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Gelfand–Kirillov dimension of differential difference algebras

Yang Zhang and Xiangui Zhao

Abstract

Differential difference algebras, introduced by Mansfield and Szanto, arose naturally from
differential difference equations. In this paper, we investigate the Gelfand–Kirillov dimension
of differential difference algebras. We give a lower bound of the Gelfand–Kirillov dimension of a
differential difference algebra and a sufficient condition under which the lower bound is reached;
we also find an upper bound of this Gelfand–Kirillov dimension under some specific conditions
and construct an example to show that this upper bound cannot be sharpened any further.

1. Introduction

Differential difference algebras (Definition 2.1) arose naturally from differential difference
equations [2, 10]. The class of differential difference algebras contains several well-known
classes of noncommutative algebras, for example, commutative polynomial algebras, quantum
planes, and skew polynomial algebras of derivation (or automorphism) type. Roughly speaking,
a differential difference algebra is a noncommutative polynomial ring (over an algebra) with
two sets D and S of indeterminates, where D originally stands for differential operators and S
originally stands for shift operators (the difference operators can be derived from S). Operators
in D (S, respectively) commute with each other, but not with those in S (D, respectively).
The exact definition is given in § 2.

Let k be a field and A be a unital associative k-algebra. The Gelfand–Kirillov dimension of
A is defined as

GKdim(A) = sup
V

lim
n→∞

logn dimk(V n)

where the supremum is taken over all finite-dimensional subspaces V of A. The Gelfand–
Kirillov dimension is a very useful and powerful tool for investigating noncommutative algebras.
Basic properties of Gelfand–Kirillov dimension can be found in [7].

There have been a number of results concerning Gelfand–Kirillov dimensions of algebras
with derivations and/or automorphisms, for example, the Gelfand–Kirillov dimension of Ore
extensions of derivation type [9], of Ore extensions of automorphism type [3], of Poincaré–
Birkhoff–Witt (PBW) extensions [11], and of skew polynomial extensions [13].

Assume that R is a unital associative k-algebra. Let σ be an automorphism of R, δ be a
σ-derivation of R and A = R[x;σ, δ] be an Ore extension over R. It was shown in [3] that

GKdim(A) > GKdim(R) + 1; (1)

the inequality becomes an equality provided that the following condition holds:
(∗) each finite-dimensional subspace U of R is contained in a finite-dimensional subspace V

such that σ(V ) ⊆ V and δ(V ) ⊆ V p for some p > 1.
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In this paper we investigate the Gelfand–Kirillov dimension of differential difference algebras.
We show that inequality (1) of the Gelfand–Kirillov dimension of an Ore extension can be
extended to differential difference algebras, that is, we get a lower bound of the Gelfand–
Kirillov dimensions of differential difference algebras. However, owing to the noncommutativity
of indeterminates of differential difference algebras, even under conditions similar to (∗), the
equality does not hold for differential difference algebras in general. We find an upper bound
for the Gelfand–Kirillov dimension of a differential difference algebra satisfying (an analogue
of) condition (∗), and give a sufficient condition under which the lower bound is reached. We
also construct an example to show that the upper bound we obtain cannot be sharpened any
further.

This paper is organized as follows. Definition and examples of differential difference
algebras are given in § 2. The Gelfand–Kirillov dimension of differential difference algebras
is investigated in § 3.

2. Preliminaries

Throughout this paper, we assume that k is a field and all algebras are unital associative k-
algebras. Denote the set of k-algebra automorphisms of algebra A by Aut(A). If σ ∈ Aut(A),
then a mapping δ on A is called a σ-derivation provided that, for any a, b ∈ A and c ∈ k,
δ(ca+ b) = cδ(a) + δ(b) and δ(ab) = σ(a)δ(b) + δ(a)b. In particular, if σ = id, then δ is called
a derivation on A.

