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Abstract: In this paper we propose a new mathematical model capable of merging Darwinian Evolution,
Human History and SETI into a single mathematical scheme:
(1) Darwinian Evolution over the last 3.5 billion years is defined as one particular realization of a certain
stochastic process called Geometric Brownian Motion (GBM). This GBM yields the fluctuations in time of
the number of species living on Earth. Its mean value curve is an increasing exponential curve, i.e. the
exponential growth of Evolution.
(2) In 2008 this author provided the statistical generalization of the Drake equation yielding the numberN of
communicating ET civilizations in the Galaxy. N was shown to follow the lognormal probability
distribution.
(3) We call “b-lognormals” those lognormals starting at any positive time b (“birth”) larger than zero. Then
the exponential growth curve becomes the geometric locus of the peaks of a one-parameter family of
b-lognormals: this is our way to re-define Cladistics.
(4) b-lognormals may be also be interpreted as the lifespan of any living being (a cell, or an animal, a plant, a
human, or even the historic lifetime of any civilization). Applying this new mathematical apparatus to
Human History, leads to the discovery of the exponential progress between Ancient Greece and the current
USA as the envelope of all b-lognormals of Western Civilizations over a period of 2500 years.
(5) We then invoke Shannon’s Information Theory. The b-lognormals’ entropy turns out to be the index of
“development level” reached by each historic civilization. We thus get a numerical estimate of the entropy
difference between any two civilizations, like the Aztec-Spaniard difference in 1519.
(6) In conclusion, we have derived a mathematical scheme capable of estimating how much more advanced
than Humans an Alien Civilization will be when the SETI scientists will detect the first hints about ETs.
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SETI and Darwinian Evolution Merged
Mathematically

Introduction: the Drake equation (1961) as the
Foundation of SETI

In 1961, the American astronomer Frank D. Drake tried to
estimate the number N of communicating civilizations in the
Milky Way galaxy by virtue of a simple equation now called
the Drake equation. N was written as the product of seven
factors, each a kind of filter, every one of which must be sizable
for there to be a large number of civilizations: Ns, the number
of stars in the Milky Way Galaxy; fp, the fraction of stars that
have planetary systems; ne, the number of planets in a given
system that are ecologically suitable for life; fl, the fraction of
otherwise suitable planets on which life actually arises; fi, the
fraction of inhabited planets on which an intelligent form of
life evolves (as in Human History); fc, the fraction of planets
inhabited by intelligent beings on which a communicative
technical civilization develops (as we have it today); and fL, the

fraction of planetary lifetime graced by a technical civilization
(a totally unknown factor).
Written out, the equation reads

N = Ns · fp · ne · fl · fi · fc · fL. (1)
All the f ’s are fractions, having values between 0 and 1; they
will pare down the large value of Ns. To derive N, we must
estimate each of these quantities.We knowa fair amount about
the early factors in the equation, the number of stars and
planetary systems. We know very little about the later factors,
concerning the evolution of life, the evolution of intelligence or
the lifetime of technical societies. In these cases, our estimates
will be little better than guesses.
It has to be said that the original formulation of (1) by Frank

Drake in 1961 was slightly different, namely

N = R∗ · fp · ne · fl · fi · fc · L. (2)
In (2), R* is the average rate of star formation per year in the
Galaxy and L is the length of time for which civilizations in
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the Galaxy release detectable signals into space. However, the
number of stars in the Galaxy, Ns, is related to the star
formation rate R* by

Ns =
∫TGalaxy

0

R∗(t) dt, (3)

where TGalaxy is the age of the Galaxy. Assuming for simplicity
that R* is constant in time, then (3) yields

Ns = R∗ · TGalaxy i.e. R∗ = Ns
TGalaxy

, (4)

that, inserted into (2), changes it into

N = Ns · fp · ne · fl · fi · fc · L
TGalaxy

. (5)

Then (5) becomes just (1) if one identifies

fL = L
TGalaxy

(6)

as the fraction of planetary lifetime (as a part of the whole
Galaxy existence TGalaxy) graced by a technical civilization.
In the 50 years that have elapsed since Drake proposed his

equation, a number of scientists and writers have tried either
to improve it or criticize it in many ways. For instance, in 1980,
C. Walters, R. A. Hoover and R. K. Kotra (Walters et al.,
1980) suggested inserting a new parameter in the equation
taking interstellar colonization into account. In 1981,
S. G. Wallenhorst (Wallenhorst 1981) tried to prove that
there should be an upper limit of about 100 to the number N.
In 2004, L. V. Ksanfomality (Ksanfomality 2004) again asked
for more new factors to be inserted into the Drake equation,
this time in order to make it compatible with the peculiarities
of planets of Sun-like stars. Also, the temporal aspect of the
Drake equation was stressed by Ćirković (2004). However,
while these authors were concerned with improving the Drake
equation, others simply did not consider it useful and preferred
to forget about it, like Burchell (2006).
Also, it has been correctly pointed out that the habitable part

of the Galaxy is probably much smaller than the entire volume
of the Galaxy itself (the important relevant references are
Gonzalez et al. (2001), Lineweaver et al. (2004) and Gonzalez
(2005)). For instance, it might be a sort of torus centred around
the so-called ‘corotation circle’, i.e. a circle around theGalactic
Bulge such that stars orbiting around the Bulge and within
such a torus never fall inside the dangerous spiral arms of the
Galaxy, where supernova explosions would probably fry any
living organism before it could develop to the human level or
beyond. Fortunately for Humans, the orbit of the Sun around
the Bulge is just a circle staying within this torus for 5 billion
years or more (Marochnik & Mukhin 1988; Balazs 1988).
In all cases, the final result about N has always been a sheer

number, i.e. a positive integer number ranging from 1 to thou-
sands or millions. This ‘integer or real number’ aspect of all
variables making up the Drake equation is what this author
regarded as ‘too simplistic’. He extended the Drake equation
so as to embrace Statistics in his 2008 paper (Maccone 2008).

This paper was later published in Acta Astronautica (Maccone
2010a), and more mathematical consequences were derived in
Maccone (2010b) and Maccone (2011a).

Statistical Drake equation (2008)

Consider Ns, the number of stars in the Milky Way Galaxy,
i.e. the first independent variable in the Drake equation (1).
Astronomers tell us that approximately there should be about
350 billion stars in the Galaxy. Of course, nobody has counted
all the stars in the Galaxy! There are too many practical
difficulties preventing us from doing so: just to name one, the
dust clouds that do not allow us to see even the Galactic Bulge
(central region of the Galaxy) in visible light, although we may
‘see it’ at radio frequencies like the famous neutral hydrogen
line at 1420MHz.Hence, it does not really makemuch sense to
say that Ns=350×109, or similar fanciful exact integer num-
bers. Scientifically we say that the number of stars in the
Galaxy is 350 billion plus or minus, say, 50 billions (or what-
ever values the astronomers may regard as more appropriate).
It thus makes sense to REPLACE each of the seven indepe-

ndent variables in the Drake equation (1) by a mean value
(350 billions, in the above example) plus or minus a certain
standard deviation (50 billions, in the above example).
By doing so, wemoved a step ahead: we have abandoned the

too-simplistic equation (1) and replaced it by something more
sophisticated and scientifically serious: the statistical Drake
equation. In other words, we have transformed the simplistic
classical Drake equation (1) into a statistical tool capable of
investigating a host of facts hardly known to us in detail. In
other words still:
(1) we replace each independent variable in (1) by a random

variable, labelled Di (from Drake);
(2) we assume the mean value of each Di to be the same

numerical value previously attributed to the corresponding
input variable in (1);

(3) but now we also add a standard deviation σDi on each side
of this mean value, as provided by the knowledge obtained
by scientists in the discipline covered by each Di.

Having done so, we wonder: how can we find out the
probability distribution for each Di? For instance, shall that
be a Gaussian, or what? This is a difficult question, for nobody
knows, for instance, the probability distribution of the number
of stars in the Galaxy, not to mention the probability dis-
tribution of the other six variables in the Drake equation (1).
In 2008, however, this author found a way to get around this
difficulty, as explained in the next section.

The statistical distribution of N is lognormal

The solution to the problem of finding the analytical expression
for the probability density function (pdf) of the positive
random variable N is as follows:
(1) Take the natural logs of both sides of the statistical Drake

equation (1). This changes the product into a sum.
(2) The mean values and standard deviations of the logs of the

random variables Di may all be expressed analytically in
terms of the mean values and standard deviations of Di

(Maccone 2008).
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(3) The central limit theorem (CLT) of statistics, states that
(loosely speaking) if you have a sum of independent
random variables, each of which is arbitrarily distributed
(hence, also including uniformly distributed), then, when
the number of terms in the sum increases indefinitely (i.e.
for a sum of random variables infinitely long) . . . the sum
random variable approaches a Gaussian.

(4) Thus, the ln(N ) approaches a Gaussian.
(5) Namely, N approaches the lognormal distribution (as dis-

covered back in the 1870s by Sir Francis Galton). Table 1
shows the most important statistical properties of a
lognormal.

(6) The mean value and standard deviations of this lognormal
distribution of N may be expressed analytically in terms
of the mean values and standard deviations of the logs
of Di already found previously, as shown in Table 1.

For all the relevant mathematical proofs, more mathematical
details and a few numerical examples of how the Statistical
Drake Equation works, please see Maccone (2010a).

Darwinian evolution as exponential increase of the number
of living species

Consider now Darwinian Evolution. To assume that the num-
ber of species increased exponentially over 3.5 billion years of
evolutionary time span is certainly a gross oversimplification of
the real situation, as proven, for instance, by Rohde & Muller
(2005). However, we will assume this exponential increase of
the number of living species in time just for a moment in order
to cast the theory into a mathematically simple and fruitful
form. The introduction ofGeometric BrownianMotion (GBM)
in the next section of this paper will solve this difficulty.

In other words, we assume that 3.5 billion years ago there
was on Earth only one living species, whereas now there may
be (say) 50 million living species or more. Note that the actual
number of species currently living on earth does not really
matter as a number for us: we just want to stress the ex-
ponential character of the growth of species. Thus, we shall
assume that the number of living species on Earth increases in
time as E(t) (standing for ‘exponential in time’):

E(t) = AeB t, (7)
where A and B are two positive constants that we will soon
determine numerically. This assumption of ours is obviously in
agreement with the classical Malthusian theory of population
growth. However, it also is in line with the more recent ‘Big
History’ viewpoint about the whole evolution of the Universe,
from the Big Bang up to now, requesting that progress in
evolution occurs faster and faster, so that only an exponential
growth is compatible with the requirements that (7) approaches
infinity for t�∞ and all its time derivatives are exponentials
too, apart from constant multiplicative factors.
Let us now adopt the convention that the current epoch

corresponds to the origin of the time axis, i.e. to the instant
t=0. This means that all the past epochs of Darwinian
Evolution correspond to negative times, whereas the future
ahead of us (including finding ETs) corresponds to positive
times. Setting t=0 in (7), we immediately find

E(0) = A (8)
proving that the constantA equals the number of living species
on earth right now. We shall assume

A = 50 million species = 5× 107 species. (9)

Table 1. Summary of the properties of the lognormal distribution that applies to the random variable N=number of ET
communicating civilizations in the Galaxy

Random variable N=number of communicating ET civilizations in Galaxy

Probability distribution lognormal

Pdf fN (n) = 1
n

1���
2π

√
σ
e−

(ln(n)−μ)2
2 σ2 (n 5 0)

Mean value kNl = eμ e
σ2

2

Variance σ2N = e2μ eσ
2 (eσ2 − 1)

Standard deviation σN = eμ e
σ2

2
��������
eσ2 − 1

√

All the moments, i.e. kth moment kNkl = ekμek
2 ·σ

2

2

Mode (=abscissa of the lognormal peak) nmode ; npeak = eμ e−σ2

Value of the mode peak fN (nmode) = 1���
2π

√
σ
e−μ e

σ2

2

Median (=fifty–fifty probability value for N ) Median=m=eμ

Skewness
K3

(K2)
3
2

= (eσ2 + 2)
��������
eσ2 − 1

√

Kurtosis
K4

(K2)2
= e4 σ

2 + 2e3 σ
2 + 3e2 σ

2 − 6

Expression of μ in terms of the lower (ai) and upper (bi) limits of the
Drake uniform input random variable Di

μ =∑7
i=1

kYil =
∑7
i=1

bi[ln(bi) − 1] − ai[ln(ai) − 1]
bi − ai

Expression of σ2 in terms of the lower (ai) and upper (bi) limits of the
Drake uniform input random variable Di

σ2 =∑7
i=1

σ2Yi
=∑7

i=1
1− aibi[ln(bi) − ln(ai)]2

(bi − ai)2
( )
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To also determine the constant B numerically, consider two
values of the exponential (7) at two different instants t1 and t2,
with t1< t2, that is

E(t1) = AeB t1 ,

E(t2) = AeB t2 .

