SUBMANIFOLDS SATISFYING SOME CURVATURE CONDITIONS IMPOSED ON THE WEYL TENSOR

Cihan Özgür

In this paper we define Weyl semiparallel ($\mathcal{C} \cdot h=0$) and Weyl 2-semiparallel ($\mathcal{C} \cdot \bar{\nabla} h$ $=0$) submanifolds. We consider n-dimensional normally flat submanifolds satisfying these curvature conditions in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. We also consider normally flat submanifolds in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d} satisfying the condition $\mathcal{C} \cdot h=L Q(g, h)$ and $\mathcal{C} \cdot \bar{\nabla} h=L Q(g, \bar{\nabla} h)$.

1. Introduction

Let (M, g) be an n-dimensional submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. Let ξ be a local normal section on M. The formulas of Gauss and Weingarten are given by $\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)$ and $\widetilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi$ for vector fields X, Y, Z which are tangent to M. Here $\widetilde{\nabla}$ is the Euclidean connection on \mathbb{E}^{n+d}, ∇ is the Levi-Civita connection on M, and ∇^{\perp} is the normal connection of M in \mathbb{E}^{n+d}. The second fundamental form h and A_{ξ} are related by $\langle h(X, Y), \xi\rangle=g\left(A_{\xi} X, Y\right)$. For the second fundamental form h the covariant derivative of h is defined by $\left(\bar{\nabla}_{X} h\right)(Y, Z)$ $=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)$, for any vector fields X, Y, Z tangent to M. Then $\bar{\nabla} h$ is a normal bundle valued tensor of type $(0,3)$ and is called the third fundamental form of M. The equation of Codazzi implies that $\bar{\nabla} h$ is symmetric hence

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z)=\left(\bar{\nabla}_{Z} h\right)(X, Y) \tag{1.1}
\end{equation*}
$$

$\bar{\nabla}$ is called the van der Waerden-Bortolotti connection of M, that is, $\bar{\nabla}$ is the connection in $T M \oplus T^{\perp} M$ built with ∇ and ∇^{\perp}. If $\bar{\nabla} h=0$ then M is said to have parallel second fundamental form [2]. In the third chapter sometimes we will use $\left(\bar{\nabla}_{X} h\right)(Y, Z)$ $=(\bar{\nabla} h)(X, Y, Z)$.

Let $X \wedge Y$ denote the endomorphism defined by

$$
\begin{equation*}
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y \tag{1.2}
\end{equation*}
$$

Received 12th June, 2002
The author would like to thank the referees for their useful comments.

[^0]where g is the metric tensor on M. Then the curvature operator \mathcal{R} of M is given by the equation of Gauss:
\[

$$
\begin{equation*}
\mathcal{R}(X, Y) Z=\sum_{i=1}^{d}\left(A_{i} X \wedge A_{i} Y\right) Z \tag{1.3}
\end{equation*}
$$

\]

and the curvature tensor R of M is defined by $R(X, Y, Z, W)=g(\mathcal{R}(X, Y) Z, W)$, where $A_{i}:=A_{\xi_{i}}$ and $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right\}$ is a local orthonormal basis for $T^{\perp} M$ and X, Y, Z, W are vector fields tangent to M. The equation of Ricci becomes

$$
\begin{equation*}
R^{\perp}(X, Y, \xi, \eta)=g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right) \tag{1.4}
\end{equation*}
$$

for the vector fields ξ and η normal to M.
A submanifold M is said to have flat normal connection (or trivial normal connection) if $R^{\perp}=0$. If M has flat normal connection then shortly we call it normally flat. The relation (1.4) shows that the triviality of the normal connection of M into Euclidean space \mathbb{E}^{n+d} (and more generally for submanifolds in a locally conformally flat space) is equivalent to the fact that all second fundamental tensors mutually commute and to the simultaneous diagonasability of all second fundamental tensors ([2]).