First we recall the definition of differential difference algebras, which was introduced by
Mansfield and Szanto [10] with some discussions of Gröbner bases.

Definition 2.1 (cf. [10]). An algebra A is called a differential difference algebra of type
(m,n), m,n > 1, over a subalgebra R ⊆ A if there exist elements S1, . . . , Sm, D1, . . . , Dn in A
such that:

(i) the set {Sα1
1 . . . Sαm

m Dβ1

1 . . . Dβn
n : αi, βj ∈ N, 1 6 i 6 m, 1 6 j 6 n} forms a basis for A

as a free left R-module;
(ii) Dir = rDi + δi(r) for any 1 6 i 6 n and r ∈ R, where δi is a derivation on R;

(iii) Sir = σi(r)Si for any 1 6 i 6 m and r ∈ R, where σi is a k-algebra automorphism on the
subalgebra R[D1, . . . , Dn] ⊆ A such that σi|R ∈ Aut(R) and σi(Dj) =

∑n
l=1 aijlDl, aijl ∈ R;

(iv) SiSj = SjSi, 1 6 i, j 6 m; Di′Dj′ = Dj′Di′ , 1 6 i′, j′ 6 n;
(v) DiSj = Sjσj(Di), 1 6 i 6 n, 1 6 j 6 m;

(vi) for any 1 6 i, j 6 n and 1 6 i′, j′ 6 m, δi ◦ δj = δj ◦ δi, σi′ ◦ σj′ = σj′ ◦ σi′ .

Remark 2.2. In the above definition, both subalgebras R[D1, . . . , Dn] and R[S1, . . . , Sm]
of A are iterated Ore extensions over R. But, in general A is not an iterated Ore extension
over R.

The class of differential difference algebras contains several other known classes of algebras,
for example, commutative polynomial algebras, quantum planes, and skew polynomial
algebras of derivation (or automorphism) type.

Example 2.3. Let 0 6= q ∈ k and Iq be the two-sided ideal of the free associative algebra
k〈x, y〉 generated by the element yx− qxy. Then the quotient algebra

kq[x, y] = k〈x, y〉/Iq
is called a quantum plane [6, Chapter IV]. It is easy to see that kq[x, y] is a differential difference
algebra of type (1, 1) over k.

The following example distinguishes differential difference algebras from algebras of solvable
type [5], PBW extensions [1], and G-algebras [8].
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Example 2.4. Let A be the k-algebra generated by {D1, D2, S1} with defining relations
R = {D2D1 = D1D2, D1S1 = S1D2, D2S1 = S1D1}. Then it is easy to see that A is a
differential difference algebra of type (1, 2) over k. However, by the defining relations, A is not
an algebra of solvable type [5], PBW extensions [1], or G-algebras [8].

Let D = {D1, . . . , Dn} and S = {S1, . . . , Sm}. If A is a differential difference algebra over
R defined as Definition 2.1, we denote A = R[S,D;σ, δ]. For α = (α1, . . . , αm) ∈ Nm and
r ∈ R, we simply write σα(r) = σα1

1 . . . σαm
m (r), Dα = Dα1

1 . . . Dαm
m and |α| = α1 + . . . + αm.

In particular, D0
i = 1, the identity of R. Similarly, we use notation δα(r), Sβ (β ∈ Nn), and

so on. Then every element in A can be written uniquely in the form:
∑
α,β rα,βSαDβ , where

rα,β ∈ R and only finitely many rα,β are nonzero.
The following example is taken from [10] with some modifications. This example shows

where the differential difference algebras come from.