{
(10)

Dividing the lower equation by the upper one, A disappears
and we are left with an equation in B only:

E(t2)
E(t1) = eB t2−t1( ). (11)

Solving this for B yields

B = ln(E(t2)) − ln(E(t1))
t2 − t1

. (12)

We may now impose the initial condition stating that 3.5
billion years ago there was just one species on Earth, the first
one (whether this was RNA is unimportant in the present
simple mathematical formulation):

t1 = −3.5× 109 years,
E(t1) = 1 whence ln(E(t1)) = ln(1) = 0.

{
(13)

The final condition is of course that today (t2=0) the number of
species equals A given by (9). Upon replacing both (9) and (13)
into (12), the latter becomes:

B = − ln(E(t2))
t1

= − ln(5× 107)
−3.5× 109 year

= 1.605× 10−16

sec
. (14)

Having thus determined the numerical values of both A and B,
the exponential in (7) is thus fully specified. This curve is
plotted in Figure 1 just over the last billion years, rather than
over the full range between −3.5 billion years and now.

Introducing the ‘Darwin’ (d) unit, measuring the amount
of evolution that a given species reached

In all sciences ‘to measure is to understand’.
In physics and chemistry this is done by virtue of units such

as themetre, second, kilogram, coulomb, etc. Hence, it appears
useful to introduce a new unit measuring the degree of
evolution that a certain species has reached at a certain time t of
Darwinian Evolution, and the obvious name for such a new
unit is the ‘Darwin’, denoted by a lower case ‘d’. For instance,
if we adopt the exponential evolution curve described in the
previous section, we might say that the dominant species on
Earth right now (Humans) have reached an evolution level of
50 million Darwins.
How many Darwins may have an alien civilization already

reached? Certainly more than 50 millions, i.e. more than
50Md, but we will not check out until SETI scientists will
possibly detect the first extraterrestrial civilization.
We are not going to discuss further this notion of measuring

the ‘amount of evolution’, since we are aware that endless
discussions might come out of it. However, it is clear to us that
such a newmeasuring unit (and ways tomeasure it for different
species) will sooner or later have to be introduced to make
Evolution a fully quantitative science.

Darwinian evolution is just a particular realization of
geometric Brownian motion in the number of living species

Consider again the exponential curve described in the previous
section. The most frequent question that non-mathematically
minded persons ask this author is: ‘then you do not take the
mass extinctions into account’. The answer to this objection is
that our exponential curve is just the mean value of a certain
stochastic process that may run above and below that
exponential in a totally unpredictable way. Such a stochastic

Fig. 1. Exponential curve representing the growing number of species on Earth up to now, without taking the well-known Mass Extinctions into
any consideration at all.
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process is called Geometric Brownian Motion (abbreviated
GBM) and is described, for instance, at the web site: http://en.
wikipedia.org/wiki/Geometric_Brownian_motion, fromwhich
Figure 2 is taken.
In other words, mass extinctions that occurred in the past are

indeed taken into account as unpredictable fluctuations in the
number of living species that occurred in the particular realiz-
ation of the GBM between−3.5 billion years and now. Hence,
extinctions are ‘unpredictable vertical downfalls’ in that GBM
plot that may indeed happen from time to time. Also notice
that:
(1) The particular realization of GBM occurred over the last

3.5 billion years is very much unknown to us in its
numerical details, but . . .

(2) We would not care either, inasmuch as the theory of
stochastic processes only cares about such statistical
quantities like the mean value and the standard deviation
curves, that are deterministic curves in time with known
equations.

GBM as the key to stochastic evolution of all kinds

The N(t) GBM as stochastic evolution

On 8 January, 2012, this author came to realize that his
Statistical Drake Equation, previously described is the special
static case (i.e. ‘the picture’, so as to say) of a more general
time-dependent statistical Drake equation (i.e. ‘the movie’, so
as to say) that we study in this section. In other words, this
result is a powerful generalization in time of all results
described in sections: ‘SETI and Darwinian Evolution

merged mathematically’ and ‘GBM as the key to stochastic
evolution of all kinds’. This section is thus an introduction
to a new, exciting mathematical model that one may call
‘Exponential Evolution in Time of the Statistical Drake
Equation’.
To be precise, the numberN in the statistical Drake equation

(1), yielding the number of extraterrestrial civilizations now
existing and communicating in the Galaxy, is replaced in this
section by a stochastic process N(t), jumping up and down in
time like the number e raised to a Brownian motion, but
actually in such a way that its mean value keeps increasing
exponentially in time as

kN(t)l = N0 e μt. (15)

In (15), N0 and μ are two constants with respect to the time
variable t. Their meaning is, respectively:
(1) N0 is the number of ET communicating civilizations at

time t=0, namely ‘now’, if one decides to regard the
positive times (t>0) as the future history of the Galaxy
ahead of us, and the negative times (t<0) as the past
history of the Galaxy.

(2) μ is a positive (if the number of ET civilizations increases in
time) or negative (if the number of ET civilizations
decreases in time) parameter that we may call ‘the drift’.
To fix the ideas, and to be optimistic, we shall suppose
μ>0.

This evolution in time of N(t) is just what we expect to happen
in the Galaxy, where the overall number N(t) of ET
civilizations does probably increase (rather than decrease) in
time because of the obvious technological evolution of each

Fig. 2. GBM. Two particular realizations of the stochastic process called Geometric Brownian Motion (GBM) taken from the Wikipedia site
http://en.wikipedia.org/wiki/Geometric_Brownian_motion. Their mean values are the exponential (7) with different values of A and B for each
shown stochastic process.
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civilization. However, this N(t) scenario is a stochastic one,
rather than a deterministic one, and certainly does not exclude
temporary setbacks, like the end of civilizations due to causes
as diverse as:
(a) asteroid and comet impacts,
(b) rogue planets or stars, arriving from somewhere and dis-

rupting the gravitational stability of the planetary system,
(c) supernova explosions that would ‘fry’ the entire nearby ET

civilizations (think of AGN, the Active Nucleus Galaxies
and ask: how many ET civilizations are dying in those
galaxies right now?),

(b) ET nuclear wars, and
(e) possibly more causes of civilization end that we do not

know about yet.
Mathematically, we came to define the pdf of this exponen-
tially increasing stochastic process N(t) as the lognormal

N(t) pdf(n,N0, μ, σ, t)

= 1���
2π

√
σ
�
t

√
n
e−

ln(n)− lnN0+μ t−σ2t
2

( )[ ]2
2 σ2 t for 0 4 n 4 1.

(16)
It is easy to prove that this lognormal pdf obviously fulfills the
normalization condition∫1

0
N(t) pdf(n,N0, μ, σ, t) dn

=
∫1
0

1���
2π

√
σ
�
t

√
n
e−

ln(n)− lnN0+μ t−σ2t
2

( )[ ]2
2 σ2 t dn = 1 . (17)

Also, the mean value of (16) indeed yields the exponential
curve (15)∫1

0
n ·N(t) pdf n,N0, μ, σ, t

( )
dn

=
∫1
0

n
1���

2π
√

σ
�
t

√
n
e−

ln(n)− lnN0+μ t−σ2t
2

( )[ ]2
2 σ2 t dn = N0 eμ t. (18)

The proof of (17) and (18) is given in Appendix 11.A as the
Maxima file ‘GBM_as_N_of_t_v33’ of Maccone (2012).
Table 2 summarizes the main properties of GBM, namely of

this N(t) stochastic process.

Our statistical Drake equation is the static special case
of N(t)

In this section, we prove the crucial fact that the lognormal pdf
of our Statistical Drake Equation given in Table 1 is just
‘the picture’ case of the more general exponentially growing
stochastic process N(t) (‘the movie’) having the lognormal pdf
(16) as given in Table 2. To make things neat, let us denote by
the subscript ‘GBM’ for both the μ and σ appearing in (16).
The latter thus takes the form:

N(t) pdf(n,N0, μGBM, σGBM, t) = 1���
2π

√
σGBM

�
t

√
n

× e
−

ln(n)− lnN0+μGBM t−σ2GBM t
2

( )[ ]2
2 σ2GBM t for 0 4 n 4 1. (19)

Similarly, let us denote by the subscript ‘Drake’ for both μ and
σ appearing in the lognormal pdf given in the third line of

Table 2. Summary of the properties of lognormal distribution that applies to the stochastic process N(t)=exponentially
increasing number of ET communicating civilizations in the Galaxy, as well as the number of living species on earth over the last
3.5 billion years. Clearly, these two different GBM stochastic processes have different numerical values of N0, μ and σ, but the
equations are the same for both processes

Stochastic process N(t) = 1) Number of ET Civilizations (in SETI).
2) Number of Living Species (in Evolution).

{

Probability distribution Lognormal distribution of the GBM

pdf
N(t) pdf(n,N0, μ, σ, t) = 1���

2π
√

σ
�
t

√
n
e−

ln(n)− lnN0+μt−σ2 t
2

( )[ ]2
2σ2 t for n 5 0

Mean value kN(t)l = N0 eμt

Variance σ2N(t) = N2
0 e

2μt (eσ2t − 1)
Standard deviation σN(t) = N0 eμt

���������
eσ2t − 1

√

All the moments, i.e. kth moment kNk(t)l = Nk
0 e

kμte(k
2−k) σ

2t
2

Mode (=abscissa of the lognormal peak) nmode ; npeak = N0 eμt e
−3σ2t

2

Value of the mode peak fN(t)(nmode) = 1

N0
���
2π

√
σ
�
t

√ e−μteσ
2t

Median (=fifty–fifty probability value for N(t)) median = m = N0 eμte
−σ2t

2

Skewness
K3

(K2)
3
2

= (eσ2t + 2)
���������
eσ2t − 1

√

Kurtosis
K4

(K2)2
= e4 σ

2t + 2e3 σ
2t + 3e2 σ

2t − 6
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Table 1 (this is also equation (1.B.56) of Maccone (2012)),
namely the pdf of our statistical Drake equation:

lognormal pdf of Statistical Drake Eq(n, μDrake, σDrake)

= 1���
2π

√
σDrake n

e
− ln n( ) − μDrake

( )2
2 σ2

for 0 4 n 4 1.

(20)
Now, a glance at (19) and (20) reveals that they can be made to
coincide if and only if the two simultaneous equations hold

σ2GBM t = σ2Drake,

lnN0 + μGBM t− σ2GBM t
2

= μDrake.


 (21)

On the other hand, when we pass (so as to say) ‘from the movie
to the picture’, the two σ must be the same thing, and so must
be the two μ, that is, one must have:

σGBM = σDrake = σ,
μGBM = μDrake = μ.

{
(22)

Checking thus the upper equation (22) against the upper
equation (21), we are only left with

t = 1. (23)
Hence, t=1 is the correct numeric value of the time leading
‘from the movie to the picture’. Replacing this into the lower
equation (21), and keeping inmind the upper equation (22), the
lower equation (21) becomes

lnN0 + μGBM − σ2

2
= μDrake. (24)

Since the two μ also must be the same because of the lower
equation (22), then (24) further reduces to

lnN0 − σ2

2
= 0, (25)

that is

N0 = e
σ2

2 (26)
and the problem of ‘passing from the movie to the picture’ is
completely solved.
In conclusion, we have proven the following ‘movie to

picture’ theorem:
The stochastic process N(t) reduces to the random variable

N if, and only if, one inserts

t = 1,

σGBM = σDrake = σ,

μGBM = μDrake = μ,

N0 = e
σ2
2




(27)

into the lognormal probability density (16) of the stochastic
process N(t).

GBM as the key to mathematics of finance

But what is this N(t) stochastic process reducing to the
lognormal random variable N in the static case? Well, N(t) is
no less than the famous GBM, of paramount importance in the

mathematics of finance. In fact, in the so-called Black–Scholes
models,N(t) is related to the log return of the stock price. Huge
amounts of money all over the world are handled at Stock
Exchanges according to the mathematics of the stochastic
process N(t), that is differently denoted St there (‘S’ from
Stock). But we would not touch these topics here, since this
paper is about Evolution and SETI, rather than about stocks.
We just content ourselves to have proven that the GBMused

in the mathematics of finance is the same thing as the
exponentially increasing process N(t) yielding the number of
communicating ET civilizations in the Galaxy!