The Ricci tensor S, the Ricci operator \mathcal{S} and the scalar curvature κ of M are defined by

$$
\begin{equation*}
S(X, Y)=\sum_{k=1}^{n} g\left(R\left(e_{k}, X\right) Y, e_{k}\right) \tag{1.5}
\end{equation*}
$$

$S(X, Y)=g(\mathcal{S} X, Y)$ and $\kappa=\operatorname{tr}(S)$, respectively ([2]).
The Weyl conformal curvature operator \mathcal{C} is defined by

$$
\begin{equation*}
\mathcal{C}(X, Y)=\mathcal{R}(X, Y)-\frac{1}{n-2}\left(X \wedge \mathcal{S} Y+\mathcal{S} X \wedge Y-\frac{\kappa}{n-1} X \wedge Y\right) \tag{1.6}
\end{equation*}
$$

and the Weyl conformal curvature tensor C is defined by $C(X, Y, Z, W)=g(\mathcal{C}(X, Y) Z, W)$. If $C=0, n \geqslant 4$, then M is called conformally flat.

For a $(0, k)$-tensor field $T(k \geqslant 1)$ and the metric tensor g on M we can define the tensor $Q(g, T)$ by

$$
\begin{align*}
Q(g, T)\left(X_{1}, X_{2}, \ldots, X_{k} ; X, Y\right)=- & T\left((X \wedge Y) X_{1}, X_{2}, \ldots, X_{k}\right) \tag{1.7}\\
& -\cdots-T\left(X_{1}, X_{2}, \ldots,(X \wedge Y) X_{k}\right)
\end{align*}
$$

for all $X_{1}, X_{2}, \ldots, X_{k}, X, Y \in T M$ (see [6]).

2. Weyl Semiparallel Submanifolds

Let M be an n-dimensional submanifold in ($n+d$)-dimensional Euclidean space \mathbb{E}^{n+d}. Denote the curvature tensor of $\bar{\nabla}$ by \bar{R}. In [4] and [5], Deprez defined and investigated
semiparallel surfaces (that is, surfaces satisfying the condition $\bar{R} \cdot h=0$) and semiparallel hypersurfaces in Euclidean space respectively.

Similar to Deprez's definition we can give the following:
Definition 2.1. Let M be a normally flat submanifold in an ($n+d$)-dimensional Riemannian manifold \widetilde{M}. We define

$$
\begin{equation*}
(\mathcal{C}(X, Y) \cdot h)(U, V)=-h(\mathcal{C}(X, Y) U, V)-h(U, \mathcal{C}(X, Y) V) \tag{2.1}
\end{equation*}
$$

for $X, Y, U, V \in T M$. If for every point $p \in M$ and for every vector fields $X, Y \in T M$, the tensor $\mathcal{C}(X, Y) \cdot h=0$ then M is called Weyl-semiparallel.

Theorem 2.1. ([5]) Let M be a hypersurface in $\mathbb{E}^{n+1},(n \geqslant 4)$. Then the following assertions are equivalent;
(i) $\mathcal{C} \cdot h=0$ (that is; M is Weyl semiparallel),
(ii) M is conformally flat.

It is well known that all hypersurfaces are always normally flat. Our problem is the following:

Is it possible to find the natural generalisation of Theorem 2.1 to all submanifolds with flat normal connections in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d} ?

Firstly we have;
Theorem 2.2. Let M be an n-dimensional, ($n \geqslant 4$), normally flat submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. Then locally the following assertions are equivalent;
(i) $\mathcal{C} \cdot h=0$ (that is; M is Weyl semiparallel),
(ii) M is conformally flat.

Proof: Assume that M is an n-dimensional, $(n \geqslant 4)$, normally flat submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. Let $\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ be an orthonormal basis of the normal space $T_{p}^{\perp} M$ at a point $p \in M$. On the other hand, by a result of Cartan, we know that the flatness of the normal connection of M is equivalent to the simultaneous diagonazability of all shape operator matrices $A_{\xi_{i}}$ for all $\xi_{i}(1 \leqslant i \leqslant d)$ of the normal space $T_{p}^{\perp} M$. So we can choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of the tangent space $T_{p} M$ at $p \in M$ of eigenvectors of $A_{\xi_{i}}$ such that $h\left(e_{i}, e_{j}\right)=0$ for all $i \neq j$.

