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SUBMANIFOLDS SATISFYING SOME CURVATURE
CONDITIONS IMPOSED ON THE WEYL TENSOR

ClHAN OZGUR

In this paper we define Weyl semiparallel (C • h = 0) and Weyl 2-semiparallel (C • V/i
= 0) submanifolds. We consider n-dimensional normally flat submanifolds satisfying
these curvature conditions in (n + d)-dimensional Euclidean space En+d. We also
consider normally flat submanifolds in (n + d)-dimensional Euclidean space En+d

satisfying the condition C • h = LQ(g, h) and C • V/i = LQ[g, V/i).

1. INTRODUCTION

Let (M, g) be an n-dimensional submanifold in (n + d)-dimensional Euclidean space
En+d. Let £ be a local normal section on M. The formulas of Gauss and Weingarten
are given by VXY = VXY + h(X,Y) and Vx£ = -A(X + V£f for vector fields
X, Y, Z which are tangent to M. Here V is the Euclidean connection on En+d, V is
the Levi-Civita connection on M, and V 1 is the normal connection of M in En+d.
The second fundamental form h and A^ are related by (h(X, Y),£) = g(A^X,Y). For
the second fundamental form h the covariant derivative of h is defined by (yxh){Y,Z)
= Vx (h(Y, Z)) - h(VxY, Z) - h(Y, VXZ), for any vector fields X, Y, Z tangent to M.
Then V/i is a normal bundle valued tensor of type (0,3) and is called the third fundamental
form of M. The equation of Codazzi implies that V/i is symmetric hence

(1.1) {Vxh){Y,Z) = (VYh)(X,Z) = (Vzh)(X,Y).

V is called the van der Waerden-Bortolotti connection of M, that is, V is the connection
in TM ®TLM built with V and Vx. If V/i = 0 then M is said to have parallel
second fundamental form [2]. In the third chapter sometimes we will use (Vxh)(Y, Z)
= (Vh)(X,Y,Z).

Let X AY denote the endomorphism defined by

(1.2) (XAY)Z = g(Y,Z)X-g(X,Z)Y,
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where g is the metric tensor on M. Then the curvature operator TZ of M is given by the
equation of Gauss:

d

(1.3)
i=\

and the curvature tensor R of M is defined by R(X, Y, Z, W) = g{H{X, Y)Z, W), where
At := A^ and {fi, f2, • • •, Cd} is a local orthonormal basis for TLM and AT, F, Z, W are
vector fields tangent to M. The equation of Ricci becomes

(1.4) R±(X,Y,t,T])=g({A(,A,}X,Y),

for the vector fields £ and r\ normal to M.

A submanifold M is said to have flat normal connection (or trivial normal connec-
tion) if i? x = 0. If M has flat normal connection then shortly we call it normally flat.
The relation (1.4) shows that the triviality of the normal connection of M into Euclidean
space E n + d (and more generally for submanifolds in a locally conformally flat space) is
equivalent to the fact that all second fundamental tensors mutually commute and to the
simultaneous diagonasability of all second fundamental tensors ([2]).

The Ricci tensor S, the Ricci operator S and the scalar curvature K of M are defined

by

(1.5) S(X,Y) =
k=l

S(X, Y) = g(SX, Y) and K = tr(S), respectively ([2]).

The Weyl conformal curvature operator C is defined by

(1.6) C(X, Y) = Tl(X, Y) 1— (XhSY + SXAY ^-X A
n — 2 V n — 1

and the Weyl conformal curvature tensor C is defined by C(X, Y, Z,W) = g (C{X, Y)Z, W).

If C — 0, n ^ 4, then M is called conformally flat.

For a (0, fc)-tensor field T (k ^ 1) and the metric tensor g on M we can define the
tensor Q{g, T) by

(1.7)

T(XuX2,...,(XAY)Xk),

for all XUX2,...,Xk, X,Y eTM (see [6]).

2. W E Y L SEMIPARALLEL SUBMANIFOLDS

Let M be an n-dimensional submanifold in (n+rf)-dimensional Euclidean space E"+d.
Denote the curvature tensor of V by R. In [4] and [5], Deprez defined and investigated
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semiparallel surfaces (that is, surfaces satisfying the condition R • h = 0) and semiparallel

hypersurfaces in Euclidean space respectively.

Similar to Deprez's definition we can give the following:

DEFINITION 2 .1 . Let M be a normally flat submanifold in an (n + d)-dimensional
Riemannian manifold M. We define

(2.1) (C{X, Y) • h) (U, V) = -h{C(X, Y)U, V) - h(U, C(X, Y)V)

for X, Y,U,V e TM. If for every point p € M and for every vector fields X.Y € TM,
the tensor C(X, Y) • h = 0 then M is called Weyl-semiparallel.

THEOREM 2 . 1 . ([5]) Let M be a hypersurface in E n + 1 , (n ^ 4). Then the follow-
ing assertions are equivalent;

(i) C • h — 0 (that is; M is Weyl semiparallel),

(ii) M is conformally Bat.