Darwinian Evolution re-defined as a GBM in the
number of living species

A concise introduction to cladistics and cladograms

Cladistics is the science describing when new forms of life
developed in the course of Evolution. Cladistics is thus the
science of lineages, i.e. phylogenetic trees, like the one shown
for instance in Figure 3, and it is today strongly based on
computer codes, in turn based on high-level mathematics.
Our innovative contribution to cladistics and cladograms

like the one in Figure 3 is to put the horizontal axis of time
below them, and then realize that the cladograms branches are
exponential functions of the time. In other words, these
exponential arches are either increasing in time, or decreasing,
or just staying constants (i.e. they are just horizontal lines, like
the ones in Figure 3), but the length of these exponential arches
is as long as the species they represent survived during the
course of evolution.
This mathematical representation of the whole of

evolution is:
(1) Easy, inasmuch as exponential functions like (7) are the

easiest possible functions in mathematics.
(2) Clear, inasmuch as we know pretty well when a new species

appeared in the course of evolution.
(3) GBM-based, inasmuch as the exponential arches indeed

are the mean values in time of the corresponding
‘unpredictable’ GBMs yielding the number of members
of that species living at a certain time in evolution. At last,
the study of the mathematical properties of GBMs is now
open to scientists, rather than only to bankers and business-
men, as it happened in the last 40 years (1973–2013). Note
that, in 1997, theNobel Prize in Economics was assigned to
Robert C. Merton and Myron Scholes (Fischer Black had
already died in 1995) for their mathematical discoveries
(Black–Scholes–Merton models) based on GBMs.
Perhaps, new Nobel Prizes will be assigned for applying
GBMs to evolution and astrobiology.

Fig. 3. A horizontal cladogram (taken from http://en.wikipedia.org/
wiki/Cladogram) with the ancestor (not named) to the left.
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Cladistics: namely the GBM mean exponential as the locus of
the peaks of b-lognormals representing each a different species
started by evolution at time t=b>0

How is it possible to ‘match’ the GBMmean exponential curve
with the lognormals appearing in the Statistical Drake
Equation? Our answer to this question is ‘by letting the
GBM mean exponential become the envelope of the b-
lognormals representing the cladistic branches, i.e. the new
species that were produced by evolution at different times
as long as evolution unfolded’. Let us now have a look at
Figure 4.
The envelope shown in Figure 4 is not really an envelope in

the strictly mathematical sense explained in calculus textbooks.
However, it is ‘nearly the same thing in practice’ because it
actually is the geometric locus of the peaks of all b-lognormals.
We shall now explain this in detail.
First of all, let us write down the equation of the

b-lognormal, i.e. of the lognormal starting at any positive
instant t=b>0 (while ordinary lognormals all start only at
zero); in other words, (t−b) replaces n in the first equation in
Table 1:

b lognormal t, μ, σ, b
( ) = 1���

2π
√

σ · (t− b) e
−(ln(t−b)−μ)2

2 σ2

holding for t . b and up to t = 1.


 (28)
Then, notice that its peak falls at the abscissa p and ordinate P
given by, respectively (as given by the 8th and 9th line in
Table 1):

p = b+ eμ−σ2 = b lognormal peak abscissa,

P = e
σ2

2 −μ���
2π

√
σ
= b lognormal peak ordinate.


 (29)

Can we match the second equation (29) with the Darwinian
exponential (7)? Yes, if we set at time t=p:

A = 1���
2π

√
σ
,

eBp = e
σ2
2 −μ,


 that is

A = 1���
2π

√
σ
,

Bp = σ2

2
− μ.


 (30)

The last system of two equations may now be inverted, i.e.
exactly solved with respect to μ and σ:

σ = 1���
2π

√
A
,

μ = −Bp+ 1
4πA2,


 (31)

showing that each b-lognormal in Figure 4 (i.e. its μ and σ) is
perfectly determined by the Darwinian exponential (namely by
A and B) plus a precise value of the b-lognormal’s peak time p.
In other words, this is a one-parameter (the parameter is p)
family of curves that are all constrained between the time axis
and the Darwinian exponential.
Clearly, as long as one moves to higher values of p, the peaks

of these curves become narrower and narrower and higher and
higher, since the area under each b-lognormal always equals 1
(normalization condition).

Cladogram branches are increasing, decreasing or stable
(horizontal) exponential arches as functions of time

It is now possible to understand how cladograms shape up in
our mathematical theory of evolution: they depart from the
time axis at birth time (b) of the new species and then either:
(1) Increase if the b-lognormal of the ith new species has

(keeping in mind the convention pi<0 for past events, i.e.
events prior to now):

Ai = 1���
2π

√
σi
,

Bi =
σ2i
2 − μi
pi

. 0 that is μi .
σ2i
2
.




(32)

(2) Decrease if the same b-lognormal has (keeping in mind the
convention pi<0 for past events):

Ai = 1���
2π

√
σi
,

Bi =
σ2i
2 − μi
pi

, 0 that is μi ,
σ2i
2
.




(33)

Fig. 4. Darwinian exponential as the envelope of b-lognormals. Each b-lognormal is a lognormal starting at a time (t=b=birth time) larger than
zero and represents a different species ‘born’ at time b of Darwinian evolution.

SETI, Evolution and Human History 225

https://doi.org/10.1017/S1473550413000086 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550413000086


(3) Keep staying constant (i.e. rather than exponential arches
we have horizontal segments) for all time values for which
the ith b-lognormal is characterized by:

Ai = 1���
2π

√
σi
,

Bi = 0 that is
σ2i
2
= μi.


 (34)

This last case really is themost ‘routine’ one, inasmuch as the
given species neither increases nor decreases in time, but rather,
for generations and generations, ‘the parents are born, mate,
babies are born, the parents die, the babies mate, and so on
endlessly’. This we call a stationary species. And, mathemat-
ically, the surprise is that a stationary species no longer is
described by b-lognormals, but rather by the new probability
density found by replacing the last equation (34) into (28), with
the result that (28) becomes the new stationary pdf:

stable pdf t, σ, b( ) = 1���
2π

√
σ
������
t− b

√ e−
(ln(t−b))2

2σ2 e−
σ2
8 . (35)

In plain words, this is the pdf for species undergoing no
evolution at all, and this is not the pdf of the lognormal type
because of the square root

������
t− b

√
appearing in (35) instead of

(t−b) appearing in (28). Clearly, more words and examples
would be needed to better clarify our theory, but we have no
space for that here. Table 3 yields the key statistical properties
of stationary pdf (35) (see also Maccone (2011b)).

KLT-Filtering in Hilbert space and Darwinian selection are
“the same thing” in our theory. . .

As a glance to the future developments of our mathematical
theory of Darwinian evolution, let us now recall that the KLT
is . . . a principal axes transformation in Hilbert space spanned
by the eigenfunctions of the autocorrelation of a noise plus a
possible signal in it. Put this way, the KLT (standing for
Karhunen–Loève transform) may look ‘hard to understand’
(Maccone 2010c; Szumski 2011). However, wewish to describe

by easy words that it amounts to the well-known Darwinian
selection process. In fact, consider a Euclidean space with a
large number N of dimensions. A point there means giving N
coordinates. Each coordinate we assume to be ‘a function of
the body that Humans have in common with other animals,
but other animals may or may not (because too primordial)
have in common with humans. Then, the axis representing
humans in this N-space has the largest variance of the set of
points around it because humans have all functions. Monkeys
have nearly the same number of functions as humans but in
practice they have fewer of them. Thus, the Monkey axis in the
N-space has the second largest variance around it. In the
mathematical jargon of the KLT this is re-phrased by saying
that humans are the dominant=first eigenvalue in the KLT of
N-space, whereas Monkeys are the second eigenvalue, and so
on for lower species, that are really almost ‘noise’ (i.e. rubbish)
when compared with humans.
Now about filtering, i.e. extracting a tiny signal by virtue of

the KLT from thick noise (this works so much better by virtue
of the KLT than by virtue of the trivial FFT used by engineers
all over the world, but that is another story, for which the
reader may see Maccone (2010c)). Hence, just as Darwinian
evolution filtered humans out of a lot of ‘noise’ (i.e. other lower
level living organisms), so the KLT applied to the above large
N-dimensional space may describe mathematically the selec-
tion carried on byDarwinian evolution across 3.5 billion years,
but that requires another paper at least, or, better, the new
book that this author is now writing.

Conclusions about our statistical model for evolution
and cladistics

Evolution, as it occurred on Earth over the last 3.5 billion
years, is only one chapter of the larger book encompassed by
the Drake equation, which covers a time span of 10 billion
years or so.

Table 3. Summary of the statistical properties of the new random variable NoEv given by equation (35) and representing the
stationary life of a new species born at time b and undergoing no evolution thereafter

Random variable NoEv=NoEvolution probability=stationary life
(no name yet)Probability distribution

pdf fNoEv t, σ, b( ) = 1���
2π

√
σ
������
t− b

√ e−
(ln t−b( ))2

2σ2 −σ2

8 (t 5 b)

Mean value kNoEvl = b+ eσ
2

Variance σ2NoEv = e2σ
2 (eσ2 − 1)

Standard deviation σNoEv = eσ
2
��������
eσ2 − 1

√

Mode (=abscissa of the NoEv peak) tmode ; tpeak = b+ e−
σ2

2

Value of the Mode Peak (=ordinate of the NoEv peak) fNoEv(tmode) = 1���
2π

√
σ

Median (=fifty–fifty probability value for NoEv) median = m = b+ e
σ2

2

Skewness
K3

(K2)
3
2

= (eσ2 + 2)
��������
eσ2 − 1

√

Kurtosis
K4

(K2)2
= e4 σ

2 + 2e3σ
2 + 3e2σ

2 − 6
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We sought to outline a unified and simple mathematical
vision of both evolution and SETI, as the title of this paper
says.
Our vision is based on the lognormal probability distri-

bution characterizing N in the statistical Drake equation.
We have shown that the envelope of such lognormal

distributions ‘changing in time’ (b-lognormals) may account
for the mean exponential increase of the number of living
species on Earth over 3.5 billion years.

Lifespans of living beings as b-lognormals

Further extending b-lognormals as our model for all lifespans

This section is devoted to explore the mathematical properties
of b-lognormals. In fact, we shall now use them as the standard
mathematical model to symbolize the lifespan of any living
being, let this living being be a cell, or a human, or a society, or
a human civilization, or even an ET civilization.
On the one hand, all such lifespans are of course finite in

time, namely they are born at a certain instant t=b (b standing
for ‘birth’) and they die at a later instant t=d (d standing for
‘death’), with d>b.
On the other hand, b-lognormals like (28) are infinite in time,

i.e. spanning from t=b to t=+∞, so one might immediately
wonder how (28) might possibly represent a finite lifespan.
Well, the answer to such a question will be given later in the
next section, when wewill introduce the notion of ‘death instant’
t=d as the intersection point between the tangent to (28)
in its descending inflexion point and the time axis. At the
moment, we content ourselves with studying somemathematical
properties of the infinite b-lognormal pdf (28).
This was done in a highly innovative editorial way in the

author’s book entitled ‘Mathematical SETI’, Maccone (2012).
In fact, the mathematical proof of each of the theorems proven
there was hardly demonstrated line-by-line in the text. On the
contrary, the hardest calculations were performed by aid of
Maxima, the powerful computer algebra code (also called
Macsyma) created by NASA and MIT in the 1960s and now
freely downloadable from the web site http://maxima.source-
forge.net/.
Hence, the reader may find them in the Maxima file

‘b_lognormals_inflexion_points_and_DEATH_time.wmx’
that is reprinted in Appendix 6.A. to the author’s 2012 book.
From now on, we shall simply state the equation numbers in
that Maxima file proving a certain result about b-lognormals,
and the interested reader will then find the relevant proof by
reading the corresponding Maxima command lines (‘i’=input
lines) and output lines (‘o’=output lines). This way of proving
‘electronically’ the mathematical results simplifies things
greatly, if compared with the ‘ordinary’ lengthy proofs of
traditional books, and students and researchers will be able to
download for free the corresponding Maxima symbolic mani-
pulator from the site: http://maxima.sourceforge.net/.

Infinite b-lognormals

Again, a b-lognormal simply is a lognormal pdf starting at any
positive value b>0 (called ‘birth’) rather than at the origin.

As such, a b-lognormal has the following equation in the
independent variable t (time) and with the three independent
parameters μ, σ and b, of which μ is a real number, while both σ
and b are positive numbers:

b lognormal(t, μ, σ, b) = 1���
2π

√
σ(t− b) e

−(ln(t−b)−μ)2
2 σ2

holding for t . b and up to t = 1.


 (36)

This we call the infinite b-lognormal, meaning that it extends
to the right up to infinity. Its main mathematical properties are
basically the same as those of the ordinary lognormals starting
at zero and given in Table 1, with only one exception: all
formulae representing an abscissa have the same expression as
for ordinary lognormals with a+b term added because of the
right-shift of magnitude b. In other words, all infinite b-
lognormals have the formulae given in the following Table 4
(a formal, analytical proof of all results in Table 4 can be found
in Appendix 6.A of the author’s book ‘Mathematical SETI’,
Maccone (2012).

