BULL. AUSTRAL. MATH. SOC. VOL. 7 (1972), 387-389.

A note on flabby sheaves

Richard A. Levaro

It is shown that any sheaf of \tilde{R} -modules, all of whose stalks are injective, is necessarily a flabby sheaf. This generalizes the result of Grothendieck that the sheaf \tilde{M} determined by an injective module M over a commutative noetherian ring with 1 is flabby.

In the following, R shall be a commutative ring with 1. Let $X = \operatorname{Spec}(R)$ and \tilde{R} be the structure sheaf of R over X. Campbell [1] gives an elementary proof of a result of Grothendieck in [3] (Corollary 2.7). The following generalizes Grothendieck's result, which we shall state as a corollary, and yet the proof avoids any use of local cohomology. We use the same notation and terminology as Macdonald [4].

DEFINITION. We say the \tilde{R} -module \underline{F} is flabby (flasque) if for every open set $U \subseteq X$, the restriction map $\underline{F}(X) \Rightarrow \underline{F}(U)$ is onto.

PROPOSITION. Let \underline{F} be an \tilde{R} -module (not necessarily quasi-coherent) such that \underline{F}_{x} is an injective $R_{p_{x}}$ -module for all $x \in X$. Then \underline{F} is flabby.

Proof. If U is an open set in X, let us write $\underline{F}_U = (\underline{F}|U)^X$, where $\underline{F}|U$ is the restriction of \underline{F} to U and ()^X is prolongation by zero. There is an exact sequence of sheaves

$$0 \to \underline{F}_U \xrightarrow{f_{\to}} \underline{F},$$

where f is the injection map. Let $U \subseteq X$ be open and suppose

Received 19 June 1972.

387

 $\sigma \in \underline{F}(U)$. Let $E(\underline{F}_U)$ be the \tilde{R} -module defined as follows: If $V \subseteq X$ is open, then $E(\underline{F}_U)(V) = \prod_{x \in V} (\underline{F}_U)_x$, and with the obvious restriction maps. Now $E(\underline{F}_U)$ is an injective \tilde{R} -module since each $E(\underline{F}_U)$ is an injective R_{p_x} -module [2; proof of 7.1.1]. Consider the sheaf map

$$\alpha: \underline{F}_{II} \rightarrow E(\underline{F}_{II})$$

which, for every open set $V \subseteq X$, is given by

$$\alpha(V) : \underline{F}_{u}(V) \rightarrow E(\underline{F}_{u})(V) ,$$

the homomorphism sending $\gamma \neq (\gamma(x))_{x \in V}$, where $\gamma(x)$ is the germ of γ at x. Since $E(\underline{F}_U)$ is injective, there exists a sheaf map $\hat{\alpha} : \underline{F} \neq E(\underline{F}_U)$ such that $\hat{\alpha}f = \alpha$. That is,

commutes. In particular, $\hat{\alpha}(X)f(X) = \alpha(X)$. Note that $\underline{F}_U(X) = \underline{F}(U)$. Thus, if $\sigma \in \underline{F}(U)$, then $\sigma \in \underline{F}_U(X)$. Hence $\hat{\alpha}(X)(\tau) = \alpha(X)(\sigma)$ where $\tau = f(X)(\sigma) \in \underline{F}(X)$. Since f is the injection map, this means $(\tau(x))_{x \in U} = (\sigma(x))_{x \in U}$. Therefore $\tau | U = \sigma$, so that \underline{F} is flabby.

COROLLARY (Grothendieck). If R is noetherian and M is an injective R-module, then \tilde{M} is flabby.

Proof. Since R is noetherian and M is an injective R-module, M_{p_x} is an injective R_{p_x} -module for all $x \in X$. Now $\tilde{M}_x = M_p$ for all $p_x = p_x$ for all $x \in X$, so by the above proposition, \tilde{M} is flabby.

Flabby sheaves

References

- [1] J.M. Campbell, "A note on flasque sheaves", Bull. Austral. Math. Soc., 2 (1970), 229-232.
- [2] Roger Godement, Topologie algébrique et théorie des faisceaux (Hermann, Paris, 1958).
- [3] A. Grothendleck, Local cohomology (Lecture Notes in Mathematics 41. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [4] I.G. Macdonald, Algebraic geometry (W.A. Benjamin, New York, Amsterdam, 1968).

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.