Using (2.1) we can write

$$
\begin{equation*}
\left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot h\right)\left(e_{i}, e_{j}\right)=-h\left(\mathcal{C}\left(e_{i}, e_{j}\right) e_{i}, e_{j}\right)-h\left(e_{i}, \mathcal{C}\left(e_{i}, e_{j}\right) e_{j}\right) \tag{2.2}
\end{equation*}
$$

for $e_{i}, e_{j} \in T_{p} M, 1 \leqslant i, j \leqslant n$.
We denote by $K_{i j}$ the sectional curvature of a plane Π spanned by the vectors e_{i} and
e_{j}. An easy calculation shows us $S\left(e_{i}, e_{j}\right)=0$ for all $i \neq j$ and

$$
\begin{align*}
\mathcal{C}\left(e_{i}, e_{j}\right) e_{i} & =\left[-K_{i j}+\frac{1}{n-2}\left(S\left(e_{i}, e_{i}\right)+S\left(e_{j}, e_{j}\right)-\frac{\kappa}{n-1}\right)\right] e_{j} \tag{2.3}\\
\mathcal{C}\left(e_{i}, e_{j}\right) e_{j} & =-\left[-K_{i j}+\frac{1}{n-2}\left(S\left(e_{i}, e_{i}\right)+S\left(e_{j}, e_{j}\right)-\frac{\kappa}{n-1}\right)\right] e_{i} \tag{2.4}
\end{align*}
$$

at $p \in M$. So substituting (2.3) and (2.4) into (2.2) we obtain

$$
\begin{equation*}
\left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot h\right)\left(e_{i}, e_{j}\right)=\left[h\left(e_{i}, e_{i}\right)-h\left(e_{j}, e_{j}\right)\right]\left[-K_{i j}+\frac{1}{n-2}\left(S_{i i}+S_{j j^{-}} \frac{\kappa}{n-1}\right)\right] \tag{2.5}
\end{equation*}
$$

where $S_{i i}=S\left(e_{i}, e_{i}\right)$ and $S_{j j}=S\left(e_{j}, e_{j}\right)$.
Since M is Weyl semiparallel $\left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot h\right)\left(e_{i}, e_{j}\right)=0$, which gives

$$
\begin{equation*}
\left[h\left(e_{i}, e_{i}\right)-h\left(e_{j}, e_{j}\right)\right]\left[-K_{i j}+\frac{1}{n-2}\left(S_{i i}+S_{j j}-\frac{\kappa}{n-1}\right)\right]=0 \tag{2.6}
\end{equation*}
$$

at $p \in M$. If $h\left(e_{i}, e_{i}\right)=h\left(e_{j}, e_{j}\right)$ then M is totally umbilical at p, so by ([3] and[8]) $C=0$ at p. If $-K_{i j}+\left(S_{i i}+S_{j j}-(\kappa /(n-1))\right) /(n-2)=0$ then by (2.3) and (2.4) we have $\mathcal{C}\left(e_{i}, e_{j}\right) e_{i}=\mathcal{C}\left(e_{i}, e_{j}\right) e_{j}=0$. Moreover it can be easily seen that $\mathcal{R}\left(e_{i}, e_{j}\right) e_{k}=0$ and $\mathcal{C}\left(e_{i}, e_{j}\right) e_{k}=0$ for different i, j, k. Therefore the vanishing of $\mathcal{C}\left(e_{i}, e_{j}\right) e_{i}$ and $\mathcal{C}\left(e_{i}, e_{j}\right) e_{j}$ give us $C=0$ at p, which proves the theorem.

Now we give an extension of Theorem 2.2.
ThEOREM 2.3. Let M be an n-dimensional, ($n \geqslant 4$), normally fat submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. If the condition $\mathcal{C} \cdot h=L Q(g, h)$ holds on M, where $L: M \rightarrow \mathbb{R}$ is a function, then locally the relation $\mathcal{C}\left(e_{i}, e_{j}\right)=L\left(e_{i} \wedge e_{j}\right)$ holds on M for $e_{i}, e_{j} \in T_{p} M$.

Proof: Let M be an n-dimensional, $(n \geqslant 4)$, normally flat submanifold in $(n+d)$ dimensional Euclidean space \mathbb{E}^{n+d}. Choose the same bases as in the proof of the previous theorem, with $\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ of the normal space $T_{p}^{\perp} M$ and the tangent space $T_{p} M$ respectively at a point $p \in M$.