It is well known that all hypersurfaces are always normally flat. Our problem is the
following:

Is it possible to find the natural generalisation of Theorem 2.1 to all submanifolds
with flat normal connections in (n + d)-dimensional Euclidean space E"+d?

Firstly we have;

THEOREM 2 . 2 . Let M be an n-dimensional, (n Jj 4), normally Hat submanifold
in (n + d) -dimensional Euclidean space E n + d . Then locally the following assertions are
equivalent;

(i) C • h = 0 (that is; M is Weyl semiparallel),

(ii) M is conformally Eat.

P R O O F : Assume that M is an n-dimensional, (n ^ 4), normally flat submanifold in
(n + d)-dimensional Euclidean space E n + d . Let { f i , . . . ,£d} be an orthonormal basis of
the normal space T^M at a point p € M. On the other hand, by a result of Cartan, we
know that the flatness of the normal connection of M is equivalent to the simultaneous
diagonazability of all shape operator matrices A& for all & (1 ^ i < d) of the normal
space T^-M. So we can choose an orthonormal basis {e i , . . . , e n } of the tangent space
TpM at p € M of eigenvectors of A^ such that /i(e{, e,) = 0 for all i ^ j .

Using (2.1) we can write

(2.2) (Cfe.ej) • h){ei,ej) = - / ^ C f e . e ^ e i , ^ ) - /i(e,,C(ei,e:,)e:,),

for e,-, ei € TPM, 1 ^ i, j ^ n.

We denote by Kij the sectional curvature of a plane II spanned by the vectors e* and
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ej. An easy calculation shows us •S(e<, e,) = 0 for all i ̂  j and

(2.3) C{ei, ej)ei = [-/To- + — - (sfaa) + S(e,-, e,-) - j ^

(2.4) Cfe.e^e,- =

at p € M. So substituting (2.3) and (2.4) into (2.2) we obtain

(2.5) (Cfo, e,-) • fc)fe, e,-)= [M*. ei)-ft(ei, e,)] [-tfy + - 1 ^ ( 5 « + Sjj-^j

where S^ = 5(ei,ej) and S# = 5(e,, e,).

Since M is Weyl semiparallel (C(ej, ej) • h)(ei,ej) = 0, which gives

(2.6) [Me,, ei)-h(ej, ej)] [-#« + -L- (sa + SiS - ^ - ) ] = 0

at p G M. If h(ei,ei) — h(ej,ej) then M is totally umbilical at p, so by ([3] and[8])

C = 0 at p. If - t f y + (Su + 5,j - («/(n - l ) ) ) / ( n - 2) = 0 then by (2.3) and (2.4) we

have C(ei, ej)ei = C(ei, ej)ej = 0. Moreover it can be easily seen that Ufa, ej)ek = 0 and

C(ei,ej)ek = 0 for different i,j,k. Therefore the vanishing of C(et,ej)ei and C(ej,eJ)eJ

give us C = 0 at p, which proves the theorem. D

Now we give an extension of Theorem 2.2.

THEOREM 2 . 3 . Let M be an n-dimensional, (n ̂  4), normally Bat submanifold
in (n + d)-dimensional Euclidean space En+i. If the condition C • h = LQ(g, h) holds on
M, where L : M ->• E is a function, then locally the relation Cfa, ej) — Lfa A ej) holds
on M for e*, Cj € TPM.

P R O O F : Let M be an n-dimensional, (n ̂  4), normally flat submanifold in (n + d)-

dimensional Euclidean space En+d. Choose the same bases as in the proof of the previous
theorem, with {&, . . . ,£<*} and {e i , . . . , en} of the normal space T^M and the tangent
space TPM respectively at a point p € M.

Using (1.7) we have

(2.7) Q(g, h)(eu ey, e>, ej) = -fifa A ej)eu ej) - h(a, (ei A e^e,).

Since e^ ej 6 TPM are orthonormal vectors, the equation (2.7) can be written as

(2.8) Q{g,h){euej\ei,ej) = h{ejtej) - h^a).

Suppose that the condition C • h — 0 is satisfied on M. Then the condition C • h

— LQ(g, h) is trivially realised at p. Now assume C • h ^ 0 and the condition C • h

= LQ{g, h) holds at p € M. Then by the use of (2.5) and (2.8)

(2.9) [Ha, &i) - h(ej, ej)] [L - Ktj + - ^ ( s f e , *) + S(ejt ej) - - ^ - ) ] = 0.

Since we suppose C • h ^ 0 at p, we obtain L-Ktj + (Sfa, et) + S(ej, e,-)-/c(n-l)J/(n - 2)
= 0 a t j j . So, by a similar discussion in the proof of the previous theorem, we obtain the
relation C{eu ej) - L(et A ej) holds at p . This completes the proof of the theorem. D
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3. W E Y L 2-SEMIPARALLEL SUBMANIFOLDS

In [1], the authors defined the notion of 2-semiparallel submanifold and they classify
normally flat surfaces in the space form Nn(c). In [7], Lumiste investigated non-normally
flat 2-semiparallel surfaces satisfying the condition R • Vh = 0.