Example 2.5. Let M,n, p ∈ N and p > 1. Consider the following system, which arises from
the calculation of symmetries of discrete systems (cf. [4]),

un+M+1 = ω(n, un, un+1, . . . , un+M );

DjF (n, un, un+1, . . . , un+M ) = 0, 1 6 j 6 p,

where F is the unknown function and w is a given function in the field Q(n, un, . . . , un+M ) of
rational functions over the rational numbers Q in indeterminates n, un, un+1, . . . , un+M , such
that ∂ω/∂un 6= 0, and Dj : T → T is a linear operator of the form

Dj =
∑

α=(α0,...,αM )∈NM , β∈N

cα,β ◦ sβ ◦
∂α0+...+αM

∂uα0
n . . . ∂u

α
M

n+M

,

where T = Q(n, un+t : t ∈ Z), cα,β ∈ Q(n, un+t : t ∈ Z) are multiplication operators and
only finitely many cα,β are nonzero, and s is the shift operator defined by s(n) = n+ 1 and
s(un) = un+1.

A natural approach to deal with this system is to consider those operators Dj and
s as elements of the noncommutative algebra A over R generated by operator variables
{S,Dn, . . . , Dn+M}, where S denotes the shift operator s and Dn+t denotes the differential
operator ∂/∂un+t for 0 6 t 6M , subject to the following commutation rules:

Dn+t ◦ S = S ◦Dn+t−1 +
∂ω

∂un+t
◦ S ◦Dn+M , 1 6 t 6M ;

Dn ◦ S =
∂ω

∂un
◦ S ◦Dn+M ;

Dn+t ◦Dn+t′ = Dn+t′ ◦Dn+t, 0 6 t, t′ 6M ;

S ◦ r = s(r) ◦ S, r ∈ R;

Dn+t ◦ r = r ◦Dn+t +
∂r

∂un+t
, r ∈ R, 0 6 t 6M.

Then A = Q(n, un+t : t ∈ Z)[S,D;σ, δ] is a differential difference algebra of type (1,M + 1)
over Q(n, un+t : t ∈ Z), where δi = ∂/∂ui for n 6 i 6 n+M and σ|R = s, σ(Dn) =
s−1(∂ω/∂un)Dn+M , σ(Dn+t) = Dn+t−1 + s−1(∂ω/∂un+t)Dn+M for 1 6 t 6M .

Note that the difference operator ∆, defined by ∆(ui) = ui+1 − ui for i ∈ Z, can be derived
from the shift operator: ∆ = S− id. So the differential difference algebra in the above example
actually involves both differential and difference operators.
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3. Gelfand–Kirillov dimension of differential difference algebras

In this section, we consider the Gelfand–Kirillov dimension of differential difference algebras.
We first fix some notation. Let GKdim(A) denote the Gelfand–Kirillov dimension

of an algebra A, dim(V ) denote the dimension of a k-vector space V , and card(T )
denote the cardinality of a set T . Recall that, for r, s ∈ N, the binomial coefficient(
r
s

)
= r(r − 1) . . . (r − s+ 1)/s(s− 1) . . . 1 if 0 6 s 6 r; and

(
r
s

)
= 0 if s < 0 or s > r.

The Gelfand–Kirillov dimension of an Ore extension has been discussed in [3].

Proposition 3.1 ([3, Corollary 2.4], cf. [7, Proposition 3.5]). Let R be a k-algebra and
A = R[D;σ, δ] be an Ore extension. Suppose that, for each finite-dimensional subspace U
of R, there exists a finite-dimensional subspace V of R such that U ⊆ V , σ(V ) ⊆ V and
δ(V ) ⊆ V p for some p > 1. Then GKdim(A) = GKdim(R) + 1.

We want to consider the Gelfand–Kirillov dimension of differential difference algebras
satisfying ‘similar’ conditions as in Proposition 3.1. Our goal is to find a lower bound and
an upper bound of the Gelfand–Kirillov dimension of such a differential difference algebra.

The following proposition gives a general lower bound of the Gelfand–Kirillov dimension of
a differential difference algebra.

Proposition 3.2. Let R be a k-algebra and A = R[S,D;σ, δ] be a differential difference
algebra of type (m,n). Then GKdim(A) > GKdim(R) +m+ n.