From infinite to finite b-lognormals: defining the death time,
d, as the time axis intercept of the b-lognormal tangent
line at senility

The b-lognormal extends up to t=+∞ and this is in sharp
contrast with the fact that every living being sooner or later dies
at the finite time d (‘death’) such that 0<b<d<∞. We thus
must somehow define this finite death time d in order to let the
b-lognormals become a realistic mathematical model for the
life-and-death of every living being.
We solved this problem by defining the death time t=d as the

intercept point between the time axis and the straight line
tangent to the b-lognormal at its descending inflexion point
t= s, i.e. the tangent line to the lognormal curve at senility.
And, from now on, we shall call finite b-lognormal any such
truncated b-lognormal, ending just at t=d.
This section is devoted to the calculation of the equation

yielding the d point in terms of the b-lognormal’s μ and σ, and
the whole procedure is described at the lines %i45 thru %o56 of
the file ‘b-lognormals_inflexion_points_and_DEATH_time.
wxm’ in Appendix 6.B of Maccone (2012).
Let us start by recalling the simple formula yielding the

equation of the straight line having an angular coefficient m
and tangent to the curve y(t) at the point having the
coordinates (t0, y0):

y− y0 = m(t− t0). (37)
Then, the value of y0 clearly is the value of the b-lognormal at
its senility time, given by the sixth line in Table 4, that is,
rearranging:

y0 = e
σ
�����
σ2+4

√
2 e−μ+σ2

4 −
1
2���

2π
√

σ
. (38)

On the other hand, the abscissa of the senility time t= s is
given by the fifth line in Table 4, that is

t0 = b+ e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ. (39)
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Finally, we must find the expression of the angular
coefficient m at the senility time, and this involves finding the
b-lognormal’s derivative at senility. Then Maxima has no
problem to find this, and the lines %i48 and %o48 show that
one gets, after some rearranging

m = −
��
2

√
e
7 σ2
4

��������
σ2 + 4

√ − σ
( )

e−
σ
�����
σ2+4

√
+8μ+2

4

4
��
π

√
σ2

. (40)

Inserting (38), (39) and (40) into (37) one obtains the
equation of the desired straight line tangent to the b-lognormal
at senility:

y− e
σ
�����
σ2+4

√
2 e−μ+σ2

4−
1
2���

2π
√

σ
=−

��
2

√
e
7 σ2
4

��������
σ2 + 4

√ − σ
( )

e−
σ
�����
σ2+4

√
+8μ+2

4

4
��
π

√
σ2

× t− e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ − b

( )
. (41)

In order to find the abscissa of the death point t=d, we just
need to insert y=0 into the above equation (41) and solve for
the resulting t. ThenMaxima yields at first a rather complicated
result (%o52). However, keeping in mind that the term in b
must obviously appear ‘alone’ in the final equation since the
b-lognormal is only an ordinary lognormal shifted to make it
start at b, the way to further simplify (41) becomes obvious,
and the final result simply is

d = b+
��������
σ2 + 4

√ + σ
( )2

e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

4
. (42)

This is the ‘death time’ of all living beings born at any time
b>0.

Terminology about various time instants related to a lifetime

The reader is now asked to look carefully at Figure 5 to
familiarize with mathematical notations and their meaning
describing the lifetime of all living beings:
Obvious are the definitions of the instants of:

(1) birth (b=starting point on the time axis)
(2) adolescence (a=ascending inflexion abscissa, with ordi-

nate A)
(3) peak (p=maximum point abscissa, with ordinate P)
(4) senility (s=descending inflexion abscissa, with ordinate S)
(5) and death (d=death abscissa= intercept between the time

axis and the straight line tangent to the b-lognormal at the
descending inflexion point).

Terminology about various time spans related to a lifetime

Also defined in Figure 5 are the obvious time segments
called:
(1) Childhood (C=a−b)
(2) Youth (Y=p−a)
(3) Maturity (M= s−p),
(4) Decline (D=d− s),
(5) Fertility (F= s−a),
(6) Vitality (V= s−b)
(7) Lifetime (L=d−b).
Then, from all these definitions and from the mathematical
properties of the b-lognormals listed in Table 4, one obtains
immediately the following equations:

Childhood ; C = a− b = e−
σ
�����
σ2+4

√
2 −3 σ2

2 +μ, (43)

Youth ; Y = p− a = eμ−σ2 − e−
σ
�����
σ2+4

√
2 −3 σ2

2 +μ, (44)

Table 4. Properties of the b-lognormal distribution, namely the infinite b-lognormal distribution given by (36). These are both
statistical and geometric properties of the pdf (36), whose importance will become evident later

Probability distribution b-lognormal, namely the infinite b-lognormal

pdf fb-lognormal (t; μ, σ, b) = 1���
2π

√
σ
· 1
(t− b) e

−(ln(t−b)−μ)2
2 σ2 (t 5 b 5 0)

Abscissa of the ascending inflexion point Adolescence ; a = b+ e−
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

Ordinate of the ascending inflexion point fb-lognormal (adolescence) ; A = e
−
σ
�����
σ2+4

√
2 e

−μ+σ
2

4 −12��
2π

√
σ

Abscissa of the descending inflexion point Senility ; s = b+ e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

Ordinate of the descending inflexion point fb-lognormal (senility) ; S = e
σ
�����
σ2+4

√
2 e

−μ+σ
2

4 −12��
2π

√
σ

Mean value kb lognormall = b+ eμ e
σ2

2

Variance σ2b-lognormal = e2μ eσ
2 (eσ2 − 1)

Standard deviation σb-lognormal = eμ e
σ2

2
��������
eσ2 − 1

√

Peak Abscissa=mode b-lognormal peak ; b-lognormalmode ; p = b+ eμ e−σ2 = b+ eμ−σ2

Peak Ordinate=value of the mode peak fb-lognormal(b-lognormalmode) =
1���
2π

√
σ
· e−μ · eσ

2

2 = 1���
2π

√
σ
· eσ

2

2 −μ

Median (=fifty–fifty probability abscissa) Median=m=b+eμ
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Maturity ; M = s− p = e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ − eμ−σ2 . (45)

Decline ; D = d − s =
��������
σ2 + 4

√ + σ
( )2

e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

4

− e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ = e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ σ
��������
σ2 + 4

√ + σ
( )

2
.

(46)

Fertility ; F = s− a = e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ − e−
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

= 2 e−
3 σ2
2 +μ sinh

σ
��������
σ2 + 4

√

2

( )
, (47)

Vitality ; V = s− b = e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ, (48)
Lifetime = L = d − b

=
��������
σ2 + 4

√ + σ
( )2

e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

4
. (49)

Obviously one also has

Lifetime = Vitality+Decline = (s− b) + (d − s)

= d − b =
��������
σ2 + 4

√ + σ
( )2

e
σ
�����
σ2+4

√
2 −3 σ2

2 +μ

4
.

(50)

as one may check analytically by adding (48) and (46), and
checking the result against (49).

In addition, dividing (46) by (48), all exponentials disappear
and one obtains the important new equation

Decline
Vitality

= σ
��������
σ2 + 4

√ + σ
( )

2
. (51)

This we shall use later in the section ‘mathematical history of
civilizations’ in connection with the ‘golden ratio’ and ‘golden
b-lognormals’.

Normalizing to one all the finite b-lognormals

Finite b-lognormals are positive functions of time, as requested
for any pdf, but they are not normalized to one yet, as it is also
demanded for any pdf. This is because:
(1) If one computes the integral of the b-lognormal (36)

between birth b and senility s one obtains

∫s
b

b lognormal(t, μ, σ, b)dt

=
∫e

σ
�����
σ2+4

√
2 −3 σ

2

2 +μ

b

1���
2π

√
σ(t− b) e

−(ln(t−b)−μ)2
2 σ2 dt

= 1
2
+

erf
�
2

√
4

��������
σ2 + 4

√ − 3 σ
( )( )

2
, (52)

Fig. 5. Lifetime of all living beings, i.e. finite b-lognormal: definitions of the basic instants of birth (b=starting point on the time axis), adolescence
(a=ascending inflexion abscissa, with ordinateA), peak (p=maximum point abscissa, with ordinate P), senility (s=descending inflexion abscissa,
with ordinate S) and death (d=death abscissa= intercept between the time axis and the straight line tangent to the b-lognormal at the descending
inflexion point). Also defined are the obvious single-time-step-spanning segments called childhood (C=a−b), youth (Y=p−a), maturity
(M= s−p), decline (D=d− s). In addition, also defined are the multiple-time-step-spanning segments of the all-covering lifetime (L=d−b),
vitality (V= s−b) (i.e. lifetime minus decline) and fertility (F= s−a) (i.e. adolescence to senility).
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where erf (x) is the well-known error function of
probability and statistics, defined by the integral

erf x( ) = 2��
π

√
∫x
0

e−z2dz . (53)

Notice that, during the integration in (52), the indepen-
dent variable μ disappeared, leaving a result depending on
σ only. We shall not prove (52) here: the proof can be
found in Appendix 6.B of Maccone (2012), lines %i78
through%o79.

(2) If we add to (52) the integral of the descending straight
line tangent to the b-lognormal at s, taken between s
(given by the fifth line in Table 4) and d (given by (42)), we
obtain

∫d
s

y from eq. 36( )dt =
∫b+

�����
σ2+4

√
+σ

( )2
e
σ
�����
σ2+4

√
2 −3 σ

2

2 +μ

4

b+e
σ
�����
σ2+4

√
2 −3 σ

2

2 +μ

y from eq. (36)dt =
��������
σ2 + 4

√ + σ
( )

e
3 σ

�����
σ2+4

√
4 −5σ2

4 −1
2

2
5
2
��
π

√ .

(54)
Once again μ disappeared, leaving a result depending on σ
only. Again, we shall not prove (54) here: the proof can be
found in Appendix 6.A of Maccone (2012), lines (%i85)
through (%087).

(3) In conclusion, adding (52) and (54), one gets the area
under the finite b-lognormal (from b to d )

Area under FINITE b-lognormal

=
∫d
b

FINITE b-lognormal dt = K(σ) (55)

with

K(σ) = 1
2
+

��������
σ2 + 4

√ + σ
( )

e
3 σ

�����
σ2+4

√
4 −5σ2

4 −1
2

2
5
2
��
π

√

+
erf

�
2

√
4

��������
σ2 + 4

√ − 3 σ
( )( )

2
. (56)

In practice, it will be sufficient to compute the numeric value
of K(σ) for a given σ and divide the corresponding finite
b-lognormal by this value to have it normalized to one.

Finding the b-lognormals given b and two out of the four
a, p, s, d

The question is now: having introduced the five points b, a, p,
s, d, do some equations exist enabling one to determine the b-
lognormal’s μ and σ in terms of the birth time b (supposed to be
always known) and any two more points out of the remaining
four (a, p, s and d )? This author was able to discover several
such pairs of equations, yielding μ and σ exactly (and not asT
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numeric approximations) and they are all listed in Table 5. The
mathematical proofs are given in Appendix 6.B of Maccone
(2012), and will not be repeated here.
The most important out of all these equations are our brand-

new history formulae, given by the two equations:

σ = d − s�������
d − b

√ ������
s− b

√ ,

μ = ln(s− b) + 2s2 − (3d + b)s+ d2 + b d
(d − b)s− b d + b2

.




(57)

Essentially, these two equations allow us to find a
b-lognormal when its birth, senility and death times are
given. This is precisely what happens in the study of human
history, since we certainly know when a past civilization was
born (for instance when a new town was founded and later
became the capital of a new empire), and when it died (because
of war, usually). Less precisely we may know the time when its
decline began (after reaching its peak), which is the s appearing
in the fifth line of Table 4. However, if one manages to find
that out in history books, then the b-lognormal (36) is fully
determined by our history formulae (57).

Golden ratios and golden b-lognormals

Is σ always smaller than 1?

So far, we have derived a number of properties of the
b-lognormals given by (36) and representing the life of a living
being. However, one question remains: is there any specific
reason why σ should be smaller or larger than one ? More
precisely, while we know σ to be necessarily positive, no
‘plausible’ reason seems to exist for it to be smaller than one, as
it appears to be numerically in majority of life forms.
To explore this topic a little more, consider a trivial

rectangular triangle having catheti equal to 2 and σ, res-
pectively. Owing to the well-known Pythagorean theorem, the
hypotenuse obviously equals

��������
σ2 + 4

√
. Since the hypotenuse

always is longer than any of the catheti, we conclude that��������
σ2 + 4

√
. σ. (58)

Now insert (58) into (51). The result is

Decline
Vitality

= σ
��������
σ2 + 4

√ + σ
( )

2
.

σ(σ+ σ)
2

= σ(2 σ)
2

= 2 σ2

2
= σ2.

(59)
Since all variables in this inequality are positive, we may
rewrite it as

Decline . σ2 · Vitality. (60)
Now, in the majority of known life forms, it appears that the
vitality time (i.e. the time between birth b and senility s), i.e.
(s−b) is longer, or much longer than the decline time (i.e. the
time between senility s and death d, i.e. (d− s)). Thus, the only
way to let (60) apply to biological reality is to conclude that it
must be

σ2 , 1 or σ2 ,, 1 (61)

from which one finally infers (for all life forms known to
humans)

0 , σ , 1. (62)
Actually, in Section ‘Extrapolating history into the past:
Aztecs’ of this paper and in Chapter 7 of Maccone (2012) the
numerical value of σ is estimated for b-lognormals of the most
important historic Western Civilizations (Ancient Greece,
Ancient Rome, Italian Renaissance, Portuguese Empire,
Spanish Empire, French Empire, British Empire and finally
American (USA) Empire), and in all cases the numerical value
of σ turned out to be smaller than 1. This will be re-proven here
in Section ‘Extrapolating history into the past: Aztecs’ as we
just said.
Hence, one would tend to think that this 0< σ <1 result must

be a ‘law of nature’ of some kind, though we cannot offer any
better proof.
Theremight, however, be ‘pathological cases’ of forms of life

for which σ >1 and so their decline would be larger or much
larger than their vitality: just think of some science fiction
movies like Star Wars, where some living being declares to be
900 years old or more . . .
Anyway, the dividing line between ‘good’ and ‘bad’ values of

σ seems to be the σ=1 case.
Is this case significant? Yes, very much, as we discover in the

next section.