In the present section our aim is to find the characterisation of normally flat
submanifolds in the Euclidean space E n + d satisfying the condition C • Vh = 0 and
C • Vh = LQ(g, Vh). Firstly we give the following definition:

D E F I N I T I O N 3 .1 . Let M be an n-dimensional, (n > 4), normally flat submanifold
in an (n + d)-dimensional Riemannian manifold M. We define

{C(X, Y) • Vh)(U, V, W) = -(Vh)(C(X, Y)U, V, W) - (Vh)(U,C(X, Y)V, W)

(3.1) -(Vh)(U,V,C(X,Y)W),

for X, Y, U, V, W € TM. If for all point p € M, the tensor C(X, Y) • Vh = 0 then M is
called Weyl 2-semiparallel.

THEOREM 3 . 1 . Let M be an n-dimensional, (n ^ 4), normally Bat Weyl 2-
semiparallel submanifold in (n + d)-dimensional Euclidean space En+d. Then locally
either

(i) M has parallel second fundamental form or

(ii) M is conformally Bat.

PROOF: Suppose that M is an n-dimensional, (n ^ 4), normally flat submanifold
in (n + d)-dimensional Euclidean space En + d. Choose orthonormal bases {£i , . . . , &} and
{ei , . . . , en} of the normal space T^M and the tangent space TPM respectively at a point
p € M. So using (1.6), (3.1) and Codazzi equations (1.1) we obtain

(3.2) (Cfe.e;)

(3.3) (C(euej) • Vh)(eu<*,e5) = A[-2(Vh)(eheue>) + (Vh)(eueue^)],

(3.4) (C(euej) • Vh)(ei,ejtej) = A[-(Vh)(ej,c,-,e,) + 2(Vh)(e{,eue,-)]

and

(3.5) (C{ei,ej) • VAjfo.ej.e,-) = 3>l(V/i)(e i ,e i ,e j) .

for eu ej € TPM, where A = [-ify + (Su + Sjj - K(U - l))/(n - 2)1.

By assumption, since M is Weyl 2-semiparallel, from (3.2)-(3.5), we get

(3.6)

(3.7) A[-2(Vh)(ej,ei,ej) + (V/Ote ,^) ] = 0,

(3.8) A[-(Vh)(eJ7 ejt e,-) + 2(Vh)(eu e,, ej)] = 0
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and

(3.9) A(yh)(ei,ei,eJ) = 0,

at p € M. Suppose (V/i)(ej, ej, ej) = 0, (Vh)(ej, et, e.) = 0 and A / 0. Using the Codazzi
equations (1.1), we can substitute the last equalities into (3.7) and (3.8) respectively. So
we obtain (V/i)(ei, d, et) = (V/i)(e,-, eJ; ej) = 0 which gives us V/i = 0 at p.

Now suppose V/i ^ 0 at p. Therefore from (3.6)-(3.9) we obtain

By a similar discussion in the proof of Theorem 2.2 we obtain C = 0 at p . Our theorem
is thus proved. D

Now we give an extension of Theorem 3.1.

THEOREM 3 . 2 . Let M be an n-dimensional, (n ^ 4), normally Sat submanifold in
(n+d)-dimensional Euclidean space En+d. IfM satisfies the condition C-Vh = LQ(g, V/i),
where L : M -* R is a function, then locally the relation Cfe, ej) = L(ei A ej) holds on
M foreuej G TPM.

P R O O F : Suppose that M is an n-dimensional, (n ^ 4), normally flat submanifold in
En+d. Choose orthonormal bases {£i,..., £d} and { e i , . . . , en} of the normal space T^M
and the tangent space TPM respectively at a point p 6 M. So using (1.7), (1.2) and the
Codazzi equations (1.1) we obtain

(3.10) Q(g, VAXei.Ci.eijcj.c^ = 3(V/i)(eJ-,ei,ei),

(3.11) Q{g,Vh)(ei,ei,eJ;ei,ei) = 2(V/i)(ei,ej,e>)

(3.12) Q(9,Vh)(ei,eJtey,eitej) = (Vh)(ej,ej,e,-) - 2(Vh)(ei,et,ej),

and

(3.13) Q(g, Vh)(ej, ejt ey, eu e;) =

for e<, ej € TPM. Assume that C • Vh = LQ(g, Vh) holds at p € M. So combining
(3.2)-(3.5) and (3.10)-(3.13), we have

(3.14) [.4

(3.15) [A + L][-2(V/i)(e>,ei,eJ) + (V/tHe,-,^)] = 0,

(3.16) [A + L) [-(V/i)(ej, ej, ej) + 2(Vh)(eiy e{, c,-)] = 0,

and

(3.17) [A + L](Vh)(ei,ej,ej) = 0,
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at p € M. If M is Weyl 2-semiparallel then the condition C • V/i = LQ(g, V/i) is

trivially realised at p. Now suppose C • V/i ^ 0 at p. Then from (3.14)-(3.17) we get

A + L = -Kij + l / ( n - 2) (Su + Sjj — ( « / n - 1)) + L = 0 at p. By a similar discussion in

the proof of Theorem 2.2 we obtain C(ej, ej) — L{ti A e,) at p. Hence we get the result

as required. D
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