Proof. Suppose that V is a finite-dimensional generating subspace of R and 1 ∈ V . Then

W = V +

n∑
i=1

kDi +

m∑
j=1

kSj

is a finite-dimensional generating subspace of A. For any r ∈ N,

W 3r =

(
V +

n∑
i=1

kDi +

m∑
j=1

kSj

)3r

⊇
∑

α∈Nm,β∈Nn

06|α|, |β|6r

V rSαDβ .

For any k-basis U of V r, the set

{uSαDβ : u ∈ U, 0 6 |α|, |β| 6 r, α ∈ Nm, β ∈ Nn}

is a k-basis of
∑

06|α|,|β|6r V
rSαDβ . Hence, we have that

dim(W 3r) > dim

( ∑
06|α|,|β|6r

V rSαDβ
)

= dim(V r) · card({α : 0 6 α1 + . . .+ αm 6 r})
· card({β : 0 6 β1 + . . .+ βn 6 r})

= dim(V r) ·
(
r +m− 1

m

)
·
(
r + n− 1

n

)
,

where
(
r+m−1
m

)
and

(
r+n−1
n

)
are polynomials in r of degree m and n respectively. Hence,

GKdim(A) > lim
r→∞

logr dim(W r) = lim
r→∞

logr dim(W 3r)

> lim
r→∞

logr

(
dim(V r) ·

(
r +m− 1

m

)
·
(
r + n− 1

n

))
= GKdim(R) +m+ n. 2
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In the special case R = k, the equality in the above proposition holds, i.e. we have
the following proposition, which indicates that the lower bound of GKdim(A) obtained in
Proposition 3.2 cannot be sharpened any further.

Proposition 3.3. Let A = k[S,D;σ, δ] be a differential difference algebra of type (m,n)
over k. Then GKdim(A) = m+ n.

Proof. Let V = k+
∑n
i=1 kDi+

∑m
j=1 kSj . Then V is a finite-dimensional generating subspace

of A. For any r ∈ N,

V r =

(
k +

n∑
i=1

kDi +

m∑
j=1

kSj

)r
⊆

∑
06|α|,|β|6r

kSαDβ ,

where the last inclusion holds since

DβSα ∈
∑

β′∈Nn,|β′|=|β|

kSαDβ
′
, α ∈ Nm, β ∈ Nn.

So, dim(V r) 6
(
r+m−1
m

)
·
(
r+n−1
n

)
. Hence, GKdim(A) 6 m + n and thus by Proposition 3.2

GKdim(A) = m+ n.

Now let us turn to upper bounds for GKdim(A). First we consider the case when R is finitely
generated.

Lemma 3.4. Let R be a k-algebra with a finite-dimensional generating subspace V , and let
A = R[S,D;σ, δ] be a differential difference algebra of type (m,n). Suppose that σi(V ) ⊆ V
for 1 6 i 6 m. Then GKdim(A) 6 2 GKdim(R) +m+ n.

Furthermore, if, for all 1 6 i 6 m and 1 6 j 6 n, σi(Dj) is contained in the vector space
over k generated by {D1, . . . , Dn}, then GKdim(A) = GKdim(R) +m+ n.

Proof. Since V is a generating subspace, there exists p > 1 such that

aijl ∈ V p, δi(V ) ⊆ V p, 1 6 i, l 6 n, 1 6 j 6 m,

where the aijl are the coefficients that appear in Definition 2.1. Then

δi(V
t) ⊆ V p+t, σj(V

t) ⊆ V t, 1 6 i 6 n, 1 6 j 6 m, t > 1.

So, eventually replacing V by V p if necessary, we may assume that

1 ∈ V, δi(V ) ⊆ V 2, σj(V ) ⊆ V, 1 6 i 6 n, 1 6 j 6 m.