Golden ratios and golden b-lognormals

If one lets σ=1 into (51) one obtains

Decline
Vitality

= σ
��������
σ2 + 4

√ + σ
( )

2
= 1

��
5

√ + 1
( )

2
= 1+ ��

5
√

2

= golden ratio = 1.6180339887... = ϕ. (63)
This is the famous ‘golden ratio’, hailed by artists, architects

and mathematicians as aesthetically pleasing for over
2000 years. In the Renaissance (1509), the Italian,
Luca Pacioli (1445–1517) wrote a book about it by the Latin
title of ‘De Divina Proportione’ (The Divine Proportion),
with illustrations by Leonardo Da Vinci. Hence, let us
go back to (63). We now wish to prove that the
following ‘divine proportion’ holds among Lifetime, Vitality
and Decline (but only for those life forms having σ=1, of
course):

Lifetime
Decline

= Decline
Vitality

= Golden Ratio ; ϕ ;
1+ ��

5
√

2

= 1.618 . . . . (64)
For the proof, admit for a moment that (64) holds good.

Then, because of (50), the supposed (64) may be rewritten as

ϕ = Lifetime
Decline

= Vitality+Decline
Decline

= Vitality
Decline

+ 1

= 1
Decline
Vitality

+ 1 = 1
ϕ
+ 1. (65)
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Thus, if this is correct, we reach the conclusion that ϕ must
fulfill the equation

ϕ = 1
ϕ
+ 1 that is ϕ2 − ϕ− 1 = 0. (66)

Solving this quadratic equation in ϕ yields

ϕ = − −1( )+ ������������
1− 4 −1( )√

2
= 1+

��
5

√

2
. (67)

Discarding the negative root in (67) (since the ratioof positive
quantities may only yield a new positive quantity) leaves the
positive root only, and this is just the golden ratio appearing in
(63). Thus, we met with no contradiction in assuming the
‘divine proportion’ (64) to be true, and so it is true indeed.
As a consequence, it appears quite natural to call golden

b-lognormal the particular case σ=1 of (36), that is

golden b lognormal t, μ, b
( ) = 1���

2π
√

t− b( ) e
− ln(t−b)−μ( )2

2

holding for t . b and up to t = 1.


 (68)

This is a ‘new’ statistical distribution, whose main statistical
properties are listed in Table 5, of course derived by setting
σ=1 into the corresponding entries of Table 4.

Actually, rather than being only a single curve, (68) is a one-
parameter family of curves in the (t, Golden_b-lognormal)
plane, the parameter being μ. One is thus led to wonder what
properties might this family of Golden b-lognormals possibly
have. Then, this author discovered a simple theorem: all the
golden b-lognormals (68) have their peaks lying on the
equilateral hyperbola of equation

Golden b-lognormal PEAK LOCUS t, b( ) = 1���
2π

√ ��
e

√
t− b( ) .

(69)
The proof is easy: just solve for μ the equation (line 11 in
Table 5) yielding the peak abscissa of (68). The result is

μ = ln p− b
( )+ 1. (70)

Inserting (70) into the expression for the peak height P given
in line 12 of Table 5, (69) is found, and the theorem is thus
proven. Figure 6 shows immediately the equilateral hyperbola
(69) for the case b=2.
But all these considerations about the golden ratio and the

golden b-lognormals appear to be only an iceberg’s tip if one
thinks of the many known results relating the golden ratio to
the Fibonacci numbers, Lucas numbers, and so on. Hence,

Table 6. Golden b-lognormal distribution, i.e. the b-lognormal having σ =1, and its statistical properties

Probability distribution Golden b-lognormal

pdf fGolden b-lognormal (t; μ, b) = 1���
2π

√ 1
(t− b) e

−(ln(t−b)−μ)2
2 (t 5 b 5 0)

Abscissa of the ascending inflexion point Adolescence ; a = b+ eμ−
3+ �

5
√
2

Ordinate of the ascending inflexion point fGolden b-lognormal (adolescence) ; A = e
−μ−1+

�
5

√
4��

2π
√

Abscissa of the descending inflexion point Senility ; s = b+ eμ+
�
5

√ −3
2

Ordinate of the descending inflexion point fGolden b-lognormal (Senility) ; S = e
−μ−1−

�
5

√
4��

2π
√

Abscissa of the death point d = b+
�
5

√ +1( )2 eμ+
�
5

√ −3
2

4

Mean value kGolden b-lognormall = b+ eμ+
1
2

Variance σGolden_b-lognormal
2 =e2μ+1(e−1)

Standard deviation σGolden b-lognormal = eμ+
1
2
������
e− 1

√

Peak Abscissa =mode Golden_b-lognormalpeak;Golden_b-lognormalmode;p=b+eμ−1

Peak ordinate=value of the mode peak fGolden b-lognormal(Golden b-lognormalmode) =
1���
2π

√ e
1
2−μ

Median (=fifty–fifty probability value) Median=m=b+eμ

Skewness
K3

K2( )32
= e+ 2( )

������
e− 1

√
= 6.185...

Kurtosis
K4

K2( )2 = e4 + 2e3 + 3e2 − 6 = 110.936 . . .
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much more work is needed certainly in this new field we have
uncovered.

Mathematical history of civilizations

Civilizations unfolding in time as b-lognormals

Centuries of human history on Earth should have taught us
something.
Basically, civilizations are born, fight against each other and

‘die’, merging, however, with newer civilizations.
To cast all this in terms of mathematical equations is hard.

The reason nobody has done so is because the task is so
daunting. Indeed, no course on ‘Mathematical History’ is
taught at any university in the world.

In this section, we will have a stab at this. Our idea is simple:
any civilization is born, reaches a peak, then declines . . . just
like a b-lognormal!

Eight examples of western historic civilizations as finite
b-lognormals

We now offer eight examples of such a view: the historic
development of the civilizations of:
(1) Ancient Greece
(2) Ancient Rome
(3) Renaissance Italy
(4) Portuguese Empire
(5) Spanish Empire
(6) French Empire

Table 7. Finding the b-lognormals of eight among the most important civilizations of the Western world: Ancient Greece, Ancient
Rome, Renaissance Italy, Portugal, Spain, France, Britain and the USA. For each such civilization three input dates are assigned
on the basis of historic facts: (1) the birth time, b; (2) the senility time, s, i.e. the time when the decline began, and (3) the death
time, d, when the civilization reached a formal end. From these three inputs and the two equations (57) the b-lognormal of each
civilization may be computed. As a result, that civilization’s peak is found, as shown in the last two columns. In general, this peak
time turns out to be in agreement with the main historical facts

b=Birth time s=Senility time d=Death time p=Peak time p=Peak ordinate

Ancient
Greece

600 BC Mediterranean
Greek coastal expansion.

323 BC Alexander the
Great’s death. Hellenism
starts.

30 BC Cleopatra’s death:
last Hellenistic queen.

434 BC Pericles’ Age.
Democracy peak. Arts and
science peak.

2.488×10−3

Ancient
Rome

753 BC Rome founded.
Italy seized by Romans
by 270 BC.

235 ADMilitaryAnarchy
starts. Rome not capital
any more.

476 AD Western Roman
Empire ends. Dark Ages
start.

59 ADChristianity preached
in Rome by Saints Peter
and Paul against slavery.

2.193×10−3

Renaissance
Italy

1250 Frederick II dies.
Middle Ages end. Free
Italian towns.

1564 Council of Trent.
Tough Catholic and
Spanish rule.

1660 1600 Bruno burned,
1642 Galileo dies.
1667 Cimento Academy
Shut.

1497 Renaissance art and
architecture. Science.
Copernican revolution.

5.749×10−3

Portugal 1419 Madeira island
discovered.

1822 Brazil independent,
colonies retained.

1999 Last colony Macau
lost.

1716 Black slave trade to
Brazil at its peak.

3.431×10−3

Spain 1492 Columbus discovers
America.

1805 Spanish fleet lost at
Trafalgar.

1898 Last colonies lost to
the USA.

1741 California to be settled
by Spain, 1759–76.

5.938×10−3

France 1524 Verrazano first in
New York bay.

1815 Napoleon defeated
at Waterloo.

1962 Algeria lost, as most
colonies.

1732 French Canada and
India conquest tried.

4.279×10−3

Britain 1588 Spanish Armada
Defeated.

1914WorldWarOnewon
at a high cost.

1973 The UK joins
European EEC.

1868 Victorian Age. Science:
Faraday and Maxwell.

8.447×10−3

USA 1898 Philippines, Cuba,
Puerto Rico seized.

2001 9/11 terrorist
attacks.

2050 ?Will theUSA yield to
China ?

1973 Moon landings,
1969–72.

0.013

Fig. 6. The geometric locus of the peaks of all golden b-lognormals (in the above diagram starting all at b=2) as the parameter μ takes on all
positive values (04μ4∞), is the equilateral hyperbola given by (69).
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(7) British Empire
(8) American (USA) Empire
Other historic empires (for instance the Dutch, German,
Russian, Chinese, and Japanese ones, not to mention the Aztec
and Incas Empires, or the Ancient ones, like the Egyptian,
Persian, Parthian, or the medieval Mongol Empire) should
certainly be added to such a picture, but we regret we do not
have the time to carry on those studies in this paper. Those
historic-mathematical studies will be made at a later stage of
development of this new research field that, in our view, is
‘Mathematical History’: the mathematical view of human
history based on b-lognormal probability distributions.
To summarize this section’s content, for each one of the

eight civilizations listed above, we define:
(a) Birth b, namely the year when that civilization was

supposed to be ‘born’, even if only approximately in time.
(b) Senility s, namely the year of an historic event that marked

the beginning of the decline of that civilization.
(c) Death d, namely the year when an historic event marked

the ‘official passing away’ of that civilization from history.
Then, consider the two equations (57). For each civilization,
these two equations allow us to compute both μ and σ in terms
of the three assigned numbers (b, s, d). As a consequence, the
time of the given civilization peak is found immediately from
the upper equation (29), that is

peak time = abscissa of the maximum = p

= b+ eμ−σ2 . (71)
Also, we can then write down the equation of the correspond-
ing b-lognormal immediately. The plot of this function of time
gives a clear picture of the historic development of that
civilization, though, to save space, we prefer not to reproduce
here the above eight b-lognormals separately.
Inserting the peak time (71) into (36), the peak ordinate of

the civilization is found, namely ‘how civilized that civilization
was at its peak,’ and this is explicitly given by the lower
equation (29), namely:

peak ordinate = P = e
σ2
2 −μ���
2π

√
σ
. (72)

Table 7 summarizes the three input data (b, s, d) drawn by
the author from history textbooks, and then the two output
data (p, P) of that Civilization’s peak, namely its best legacy to
other subsequent Civilizations.

Plotting all b-lognormals together and finding the trends

Having determined the b-lognormal for each civilization we
wish to study, the time is ripe to plot all of them together and
‘see what the trends are’. This is done in Figure 7.
We immediately notice some trends:

(1) The first two civilizations in time (Greece and Rome) are
separated from the six modern ones by a large, 1000 years
gap. This is of course the Middle Ages, i.e. the Dark Ages
that hampered the development ofWestern Civilization for
about 1000 years. Carl Sagan said, ‘the millennium gap in

the middle of the diagram represents a poignant lost
opportunity for the human species’, Sagan (1980).

(2) While the first two civilizations of Greece and Rome lasted
more than 600 years each, all modern civilizations lasted
much less: 500 years at most, but really less, or much less
indeed.

(3) Since b-lognormals are pdfs, the area under each b-
lognormal must be the same, i.e. just 1 (normalization
condition). Thus, the shorter a civilization lives, the highest
its peakmust be! This is obvious fromFigure 7: Greece and
Rome lasted so long, and their peak was so much smaller
than the British or the American peak!

(4) In other words, our theory accounts for the ‘higher level of
the more recent historic civilizations’ in a natural fashion,
with no need to introduce further free parameters. Not a
small result, we think.