Using (1.7) we have

$$
\begin{equation*}
Q(g, h)\left(e_{i}, e_{j} ; e_{i}, e_{j}\right)=-h\left(\left(e_{i} \wedge e_{j}\right) e_{i}, e_{j}\right)-h\left(e_{i},\left(e_{i} \wedge e_{j}\right) e_{j}\right) \tag{2.7}
\end{equation*}
$$

Since $e_{i}, e_{j} \in T_{p} M$ are orthonormal vectors, the equation (2.7) can be written as

$$
\begin{equation*}
Q(g, h)\left(e_{i}, e_{j} ; e_{i}, e_{j}\right)=h\left(e_{j}, e_{j}\right)-h\left(e_{i}, e_{i}\right) \tag{2.8}
\end{equation*}
$$

Suppose that the condition $\mathcal{C} \cdot h=0$ is satisfied on M. Then the condition $\mathcal{C} \cdot h$ $=L Q(g, h)$ is trivially realised at p. Now assume $\mathcal{C} \cdot h \neq 0$ and the condition $\mathcal{C} \cdot h$ $=L Q(g, h)$ holds at $p \in M$. Then by the use of (2.5) and (2.8)

$$
\begin{equation*}
\left[h\left(e_{i}, e_{i}\right)-h\left(e_{j}, e_{j}\right)\right]\left[L-K_{i j}+\frac{1}{n-2}\left(S\left(e_{i}, e_{i}\right)+S\left(e_{j}, e_{j}\right)-\frac{\kappa}{n-1}\right)\right]=0 \tag{2.9}
\end{equation*}
$$

Since we suppose $\mathcal{C} \cdot h \neq 0$ at p, we obtain $L-K_{i j}+\left(S\left(e_{i}, e_{i}\right)+S\left(e_{j}, e_{j}\right)-\kappa(n-1)\right) /(n-2)$ $=0$ at p. So, by a similar discussion in the proof of the previous theorem, we obtain the relation $\mathcal{C}\left(e_{i}, e_{j}\right)=L\left(e_{i} \wedge e_{j}\right)$ holds at p. This completes the proof of the theorem.

3. Weyl 2-Semiparallel Submanifolds

In [1], the authors defined the notion of 2-semiparallel submanifold and they classify normally flat surfaces in the space form $N^{n}(c)$. In [7], Lumiste investigated non-normally flat 2-semiparallel surfaces satisfying the condition $\dot{R} \cdot \bar{\nabla} h=0$.

In the present section our aim is to find the characterisation of normally flat submanifolds in the Euclidean space \mathbb{E}^{n+d} satisfying the condition $\mathcal{C} \cdot \bar{\nabla} h=0$ and $\mathcal{C} \cdot \bar{\nabla} h=L Q(g, \bar{\nabla} h)$. Firstly we give the following definition:

Definition 3.1. Let M be an n-dimensional, ($n \geqslant 4$), normally flat submanifold in an $(n+d)$-dimensional Riemannian manifold \widetilde{M}. We define

$$
\begin{align*}
(\mathcal{C}(X, Y) \cdot \bar{\nabla} h)(U, V, W)=-(\bar{\nabla} h)(\mathcal{C}(X, Y) U, V, W) & -(\bar{\nabla} h)(U, \mathcal{C}(X, Y) V, W) \\
& -(\bar{\nabla} h)(U, V, \mathcal{C}(X, Y) W) \tag{3.1}
\end{align*}
$$

for $X, Y, U, V, W \in T M$. If for all point $p \in M$, the tensor $\mathcal{C}(X, Y) \cdot \bar{\nabla} h=0$ then M is called Weyl 2-semiparallel.

Theorem 3.1. Let M be an n-dimensional, $(n \geqslant 4)$, normally flat Weyl 2semiparallel submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. Then locally either
(i) M has parallel second fundamental form or
(ii) M is conformally flat.