Let X =
∑n
i=1 kDi, Y =

∑m
j=1 kSj and W = V + X + Y . Then W is a generating subspace

of A.
In order to finish the proof of the first statement of the this lemma, we have to prove the

following three lemmas first.

Lemma 3.5. For any integer s > 1,
(i) XY ⊆ V Y X, XV ⊆ V X + V 2, Y V = V Y ;

(ii) XsV ⊆
∑s
i=0 V

i+1Xs−i;

(iii) XsY ⊆
∑s−1
i=0 V

s+iY Xs−i;
(iv) if σi(Dj) ∈ X for all 1 6 i 6 m and 1 6 j 6 n, then XY = Y X.
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Proof. (i) It follows easily by definition. (ii) (By induction on s.) If s = 1, then we have
XV ⊆ V X + V 2 by the commutation rules of differential difference algebras. Suppose that
XrV ⊆

∑r
i=0 V

i+1Xr−i for 1 6 r 6 s. Then

Xs+1V ⊆ Xs(V X + V 2) ⊆
s∑
i=0

V i+1Xs−i+1 +

s∑
i=0

V i+1Xs−iV

⊆
s∑
i=0

V i+1Xs−i+1 +

s∑
i=0

V i+1
s−i∑
j=0

V j+1Xs−i−j

=

s∑
i=0

V i+1Xs−i+1 +

s∑
i=0

s−i∑
j=0

V i+j+2Xs−i−j

=

s∑
i=0

V i+1Xs−i+1 +

s∑
i=0

s+1∑
l=i+1

V l+1Xs−l+1 (l := i+ j + 1)

=

s∑
i=0

V i+1Xs−i+1 +

s+1∑
l=1

V l+1Xs−l+1

=

s+1∑
i=0

V i+1Xs−i+1.

Thus, part (ii) holds for all s > 1.
(iii) (By induction on s.) If s = 1, then we have V 1Y X1 ⊇ XY by (i), and thus part (iii)

holds. Suppose that XrY ⊆
∑r−1
i=0 V

r+iY Xr−i for all 1 6 r 6 s. Then,

Xs+1Y ⊆ Xs(V Y X) ⊆
s∑
i=0

V i+1Xs−iY X (by part (ii))

=

s−1∑
i=0

V i+1Xs−iY X + V s+1Y X

⊆
s−1∑
i=0

V i+1
s−i−1∑
j=0

V s−i+jY Xs−i−j+1 + V s+1Y X

=

s−1∑
i=0

s−i−1∑
j=0

V s+j+1Y Xs−i−j+1 + V s+1Y X

=

s−1∑
i=0

s−1∑
l=i

V s+l−i+1Y Xs−l+1 + V s+1Y X (l := i+ j)

⊆
s−1∑
i=0

s−1∑
l=0

V s+l+1Y Xs−l+1 + V s+1Y X

=

s−1∑
l=0

V s+l+1Y Xs−l+1 + V s+1Y X ⊆
s∑
l=0

V s+l+1Y Xs−l+1.

Hence, part (iii) holds.
(iv) This is straightforward.

Lemma 3.6. For all r > 1, W r ⊆
∑r
i=0

∑r−i
j=0 V

2r2Y iXj .

https://doi.org/10.1112/S1461157014000102 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000102


gelfand–kirillov dimension 491

Proof. (By induction on r.) If r = 1, then the right-hand side of the inclusion is V 2 +V 2X+
V 2Y ⊇W . Suppose the statement is true for r > 1. Then, by induction hypothesis,

W r+1 ⊆
r∑
i=0

r−i∑
j=0

V 2r2Y iXj(V +X + Y ) (induction hypothesis)

=

r∑
i=0

r−i∑
j=0

V 2r2Y iXjV +

r∑
i=0

r−i∑
j=0

V 2r2Y iXj+1 +

r∑
i=0

r−i∑
j=0

V 2r2Y iXjY

⊆
r∑
i=0

r−i∑
j=0

V 2r2Y i
j∑
l=0

V l+1Xj−l (by Lemma 3.5(ii))