(5) All these remarks lead to the Appendix 7.A file inMaccone
(2012) and the Figures therewith, starting with Figure 7
hereafter.

b-lognormals of alien civilizations

So much about the past. But what about the future ? What are
the b-lognormals of ET civilizations in this Galaxy?
Nobody knows, of course. And nobody will know as long as

the SETI scientists are unable to detect the first signs of an
extraterrestrial civilization. Science fiction fans, however,
might take pleasure in casting the Star Trek timeline into the
mathematical language of b-lognormals. In this regard, inter-
esting is ‘TheStarTrekChronology’, by Okuda&Okuda (1996).
Also, the interested readers should get a copy of the great book
byFinney&Jones (1986).This book is ‘revolutionary’, inasmuch
as it re-reads the history of many human past civilizations with
the glasses of the new science of SETI. We learned a lot from
this book, but . . . no mathematics is there, just words. Our
achievement was to “convert that book into equations”.

Extrapolating history into the past: Aztecs

Aztecs–Spaniards as an example of two suddenly clashing
civilizations with large technology gap

The only example we know for sure about two suddenly
clashing civilizations with very different technological levels
comes from human history. That was in 1519, when the
Spaniard Hernán Cortés, with 600 men, 15 horsemen, 15
cannons and hundreds of indigenous carriers and warriors, was
able to subdue the Aztec empire of Montezuma II, numbering
some 20 million people. How was that possible?
Well, we claim that basically there was a psychological

breakdown in the Aztecs due to their obvious technological
inferiority to the Spaniards, causing the Aztecs to regard the
Spaniards as ‘Semi-Gods’, or ‘Gods’. We also claim that this is
precisely whatmight happen to humans when theymeet for the
first time with a much more technologically advanced alien
civilization in the Galaxy: humans might be shocked and
paralysed by Alien superiority, thus simply surrendering to
alien will.
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We also claim, however, that this human–alien sudden clash
might be somehow softened were humans able to make a
mathematical estimate of how much more advanced than us
aliens will be. This mathematical theory of the technological
civilization level is now developed in this section with a
reference to the Aztecs–Spaniards example.

‘Virtual Aztecs’ method to find the ‘True Aztecs’ b-lognormal

First of all, this author has developed a mathematical
procedure to correctly locate the b-lognormal of past human
civilizations in time.
Consider the Aztec–Spaniard case: how much were the

Spaniards more technologically developed than the Aztecs?
Well, we claim that the answer to this question comes from the
consideration of wheels. The use of wheels was unknown to the
Aztecs. However, although they did not develop the wheel
proper, the Olmec and certain other western hemisphere cul-
tures seem to have approached it, as wheel-like worked stones
have been found on objects identified as children’s toys. This is
just the point: we assume that the Aztecs ‘were on the verge’ of
discovering wheels when the Spaniards arrived in 1519.

But then, when had wheels been discovered by the Asian–
European civilizations?
Evidence of wheeled vehicles appears from the mid-4th

millennium BC, near-simultaneously in Mesopotamia, the
Northern Caucasus (Maykop culture) and Central Europe, so
that the question of which culture originally invented the
wheeled vehicle remains unresolved and under debate.
The earliest well-dated depiction of a wheeled vehicle

(a wagon–four wheels, two axles), is on the Bronocic pot, a ca.
3500–3350 B.C. clay pot excavated in a Funnelbeaker culture
settlement in southern Poland. The wheeled vehicle spread
from the area of its first occurrence (Mesopotamia, Caucasus,
Balkans, Central Europe) across Eurasia, reaching the Indus
Valley by the 3rd millennium BC. During the 2nd millennium
BC, the spoke-wheeled chariot spread at an increased pace,
reaching both China and Scandinavia by 1200 B.C. In China,
the wheel was certainly present with the adoption of the chariot
in ca. 1200 B.C.
To fix the numbers, we shall thus assume that wheels had

been discovered by the Asian–Europeans about 3500 B.C.
Hence, summing 3500 plus 1519 (when the wheel-less Aztecs
clashed against the wheel-aware Spaniards), we obtain about

Fig. 7. Showing the b-lognormals of eight civilizations in Western history, with two exponential envelopes for them.
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5000 years of technological difference of level among these two
civilizations. And 5000 years means 50 centuries, and not just
‘a few centuries’ of Aztecs inferiority, as historians having no
mathematical background have superficially claimed in the
past: our b-lognormal theory is quantitatively much more
precise than just ‘words’! However, let us now extend into the
past, up to 3800 B.C., the older diagram shown in Figure 7.
Adding the Greece-to-Spain b-lognormal (shown in Figure 8),
the newer, resulting diagram extending to 3800 B.C. is shown
in Figure 9.
In Figure 9, the virtual Aztec b-lognormal is the b-lognormal

peaking at the time in the past when the Western civilizations
discovered the wheel, i.e. about 3500 B.C. in Mesopotamia,
Southern Caucasus and Central Europe. This b-lognormal is
the dash–dash black curve in Figure 9. The Aztecs started their
expansion in central Mexico in 1325, so when Cortez arrived in
1519 they were a civilization 1519–1325=194 years old.

Reporting this 194 years lapse before the year 3500 B.C., we
find that the virtual Aztecs had been ‘born’ 194 years earlier,
namely in 3694 BC, which is thus the b-value of the virtual
Aztec b-lognormal

bVA = −3694 . (73)
Then we have to find the b-lognornal itself, i.e. its μVA and σVA.
In other words, we have to find μVA and σVA knowing only the
two peak coordinates, pVA=−3500 and PVA (the numeric
value of the peak height PVA is obviously known, since it
equals the value of the Greece-to-Spain exponential, the
dot–dot curve in Figure 9):

−3500 = pVA = bVA + eμVA−σ2VA ,

Greece to Spain EXPONENTIAL =

7.305× 10−4 = PVA = e
σ2VA
2 −μVA���
2π

√
σVA

.




(74)

Fig. 8. Showing the b-lognormals of eight Western civilizations over the 5000 years (=50 centuries) time span from 3800 B.C. to 2200 A.D. In
addition, three exponential ‘envelopes’ (or, more precisely, three ‘loci of the maxima’) are shown:
(1) The Ancient-Greece-peak (434 BC) to Britain’s peak (1868) exponential, namely the dash-dot black curve.
(2) The Ancient-Greece-peak (434 BC) to USA peak (1973) exponential, namely the solid black curve.
(3) The Ancient-Greece-peak (434 BC) to Spain peak (1741) exponential, namely the dot–dot black curve.
The Greece-to-Spain exponential was introduced since it is needed to understand the clash between the Aztecs and the Spaniards (1519–1521), as
described by the ‘Virtual Aztec’ b-lognormal, going back 50 centuries before 1519 (see Figure 9).
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One may let μVA disappear from the above two equations by
multiplying them side-by-side and then finding the following
new equation in σVA only, that must thus be solved for σVA:

Numerically known = ( pVA − bVA)PVA = e−
σ2VA
2���

2π
√

σVA
. (75)

Unfortunately, it is not possible to solve this equation for σVA
exactly. The best we can do is to expand its right-hand side
into a MacLaurin power series for σVA (which is acceptable
since we know that 0< σ <1 for all b-lognormals representing
life-spans), thus getting (the series is truncated at power 2
in σVA):

Numerically known = ( pVA − bVA)PVA ≈ 1− σ2VA
2���

2π
√

σVA
. (76)

Solving this for σVA leads to the quadratic in σVA

σ2VA + 2
���
2π

√
( pVA − bVA)PVAσVA − 2 = 0,

(77)

whose two roots are

σVA = −
���
2π

√
( pVA − bVA)PVA +

��
2

√ ��������������������������
π(pVA − bVA)2P2

VA + 1
√

.

(78)
Discarding the negative root, this leads to the only positive root
for σVA

σVA = −
���
2π

√
( pVA − bVA)PVA +

��
2

√ ���������������������������
π ( pVA − bVA)2 P2

VA + 1
√

(79)

Fig. 9. The virtual Aztec b-lognormal is the b-lognormal peaking at a time in the past when the Western civilizations discovered the wheel, i.e.
about 3500 B.C. in Mesopotamia, Southern Caucasus and Central Europe. This b-lognormal is the dash–dash black curve in the above diagram.
The Aztecs started their expansion in 1325, so when Cortez arrived in 1519 they were a civilization 1519–1325=194 years old. Reporting this 194
years lapse before the year 3500, we find that the virtual Aztecs had been ‘born’ 194 years earlier, namely in 3694 B.C., which is thus the b-value of
the virtual Aztec b-lognormal. Then we have to find the b-lognornal itself, i.e. its μ and σ. Its peak lies on the Greece-to-Spain exponential curve
but, unfortunately, not exactly upon it since the system of two simultaneous equations (71) and (72) cannot be solved exactly for μ and σ. Thus, this
approximated numerical solution, corresponding to the quadratic (77), is reflected in the diagram by positioning the virtual Aztec b-lognormal
slightly above the Greece-to-Spain exponential. Finally, the true Aztec b-lognormal is just the same thing as the virtual Aztec b-lognormal except
that its peak is shifted in time by an amount of (3500+1519) years=5019 years into the future, so that its peak falls at 1519, when the Spaniards
arrived.
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and the problem is (approximately) solved, since μVA is then
found from σVA by solving the upper equation (74):

μVA = σ2VA + ln( pVA − bVA). (80)
Replacing the numerical values given by (73) and (74) into (79)
and (80), the latter yield, respectively:

σVA = 1.103,

μVA = 6.484.

{
(81)

The numeric value for σVA slightly higher than 1 is a bit
surprising, and shows once again that we are working in a
numerically approximated solution of the transcendental
equation (75): a more accurate numeric solution of (75)
would be needed. The same fact is revealed graphically in
Figure 9, inasmuch as the virtual Aztec b-lognormal peak lies a
little bit above the Greece-to-Spain exponential curve. In
conclusion, the Virtual Aztec b-lognormal equation reads

Virtual Aztec b-lognormal(t, μVA, σVA, bVA)

= 1���
2π

√
σVA(t− bVA)

e
−

ln(t−bVA)−μ
VA

( )2
2σ2VA . (82)

As for the true Aztec b-lognormal, that is just the same as the
virtual Aztec b-lognormal except that it is shifted in time so as
to start in 1325, when the Aztec expansion in central Mexico
started. By construction, the peak of such true Aztec
b-lognormal falls exactly in the year 1519, when the
Spaniards arrived:

True Aztec b-lognormal(t, μVA, σVA, bTA)

= 1���
2π

√
σVA(t− bTA)

e
− ln t−bTA( )−μVA)2(

2σ2VA . (83)

This true Aztec b-lognormal is also shown in Figure 11, just
below all other b-lognormals, immediately revealing that the

Aztecs were by far technologically inferior to all other
European civilizations of the time. We shall now explore a
little more in detail the last statement.
Consider Figures 10 and 11, which are enlarged portions of

Figure 9 but limited to the years between 1000 and 2200
(Figure 10) and, even better, between the years 1300 and 1520
(Figure 11). Then one immediately infers that:
(1) Around 1497, the culturally leading country in the world

was Renaissance Italy (green solid b-lognormal).
(2) In 1519, however, continental Spain (black dot-dot

Greece-to-Spain exponential curve) had virtually reached
the same cultural and technological level as the (already
starting to decline) Renaissance Italy.

(3) In 1519, the Portuguese Empire (brown solid b-lognormal)
was at its beginnings, since it had started in 1419.

(4) In 1519, the Spanish Empire (orange solid b-lognormal)
was at its beginnings, since it had started in 1492.

(5) In 1519, the Aztec Empire (black solid b-lognormal) was at
its top: ready to be crushed by the Spaniards, owing to the
huge cultural and technological inferiority of the Aztecs
(18.7%) to the Spaniards (assumed 100% in comparison).

b-lognormal entropy as ‘civilization amount’

Introduction: invoking entropy and information theory

We now take a more profound mathematical step ahead than
just using b-lognormals: we resort to information theory, firstly
put forward by Claude Shannon (1916–2001) in 1948.
In particular, we now need Shannon’s notion of differential

entropy H of an assigned probability density fX(x), defined by
the integral

H = −
∫1
−1

fX (x) · ln fX (x) dx. (84)

Fig. 10. Enlarged portion of Figure 9 limited to the years between 1000 and 2200.
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Essentially, this is a measure of ‘how much peaked’ a pdf is
(small entropy) in contrast to a ‘largely spread’ pdf (high
entropy), and so a pdf entropy is also called its ‘uncertainty’
(no relationship to Heisenberg’s uncertainty principle).
In particular, we need the expression of differential

entropy of the b-lognormal. Let us thus start by finding the
differential entropy of the ordinary lognormal (i.e. starting at
zero), that is:

Hlognormal = −
∫1
0

1���
2π

√
σx

e
−
(ln x−μ)2

2σ2 ln
1���
2π

√
σx

e
(ln x−μ)2

2σ2

[ ]
dx

= −
∫1
0

1���
2π

√
σx

e
−
(lnx−μ)2

2σ2 − ln
���
2π

√
σ

( )
− ln x− (ln x− μ)2

2σ2

[ ]
dx

= ln
���
2π

√
σ

( ) ∫1
0

1���
2π

√
σx

e
−
(ln x−μ)2

2σ2 dx+
∫1
0
lnx

1���
2π

√
σx

e
−
(ln x−μ)2

2σ2 dx

+
∫1
0

(ln x− μ)2
2σ2

1���
2π

√
σx

e
−
(ln x−μ)2

2σ2

(85)
now the subtitution ln x=z changes all three integrals into
well-known integrals of normal distribution, equal to 1
(normalization condition), μ (mean value definition) and σ2

(variance definition), respectively:

= ln
���
2π

√
σ

( ) ∫1
−1

1���
2π

√
σ
e−

(z−μ)2
2σ2 dz+

∫1
−1

z
1���
2π

√
σ
e−

(z−μ)2
2σ2 dz

+
∫1
−1

(z− μ)2
2σ2

· 1���
2π

√
σ
e−

(z−μ)2
2σ2 dx

= ln
���
2π

√
σ

( )
+ μ+ 1

2σ2
σ2 = ln

���
2π

√
σ

( )
+ μ+ 1

2
.

