K) with (H/K)n(N/K) < (H/K)G/K. It is easy to see that G = HN
and H flJV < HG. The converse is the same.

3. Theorems

In order to minimize the number of restricted maximal subgroups, we localize our
condition on the c-normality of one maximal subgroup. It was shown in [5] that a finite
group G is solvable if and only if there exists a solvable c-normal maximal subgroup
M of G. Since a nonabelian simple group has no c-normal maximal subgroup, (refer to
Lemma 2.2), we cannot extend the "only if" part of this theorem to 7r-separable
groups. (Simply choose G, a nonabelian simple group, n = n(G), as a counterexample.)
However, we will extend the "if" part of this theorem to ^-separable groups by
proving the following:

Theorem 3.1. Let G be a finite group. Then G is n-separable if there exists a n-
separable c-normal maximal subgroup M ofG.

Proof. Assume the theorem is false and let G be a minimal counterexample. Let
M be a c-normal solvable maximal subgroup of G. Then G must satisfy the
following:

(a) M is corefree.
If MG / 1, then M/MG is a ^-separable c-normal maximal subgroup of G/MG by

Lemma 2.2. Since MG is also rc-separable, by minimal choice of G, we have that G/Mc

is 7r-separable and therefore G is 7t-separable, a contradiction.

(b) There exists a minimal normal subgroup N of G such that G = [N]M.
Since M is c-normal in G, there exists a normal subgroup N of G such that

G = NM and M r\N < MG = 1. Therefore N must be minimal normal in G since
M < G.

(c) N is the unique minimal normal subgroup of G.
In fact, if K is another minimal normal subgroup of G, then G = [N]M = KM. Note

that both G/N and G/K are 7r-separable. We have that G 3* G/(Nn K)< (G/N)x
(G/K) and hence G is 7t-separable, which is absurd.
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(d) N is either a re-subgroup or a re'-subgroup.
If N is abelian, then N is a p-subgroup for a p e re(G), so (d) holds. Assume that

N is nonabelian. By (a)-(c), G is a special primitive group. Then N — N, x • • • x Nk is
a product of isomorphic nonabelian simple groups. Let T be a minimal normal
subgroup of M. Since M is re-separable, T is either a re-subgroup or a re'-subgroup.
Without loss of generality, we assume that T is a re-subgroup. By Lemma 1.4, we have
that N, is isomorphic to a section of T, which is a re-subgroup. Hence N is a re-
subgroup.

Now both N and G/N are re-separable which implies that G is re-separable, contrary
to our choice.

This completes our proof.

Corollary 3.2. Let G be a finite group. Then G is n-solvable (resp. solvable) if there
exists a n-solvable (resp. solvable) c-normal maximal subgroup MofG.

Proof. Use Theorem 3.1 and Property 2.1. Note that, for any group H, H is re-
solvable if and only if H is p-separable for every p € re and H is solvable if and only if
G is p-separable for every p 6 re(H).
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