+

r∑
i=0

r−i∑
j=0

V 2r2Y iXj+1

+

r∑
i=0

r−i∑
j=0

V 2r2Y i
j−1∑
l=0

V j+lY Xj−l (by Lemma 3.5(iii))

=

r∑
i=0

r−i∑
j=0

j∑
p=0

V 2r2+j−p+1Y iXp (p := j − l)

+

r∑
i=0

r−i+1∑
j=1

V 2r2Y iXj (shift index j)

+

r+1∑
i=1

r−i+1∑
j=0

j∑
p=1

V 2r2+2j−pY iXp (shift i and p := j − l)

⊆
r∑
i=0

r−i∑
j=0

r−i∑
p=0

V 2r2+r−p+1Y iXp +

r∑
i=0

r−i+1∑
j=1

V 2r2Y iXj

+

r+1∑
i=1

r−i+1∑
j=0

r−i+1∑
p=1

V 2r2+2r−pY iXp

⊆
r∑
i=0

r−i∑
p=0

V 2r2+r−p+1Y iXp +

r∑
i=0

r−i+1∑
j=1

V 2r2Y iXj +

r+1∑
i=1

r−i+1∑
p=1

V 2r2+2r−pY iXp

⊆
r+1∑
i=0

r−i+1∑
j=0

V 2(r+1)2Y iXj .

Therefore, W r ⊆
∑r
i=0

∑r−i
j=0 V

2r2Y iXj for any r > 1.

Lemma 3.7. Let f : N→ R be an increasing and positive valued function, and p > 1. Then

lim
n→∞

logn f(pn2) 6 2 lim
n→∞

logn f(n).

Proof. Let d = limn→∞ logn f(n). By [7, Lemma 2.1],

d = inf{ρ ∈ R : f(n) 6 nρ for almost all n ∈ N}.

Hence, for any ε > 0, f(n) < nd+ε for almost all n. So

f(pn2) < (pn2)d+ε = pd+εn2d+2ε < n2d+3ε for almost all n.

Therefore, limn→∞ logn f(pn2) 6 2d = 2limn→∞ logn f(n).
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Now let us return to the proof of Lemma 3.4. Let f(r) = dim(V r) for r ∈ N. Then

GKdim(A) = lim
r→∞

logr dim(W r) 6 lim
r→∞

logr dim

( r∑
i=0

r−i∑
j=0

V 2r2Y iXj

)

= lim
r→∞

logr

(
dim(V 2r2)

r∑
i=0

r−i∑
j=0

dim(Y i) dim(Xj)

)

= lim
r→∞

logr

(
f(2r2)

r∑
i=0

r−i∑
j=0

(
i+m− 1

m− 1

)(
j + n− 1

n− 1

))

6 lim
r→∞

logr f(2r2) + lim
r→∞

logr

r∑
i=0

(
i+m− 1

m− 1

)
+ lim
r→∞

logr

r∑
j=0

(
j + n− 1

n− 1

)
6 2 GKdim(R) +m+ n

where the last inequality holds because of Lemma 3.7 and the fact that if p(i) is a polynomial
in i of degree s, then

∑r
i=0 p(i) is a polynomial in r of degree s+ 1.

For the second statement of Lemma 3.4, we need the following result.

Lemma 3.8. Under the assumptions of the second statement of Lemma 3.4, we have that
W r ⊆

∑r
i=0

∑r−i
j=0 V

2r−i−jY iXj for all r > 1.