As for the differential entropy of the b-lognormal, it is just the
same as (85), since the b-lognormal simply is a lognormal
shifted to a new origin b along the x-axis, and so all infinite-
support integrals in (85) remain unchanged, and the proof is
just the same as (85). Thus, in conclusion, the differential
entropy of both the ordinary lognormal and the b-lognormal is
given by

Hlognormal = Hb-lognormal = ln
���
2π

√
σ

( )
+ μ+ 1

2
. (86)

Notice also that (86) yields the b-lognormal differential
entropy in nats, i.e. in natural logarithms. If one wants to
express (86) in bits, then one must divide (86) by ln 2=0.693 . . .
In other words, one has

Hlognormal in bits =Hb-lognormal in bits = 1
ln 2

ln
���
2π

√
σ

( )
+ μ+ 1

2

[ ]

≈1.443 . . . ln
���
2π

√
σ

( )
+ μ+ 1

2

[ ]
.

(87)
The proof of (87) from (86) simply follows from the well-
known change-of-base formula for the logarithms

log2 N = lnN
ln 2

≈ lnN
0.693

≈ 1.443 lnN (88)

applied to definition (84) of differential entropy with ln (. . .)
replaced by log2(. . .).

Exponential curve in time determined by two points only

Let us now rewrite the exponential curve in time:

E(t) = AeBt. (89)

Fig. 11. Enlarged portion of Figure 10 limited to the years between 1300 and 1520. If we assume the technological level of the Spaniards to equal
100%, then the technological level of the Aztecs is only about 18%, i.e. the Aztec b-lognormal is about one-fifth of the Spaniard b-lognormal height
in 1520. Nowonder the Spaniards crushed the Aztecs, then. Yet, in the next section, we claim that Shannon’s Information Theory provides an even
better way to measure the cultural and technological gap between Aztec and Spaniards: this is what physicists have long been calling Entropy.
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Now suppose that the exponential curve (89) is passing through
two (and only two) assigned points of coordinates (p1, P1) and
(p2, P2), respectively. In other words, we assume that the two
simultaneous equations hold

P1 = AeBp1

P2 = AeBp2 .

{
(90)

This system (90) of two equations may be solvedwith respect to
the two constants A and B in a few simple steps that we omit
here (but they are found in the Appendix 30. A of Maccone
(2012), see equations %02 through %07). The result is:

A = P1

p2
p2−p1

P2

p1
p2−p1

B =
ln P2

P1

( )
p2 − p1

.




(91)

Thus, the two equations (91) completely solve the problem of
finding the exponential curve in time (89) passing through the
two assigned points of coordinates (p1, P1) and (p2, P2).

Assuming that the exponential curve in time is the GBM
mean value curve

We are now ready to take the usual step ahead in our stochastic
representation of Darwinian theory (Evolution, as described
above) and of historical progress (Mathematical History, as
described in ‘Extrapolating history into the past: Aztecs’
section) assuming that the exponential curve in time (89) is the
same thing as the exponential mean value of GBM in time,
given by (15) (and (11.1) in Maccone (2012)), that is

kN(t)l = N0eμt = N0eμGBMt. (92)
Evolution and human progress now cease to be deterministic

chains of events and rather become a stochastic (random)
sequence of events, as indeed it is in reality, with all their ups
and downs, although constrained to have a deterministic
exponential overall average increase. This ‘mathematical
representation of Darwinian Evolution and Historic Human
Progress as Geometric Brownian Motion’ is thus the #1
message put forward by this paper and by the Maccone (2012)
book, while the use of entropy is the #2 message.
In equation (92) we have set

μ = μGBM (93)
to remind that the drift parameter μ is now the drift parameter
of the GBM, denoted by μGBM.
Having so said, let us now check (89) against (92). One then

obtains

A = N0,

B = μGBM.

{
(94)

On the other hand, it will be remembered from (26) (and
(11.12) of Maccone (2012)) that the relationship between N0

and σGBM
2 is

N0 = e
σ2GBM
2 . (95)

Thus, upon inserting (95) into the upper equation (94), the
latter may be rewritten

A = e
σ2GBM
2

B = μGBM.


 (96)

Solving then (96) for both μGBM and σGBM
2 one obtains:

μGBM = B,

σ2GBM = 2 lnA.

{
(97)

These two equations may be rewritten in terms of the two
points of coordinates (p1,P1) and (p2,P2) by inserting (91) into
(97). With a little rearranging, the result is

μGBM =
ln P2

P1

( )
p2 − p1

σ2GBM =
2 ln

P
p2
1

P
p1
2

( )
p2 − p1

.




(98)

In conclusion, we have:
(1) Determined the exponential curve in time passing through

the two assigned points of coordinates (p1, P1) and
(p2, P2). These two points will later be identified as the
two peaks of the initial b-lognormal (p1, P1) and final
b-lognormal (p2, P2), respectively.

(2) Assumed that the above exponential curve in time is the
mean value of a certain GBM. This allows for the
representation of Darwinian evolution and later human
history as a GBM, with all its ups and downs, but con-
strained by definition to have an exponential increase in the
‘level of evolution’, as 3.5 billion years of evolution and
progress on Earth plainly show.

(3) Found the two equations (98) fully expressing this GBM in
terms of the two initial and final peaks only. This is in full
agreement with the statistical Drake equation static case,
as described in ‘GBM as the key to stochastic evolution of
all kinds’ and ‘Darwinian Evolution re-defined as a GBM
in the number of living species’ section (and in Chapters 1,
3, 6, 7, 8 and 11 of the author’s book, Maccone (2012)).

The way is thus paved to outline a full mathematical
(statistical) theory of Darwinian evolution and human history,
later to be extended to alien civilizations after the first
‘Contact’, even if these ETs will be ‘post-biological’ (namely
based on artificial intelligence, rather than on ‘flesh’).

The ‘No-Evolution’ stationary stochastic process

This short section is devoted to the special case when the two
peak ordinates, P1 and P2, are equal to each other:

P2 = P1. (99)
Then, (99) and (91), with a little rearrangement, yield

A = P1 = P2,

B = 0.

{
(100)

This means that the ‘former exponential’ is now a straight line
parallel to the time axis and located at a certain positive
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ordinateA=P1=P2 above it. In other words, the former GBM
stochastic process has now become a stationary stochastic
process, showing that ‘No-Evolution’ occurs between the two
times p1 and p2: for millions or billions of years, living beings
are born, reproduce and die generation after generation, with
no evolution at all.
Also, the drift parameter μGBM vanishes, and the σGBM

2 is a
constant in time equal to twice the natural log of the constant
peak ordinate (P1,P2), as one immediately may see by inserting
(99) into (98):

μGBM = 0,

σ2GBM = 2 ln (P1) = 2 ln(P2).
{

(101)

Entropy of the ‘Running b-lognormal’ peaked at the GBM
exponential mean

Much more interesting than the ‘No-Evolution’ case just
considered is of course the truly exponential evolution case. It
is summarized at-a-glance in Figure 4 that intuitively shows the
basic mechanism that we propose in this paper, in order to
unify the notions of Darwinian evolution, human historical
progress and SETI. However, all this is just qualitative.
If we want to go quantitative, the only way is to resort to

Shannon’s information theory and then resort to the notion of
b-lognormal differential entropy described in Section
‘Introduction: invoking entropy and information theory’, as
we now describe in detail.
To start, let us call ‘running b-lognormal’ the generic b-

lognormal peaked at the generic instant t=p.
It will be remembered that the key equations describing the

running b-lognormal are the two equations (31) that we repro-
duce here conveniently re-written in this section’s notation (the
subscript ‘RbL’ means ‘running b-lognormal’):

μRbL = 1
4πA2 − pB,

σRbL = 1���
2π

√
A
.


 (102)

Therefore, the differential entropy of the running b-
lognormal in bits is found by inserting (102) into (87), with
the immediate result

Hrunning b-lognormal in bits =
ln

���
2π

√
σRbL

( )+ μRbL + 1
2

ln 2

=− ln(A) + 1
4πA2 − pB+ 1

2

ln 2
. (103)

This equation expresses the running b-lognormal’s differential
entropy in terms of the two constants A and B of the
exponential curve (89) and of the abscissa in time (i.e. p) at
which the running b-lognormal’s peak is positioned. Hence, in
reality, the only ‘free parameter’ in (103) is indeed this ‘free’
b-lognormal’s peak abscissa p. Let us write this fact neatly as
follows:

Hrunning b-lognormal in bits( p) =
− ln (A) + 1

4πA2 − pB+ 1
2

ln 2
. (104)

We may now rewrite the last equation in terms of the
coordinates of the two points (p1, P1) and (p2, P2) by inserting
(91) into (104). The result of this straight substitution is:

Hrunning b-lognormal in bits( p)

= 1
ln 2

− ln
P1

p2
p2−p1

P2

p1
p2−p1





+ 1

4π P1

p2
p2−p1

P2

p1
p2−p1

( )2 − p
ln P2

P1

( )
p2 − p1

+ 1
2





.

(105)
This formula may only slightly be simplified as follows:

Hrunning b-lognormal in bits( p)

= 1
ln 2

−
ln

P
p2
1

P
p1
2

( )
p2 − p1

+ P2

2p1
p2−p1

4πP1

2p2
p2−p1

− p
ln P2

P1

( )
p2 − p1

+ 1
2





.

(106)
This is the differential entropy in bits of the running

b-lognormal peaked at p. It may more conveniently be
rewritten as

Hrunning b-lognormal in bits( p) = −p
ln P2

P1

( )
( p2 − p1) ln 2

+ Part not depending on p. (107)
We will use (107) in a moment!

Decreasing entropy for an exponentially increasing
evolution: progress!

We now reach the conclusion of this paper, as well as the
Epilogue of the book on ‘Mathematical SETI’.
Young students at university courses on thermo-

dynamics are still made to learn that ‘entropy always
increases’, meaning that the second law of thermodynamics
rules so. However, thermodynamics was born in 1700–1800
days upon the discovery of the laws of gases, and quite a
few scientists have later (1900–2000 days) come to realize
that the sentence ‘entropy always increases’ may hardly apply
to the evolution of intelligent living species as it occurred on
Earth over the last 3.5 billion years. This author belongs to the
latter category of scientists, and is proud to claim that his
theory, outlined in this paper as well as in Chapters 6, 7, 8 and
30 of his book, neatly shows that entropy decreases (rather than
always increasing) when it comes to describe the evolution of
life up to the current time, i.e. when it comes to describe
progress!
Our proof is as follows.
Consider (87), i.e. the entropy of the running b-lognormal.
If we consider the entropy change between the initial

b-lognormal peaked at (p1, P1) and the final one peaked at
(p2, P2), this entropy change is, by definition, given by

ΔH in bits = Hrunning b-lognormal in bits( p2)
−Hrunning b-lognormal in bits( p1). (108)
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When rewritten in terms of (107), this entropy change is
simpler than (107) since the two ‘Parts_not_depending_on_p’
cancel against each other, and the result is just:

ΔH in bits =Hrunning b-lognormal in bits( p2)
−Hrunning b-lognormal in bits( p1)

= − p2
ln P2

P1

( )
( p2 − p1) ln 2

+ p1
ln P2

P1

( )
p2 − p1) ln 2
( . (109)

However, the last equation may be further simplified as
follows:

ΔH in bits = −p2
ln P2

P1

( )
( p2 − p1) ln 2+ p1

ln P2
P1

( )
( p2 − p1) ln 2

= −( p2 − p1)
ln P2

P1

( )
( p2 − p1) ln 2 = −

ln P2
P1

( )
ln 2

=
ln P1

P2

( )
ln 2

.
(110)

Thus, we have reached a result of adamantine beauty: the
entropy change, when passing from a lower civilization to a
higher civilization, is simply given by the log of the ratio
between the lower civilization peak and the higher civilization
peak (apart from the factor ln 2 at the denominator, necessary
to measure the entropy in bits):

ΔH in bits =
ln P1

P2

( )
ln 2

. (111)

Since in the actual unfolding of evolution, we always had
P1<P2, the entropy change (111) in passing from the lower
civilization to the higher civilization is the log of a number
smaller than 1, i.e. it is a negative number! Thus, entropy
decreases in passing from a lower civilization to a higher
civilization, and that proves that progress amounts to a
decrease in entropy.
One more important result derived from (107) is found upon

rewriting it explicitly as a function of p as follows:

Hrunning b-lognormal in bits( p) =
− ln(A) + 1

4πA2 − pB+ 1
2

ln 2

= −B
ln 2

p+ part not depending on p.