Proof. Similarly to Lemma 3.6, this lemma can be proved by induction on r. It is easy to
check that the inclusion is true for r = 1. Suppose W r ⊆

∑r
i=0

∑r−i
j=0 V

2r−i−jY iXj for r > 1.
Then, by the induction hypothesis and Lemma 3.5(ii) and (iv), we have that

W r+1 ⊆
r∑
i=0

r−i∑
j=0

(
V 2r−i−jY iXjV + V 2r−i−jY iXj+1 + V 2r−i−jY iXjY

)
⊆

r∑
i=0

r−i∑
j=0

V 2r−i−jY i
( j∑
l=0

V l+1Xj−l
)

(by Lemma 3.5(ii))

+

r∑
i=0

r−i∑
j=0

V 2r−i−jY iXj+1 +

r∑
i=0

r−i∑
j=0

V 2r−i−jY i+1Xj

=

r∑
i=0

r−i∑
j=0

j∑
t=0

V 2r−i−t+1Y iXt (t := j − l)

+

r∑
i=0

r+1−i∑
j=1

V 2r−i−j+1Y iXj (shift index j )

+

r+1∑
i=1

r−i∑
j=0

V 2r−i−j+1Y iXj (shift index i )

⊆
r+1∑
i=0

r+1−i∑
j=0

V 2(r+1)−i−jY iXj .

That proves our lemma.
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By the above lemma, W r ⊆
∑r
i=0

∑r−i
j=0 V

2r−i−jY iXj ⊆
∑r
i=0

∑r−i
j=0 V

2rY iXj . Hence, by
a similar argument as we used in the proof of the first statement of Lemma 3.4, we have that
GKdim(A) 6 GKdim(R)+m+n. Thus, by Proposition 3.2, GKdim(A) = GKdim(R)+m+n.

Now we are in a position to state our main theorem.

Theorem 3.9. Let R be a k-algebra and A = R[S,D;σ, δ] be a differential difference algebra
of type (m,n). Suppose that for any finite-dimensional subspace U of R there exist a finite-
dimensional subspace V of R and an integer p > 1 such that

U ⊆ V, σi(V ) ⊆ V, δj(V ) ⊆ V p, 1 6 i 6 m, 1 6 j 6 n.

Then
GKdim(R) +m+ n 6 GKdim(A) 6 2 GKdim(R) +m+ n.

Furthermore, if, for all 1 6 i 6 m and 1 6 j 6 n, σi(Dj) is contained in the vector space over
k generated by {D1, . . . , Dn}, then

GKdim(A) = GKdim(R) +m+ n.

Proof. Let W be a finite-dimensional subspace of A with a k-basis w1, . . . , wq, q ∈ N. Note
that each wi, 1 6 i 6 q, is a polynomial in D1, . . . , Dn, S1, . . . , Sm with coefficients in R.
Let U be the subspace of R spanned by all of the coefficients (in R) of w1, . . . , wq and all
aijl (defined in Definition 2.1), 1 6 i, l 6 n, 1 6 j 6 m. Then U is finite-dimensional and
hence there exist a finite-dimensional subspace V of R and an integer p > 1 such that U ⊆
V, σi(V ) ⊆ V, δj(V ) ⊆ V p for 1 6 i 6 m, 1 6 j 6 n. Let B be the subalgebra of R generated
by V . Then σi(B) ⊆ B, σi(Dl) ∈ B[D; δ] and δj(B) ⊆ B for 1 6 i 6 m, 1 6 j, l 6 n. That is,
A′ = B[S,D;σ, δ] is a differential difference algebra satisfying the conditions of Lemma 3.4.
Note that W ⊆ A′. So, by Lemma 3.4, we have

lim
r→∞

logr dim(W r) 6 GKdim(A′) 6 2 GKdim(B) +m+ n 6 2 GKdim(R) +m+ n.

Thus GKdim(A) 6 2 GKdim(R) + m + n since W is arbitrary. Therefore, by Lemma 3.2,
GKdim(R) + m + n 6 GKdim(A) 6 2 GKdim(R) + m + n. That completes our proof of the
first statement.

The second statement follows similarly by using the second part of Lemma 3.4.

Immediately from Theorem 3.9, we have the following corollaries.

Corollary 3.10. The quantum plane kq[x, y] has Gelfand–Kirillov dimension two.

Recall that an algebra A is called locally finite-dimensional if every finitely generated
subalgebra of A is finite-dimensional.

Corollary 3.11. Let R be a k-algebra and A = R[S,D;σ, δ] be a differential difference
algebra of type (m,n) satisfying the conditions of the first statement of Theorem 3.9.

(i) If R is locally finite-dimensional, then GKdim(A) = m+ n.
(ii) If GKdim(R) <∞, then GKdim(A) <∞.

Proof. (i) It follows from the fact that GKdim(R) = 0 if and only if R is locally finite-
dimensional.

(ii) This is clear.
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Note that if we set R = k in Theorem 3.9, then the conditions of the theorem are satisfied.
Thus, Theorem 3.9 implies Proposition 3.3.

The following example shows that the upper bound of GKdim(A) stated in Theorem 3.9 is
the ‘best’ one under the given conditions.

Example 3.12. Let A be the k-algebra generated by {z, z−1, D, S} with defining relations

R = {zz−1 = 1, z−1z = 1, Dz = zD, Sz = zS,

Dz−1 = z−1D,Sz−1 = z−1S,DS = zSD}.

Let R = k[z, z−1] be the algebra of Laurent polynomials over k, and let σ be the automorphism
of the algebra R[D] ⊆ A defined by

σ

( l∑
i=0

ciD
i

)
=

l∑
i=0

ci(zD)i, l > 0, ci ∈ R for 0 6 i 6 l.

Then A = R[S,D;σ, 0] is a differential difference algebra of type (1, 1) and

GKdim(A) = 2 GKdim(R) + 1 + 1 = 4.

Proof. It is easy to see that A can be thought of as an iterated Ore extension over R:
A = R[S; id, 0][D;σ′, 0] where σ′ is the automorphism over R[S] defined by

σ′
( l∑
i=0

ciS
i

)
=

l∑
i=0

ci(zS)i, l > 0, ci ∈ R for 0 6 i 6 l.

Hence {SiDj : i, j ∈ N} forms an R-basis of A. Thus A is a differential difference algebra.
Note that the restriction of σ on R is the identity automorphism of R. It is clear that A

satisfies all conditions of Theorem 3.9. So, by Theorem 3.9, GKdim(A) 6 2 GKdim(R) + 2.
Since GKdim(R) = 1 (see, for example, [12, Corollary 8.2.15]), GKdim(A) 6 4.

Note that DS = Sσ(D) = SzD = zSD. Then one can prove that DjS = zjSDj by induction
on j, and then that DjSi = zijSiDj by induction on i. Now we claim that

B := {zlSiDj : 0 6 i+ j 6 r, 0 6 l 6 ij} ⊆W r, r > 1,

where W = k+kz+kz−1+kD+kS is a generating subspace of A. Suppose r > 1, 0 6 i+j 6 r,
0 6 l 6 ij and write l = qj + p with 0 6 q 6 i, 0 6 p < j. If q = i, then p = 0, l = ij and
zlSiDj = zijSiDj = DjSi ∈W r. If q < i, then

Si−q−1DpSDj−pSq = zpSi−q−1SDpDj−pSq

= zpSi−qDjSq = zp+qjSi−qSqDj = zlSiDj .

Since (i− q − 1) + p+ 1 + (j − p) + q = i+ j 6 r, zlSiDj = Si−q−1DpSDj−pSq ∈W r. Thus,
our claim holds.

It is clear that B is k-linearly independent. Then by our claim,

dim(W r) > card(B) =

r∑
i=0

r∑
j=0

(ij + 1) =
1

4
r4 +

1

2
r3 +

5

4
r2 + 2r + 1.

Thus, GKdim(A) > limr→∞ logr dim(W r) > 4. Therefore, GKdim(A) = 4.
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