(112)

Then, (108) and (112) yield immediately

ΔH in bits = − B
ln 2

( p2 − p1). (113)

This also is a new result of adamantine beauty, since it yields
the entropy change in bits by virtue of the difference in time
between the two peak abscissas (p2−p1) and the constant B
expressing the exponential increase (i.e. the mean exponential
drift in the GBM) of (89). Just to distinguish the two
adamantine results (111) and (113) from each other, we
might call (111) the ‘entropy change in evolution by virtue of
the peak ordinates only’, and (113) the ‘entropy change in
evolution by virtue of the peak abscissas and the averageGBM
exponential drift, B, only’.

Six examples: entropy changes in Darwinian Evolution,
Human History between ancient Greece and now, and
Aztecs and Incas versus Spaniards

Appendix 30.A of Maccone (2012), not only provides full
mathematical proofs of all the results we have derived so far in
this paper: but also offers six examples showing how entropy
actually decreased in six different cases of past life on Earth.
These six cases are, respectively:

(1) Darwinian Evolution on Earth over the last 3.5 billion
years. This is shown to correspond to an entropy decrease
of 25.57 bits per each living being, if today’s number of
living species is assumed to be 50 million. Were there more
than 50 million species living on Earth right now,
our equations (111) and (113) would yield the corres-
ponding entropy decrease accordingly. As for the proofs,
please refer to equations (%i45) through (%o52) of
Appendix 30.A of Maccone (2012).

(2) Entropy changes in human history from ancient Greece to
the end of the British Empire, i.e. to nearly nowadays.
According to the b-lognormal theory that we described in
Section ‘Extrapolating history into the past: Aztecs’, the
year 434 B.C. (i.e. p1=−434 · years) corresponds to the
peak of the age of Pericles in Athens, while the year 1868
(i.e. p2=1868 · years) corresponds to the peak of the
Victorian age in Britain (Maxwell equations mastering
electromagnetism published just 4 years earlier, in 1864).
The entropy change between these two peaks is computed
in equations (%i53) through (%o59) of Maccone (2012),
and amounts to an entropy decrease of 1.76 bits per
individual.

(3) Entropy changes in human history from ancient Greece
to the end of the American Empire, assumed to yield
to China about the year 2050. Again, according to the
b-lognormal theory that we described in Section
‘Extrapolating history into the past: Aztecs’, the year 434
B.C. (i.e. p1= −434 · years) corresponds to the peak of the
age of Pericles in Athens, while the year 1973 (i.e.
p2=1973 · years) corresponds to the peak of the
American Empire (Americans had just landed on the
Moon on July 20th, 1969, and stopped landing on
14 December 1972). Equations (%i60) through (%o66) of
Maccone (2012) show that the corresponding entropy
decrease between the two peaks amounts to 2.38 bits per
individual, thus a higher number than for the Greece-to-
Britain GBM exponential mean, as is intuitively obvious.

(4) Computing the entropy difference between the Aztecs and
the Spaniards when they came suddenly in touch (with no
previous contact) in 1519,whenCortez landed inVeraCruz
and started invading the Aztec Empire. This example is
particularly important for SETI inasmuch as it ‘might
resemble’ what could happen in case humanity came
physically in touch with an Alien Civilization all of a
sudden (as shown in the movie ‘Independence Day’).
Well, in section ‘‘Virtual-Aztecs’method to find the ‘True-
Aztecs’ b-lognormal’ we found a way to compute ‘how
backward the Aztecs were’ by exploiting the fact that they

242 C. Maccone

https://doi.org/10.1017/S1473550413000086 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550413000086


were just one the verge of discovering the use of wheels.
Wheels were used byAztec children in their toys, but not by
adults in warfare, and this is just what had already
happened in Mesopotamia, Northern Caucasus and
Central Europe about 3500 years before Christ. Thus, we
set p1=−3500 · years to describe the Aztec technological
backwardness with respect to the Spaniards, and of course
we set p2=1521 · years to mean that Cortez completed the
conquest of the Aztec Empire in 1521. Again, we assumed
the Greece-to-Britain exponential to be the right one (since
it refers to the actually occurred facts, rather than future
facts also, as in the Greece-to-USA case). In conclusion,
(111) and (113) then yield a entropy difference of 3.84 bits
per individual between theAztecs and the Spaniards.This is
higher than the 1.76 bits difference between the Victorian
Britons and the Pericles Greeks, of course: nearly twice as
much, owing to the huge 5000-years difference in evolution
between the Aztecs and the Spaniards, versus the just
about 2300 years in evolution between Pericles and the
Victorian age.
Let us also compute the entropy difference between

the Incas and the Spaniards when they came suddenly in
touch (with no previous contact) in 1532, when Pizarro
landed in Tumbes and started invading the Incas Empire.
Again, the wheel was unknown to the Incas, and so
we assumed p1= −3500 · years. Naturally, we now as-
sumed p2=1532 · years, and the result given by (111) and
(113) is an entropy difference of 3.85 bits per individual.
Just very slightly higher than for the Aztec–Spaniard case,
meaning that . . .

(5) The Aztecs were very slightly more technologically
advanced than the Incas when they both were subdued
by the Spaniards. In fact, if you assume that the Aztec
Empire had its start around the year 850 A.D. (roughly at
the peak of the Maya Empire, so that, in some sense, the
Aztec ‘inherited’ part of the Maya civilization), and then
you assume that the Incas Empire was founded around
1250 (when the Incas reached Cuzco), then, assuming
again the Greece-to-Britain exponential as the true expo-
nential of technological development, (111) and (113) yield
an entropy difference of 0.3 bits per individual in favour of
the Aztecs (more technologically advanced) over the Incas.
A subtle quantitative statement that may be the current
historical knowledge about both people is possibly unable
to ponder over.

Hence, with these final six entropy measurements, we hope to
have been the first author to be able to give a quantitative
description of both Darwinian evolution and human history,
based on our new discoveries about the mathematical pro-
perties of the finite and infinite b-lognormals.
This we did to be able to quantitatively estimate how much

an alien civilization might be more advanced than us.

b-lognormals of alien civilizations

So much about the past, but what about the future?
What are the b-lognormals of ET civilizations?

Nobody knows, of course, and nobody will until the SETI
scientists will detect the first signs of an ET civilization.
A good book to read, however, is ‘Interstellar Migration

and the Human Experience’, by Finney, B. R. and Jones,
E. M. (1986). Also, science fiction fans might take pleasure in
casting the Star Trek timeline into the mathematical language
of our b-lognormals. Interesting is also ‘The Star Trek
Chronology’ by Okuda & Okuda (1996), but . . . no mathemat-
ics is there. We need the mathematics that we will develop in
our next paper by extrapolating exponentials and entropy of
the human past into the future, with reference to the Fermi
Paradox.

Conclusion: summary of technical concepts
described

As a conclusion to this paper, we would like to summarize the
new technical concepts we had to introduce here.
(1) The Drake equation, describing 10 billion years of

evolution in this Galaxy (stars to humans), was trans-
formed from the simple product of seven factors into the
product of any number of random variables. This
statistical Drake equation is more ‘serious’ scientifically,
and leads to the conclusion that, if the number of input
random variables is increased more and more, then the
pdf of the number of civilizations in the Galaxy must be
lognormal.

(2) Darwinian evolution on Earth was re-defined mathemat-
ically as a stochastic process (i.e. a random function of
time) yielding the number of living species on Earth over
the last 3.5 billion years. This definition allows for sudden
lows in the number of living species (mass extinctions)
but, apart from those, the overall mean behaviour of the
number of species of Earth in time must be increasing
exponentially. Today, some 50 million species are sup-
posed to live on Earth, while 3.5 billion years ago there
was just one (RNA?), thus fixing the exponential mean
curve perfectly.

(3) Geometric Brownian Motion (GBM) is exactly the right
stochastic process fulfilling all the above requirements
representing the evolution of life on Earth (and elsewhere
in the universe, like life on extrasolar planets). However,
GBMs were so far studied only in Financial Mathematics
(Black–Scholes models, leading to the Nobel Prize in
Economy assigned in 1997 to Scholes and Merton for
exploiting GBMs), and so it is high time for evolutionary
scientists and astrobiologists to realize the key merits of
GBMs, primarily their mean value increasing in time
exponentially.

(4) We took one more step ahead by introducing lognormal
distributions (b-lognormals) starting at any positive time
b>0 rather than just at zero, as ordinary lognormals do.
Then, these b-lognormals were ‘matched’ to GBMs
by forcing all their peaks to stay just on the GBM
exponential mean value curve. This leads to a one-
parameter family of b-lognormals (the parameter is the
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peak abscissa p) representing a new living species that
appeared on Earth exactly at time b.

(5) Cladistics, the science of Evolution Phylogenetic Trees,
then is reduced to a simple game of b-lognormals
departing from the main exponential curve of evolution
(i.e. the GBM mean value) and then either increasing, or
decreasing, or keeping constants in time but in a
stochastic fashion (this is our ‘NoEv’ new pdf, that is,
not a lognormal any more). In other words, we have ac-
counted for prospering species, or extinct species (de-
creasing exponential arches that, sooner or later, reach a
numeric value above zero but less than one, meaning
extinction), or even just ‘stationary’ species (like insects,
for instance, that keep being the same as they were about
400 million years ago).

(6) The lifetime of any living being may also be represented
by a made-finite b-lognormal. In fact, every living being
is born at time b, reaches puberty at time a (adolescence,
i.e. the abscissa of the b-lognormal increasing inflexion
point), then goes to the peak of his living capabilities
(abscissa p of the b-lognormal’s peak) and starts
declining. He/she then reaches the non-return decline
point (abscissa s of the ‘senility’ point, the decreasing
inflection point abscissa) and dies at time d when the
straight line tangent to the b-lognormal at senility
intercepts the time axis.

(7) The ‘golden ratio’ was long hailed by artists, architects
and men of literature as ‘symbol of visual perfection’.
Well, surprisingly enough, this author discovered a class
of b-lognormals strongly related to the golden ratio
(golden b-lognormals). The future will show whether this
discovery is just an iceberg’s tip, leading to many more
discoveries related to the golden ratio’s already quite rich
literature.

(8) However, b-lognormals cannot be used to describe the
lifetime of a living being only. They may be used to
describe the lifetime of societies also. There is a profound
theorem behind all this, stating that (in easy terms) ‘just as
the sum of two independent Gaussian distributions is one
more Gaussian, similarly the product of two independent
lognormal distributions is one more lognormal’. We thus
could use b-lognormals to study the historic course of
human civilizations on Earth (i.e. the ‘f sub i’ factor in the
Drake equation).

(9) The history of Ancient Greece, Ancient Rome,
Renaissance Italy, and then Portugal, Spain, France,
Britain and the USA Empires were then cast into the
language of b-lognormals. This was possible since the
author discovered two equations (‘History Formulae’)
that allow the computation of the b-lognormal’s μ and σ
given the birth time b, the death time d and the
intermediate value of ‘senility s’ (incipient decline),
where the (infinite) b-lognormal hinges with the straight
line going to death, thus making the infinite b-lognormal
a finite one, as all lives are. Also, the b-lognormal of the
Aztec civilization was computed as an essay in math-
ematical history.

(10) However, the most important result achieved by
this author is undoubtedly his study of Entropy as
‘Civilization Amount’. In fact, each b-lognormal has a
precise entropy (or ‘uncertainty’) value in the sense of
Shannon’s information theory and so, for instance, it is
possible to assign entropy values to all historic civiliza-
tions previously represented by virtue of b-lognormals:
Aztecs, Greece, Rome, Renaissance Italy, Portugal,
Spain, France, Britain and the USA. This explains by
entropy values, rather than by just words, ‘how much’ a
civilization was more or less ‘organized’ (i.e. ‘advanced’)
than another. For instance, the entropy difference
between Aztecs and Spaniards, when they clashed in
1519-20-21, turned out to equal about 3.85 bits per
individual, while the entropy difference between the first
living being of 3.5 billion years ago (RNA?) and today’s
humans turned out to equal 27.57 bits for each living
being, thus providing a direct numeric measure of differ-
ent evolving species or civilizations. This author plans to
investigate these new results more in depth in forthcoming
papers.

In conclusion, this author thinks he could make true progress
by casting Evolution, Human History and SETI into his
unified statistical framework made up of b-lognormals and
GBMs. Quite simply, this was possible since he avoided sterile
philosophical debates like ‘What is Life?’ and replaced them by
the theme ‘WHEN did Life occur?’.
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