Proof: Suppose that M is an n-dimensional, ($n \geqslant 4$), normally flat submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. Choose orthonormal bases $\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ of the normal space $T_{p}^{\perp} M$ and the tangent space $T_{p} M$ respectively at a point $p \in M$. So using (1.6), (3.1) and Codazzi equations (1.1) we obtain

$$
\begin{align*}
& \left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot \bar{\nabla} h\right)\left(e_{i}, e_{i}, e_{i}\right)=-3 A(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{i}\right) \tag{3.2}\\
& \left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot \bar{\nabla} h\right)\left(e_{i}, e_{i}, e_{j}\right)=A\left[-2(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{j}\right)+(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{i}\right)\right] \tag{3.3}\\
& \left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot \bar{\nabla} h\right)\left(e_{i}, e_{j}, e_{j}\right)=A\left[-(\bar{\nabla} h)\left(e_{j}, e_{j}, e_{j}\right)+2(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{j}\right)\right] \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\mathcal{C}\left(e_{i}, e_{j}\right) \cdot \bar{\nabla} h\right)\left(e_{j}, e_{j}, e_{j}\right)=3 A(\bar{\nabla} h)\left(e_{i}, e_{j}, e_{j}\right) \tag{3.5}
\end{equation*}
$$

for $e_{i}, e_{j} \in T_{p} M$, where $A=\left[-K_{i j}+\left(S_{i i}+S_{j j}-\kappa(n-1)\right) /(n-2)\right]$.
By assumption, since M is Weyl 2-semiparallel, from (3.2)-(3.5), we get

$$
\begin{align*}
A(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{i}\right) & =0 \tag{3.6}\\
A\left[-2(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{j}\right)+(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{i}\right)\right] & =0 \tag{3.7}\\
A\left[-(\bar{\nabla} h)\left(e_{j}, e_{j}, e_{j}\right)+2(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{j}\right)\right] & =0 \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
A(\bar{\nabla} h)\left(e_{i}, e_{j}, e_{j}\right)=0 \tag{3.9}
\end{equation*}
$$

at $p \in M$. Suppose $(\bar{\nabla} h)\left(e_{i}, e_{j}, e_{j}\right)=0,(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{i}\right)=0$ and $A \neq 0$. Using the Codazzi equations (1.1), we can substitute the last equalities into (3.7) and (3.8) respectively. So we obtain $(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{i}\right)=(\bar{\nabla} h)\left(e_{j}, e_{j}, e_{j}\right)=0$ which gives us $\bar{\nabla} h=0$ at p.

Now suppose $\bar{\nabla} h \neq 0$ at p. Therefore from (3.6)-(3.9) we obtain

$$
A=\left[-K_{i j}+\frac{1}{n-2}\left(S_{i i}+S_{j j}-\frac{\kappa}{n-1}\right)\right]=0
$$

By a similar discussion in the proof of Theorem 2.2 we obtain $C=0$ at p. Our theorem is thus proved.

Now we give an extension of Theorem 3.1.
Theorem 3.2. Let M be an n-dimensional, ($n \geqslant 4$), normally flat submanifold in $(n+d)$-dimensional Euclidean space \mathbb{E}^{n+d}. If M satisfies the condition $\mathcal{C} \cdot \bar{\nabla} h=L Q(g, \bar{\nabla} h)$, where $L: M \rightarrow \mathbb{R}$ is a function, then locally the relation $\mathcal{C}\left(e_{i}, e_{j}\right)=L\left(e_{i} \wedge e_{j}\right)$ holds on M for $e_{i}, e_{j} \in T_{p} M$.

Proof: Suppose that M is an n-dimensional, $(n \geqslant 4)$, normally flat submanifold in \mathbb{E}^{n+d}. Choose orthonormal bases $\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ of the normal space $T_{p}^{\perp} M$ and the tangent space $T_{p} M$ respectively at a point $p \in M$. So using (1.7), (1.2) and the Codazzi equations (1.1) we obtain

$$
\begin{align*}
& Q(g, \bar{\nabla} h)\left(e_{i}, e_{i}, e_{i} ; e_{i}, e_{j}\right)=3(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{i}\right), \tag{3.10}\\
& Q(g, \bar{\nabla} h)\left(e_{i}, e_{i}, e_{j} ; e_{i}, e_{j}\right)=2(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{j}\right)-(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{i}\right), \tag{3.11}\\
& Q(g, \bar{\nabla} h)\left(e_{i}, e_{j}, e_{j} ; e_{i}, e_{j}\right)=(\bar{\nabla} h)\left(e_{j}, e_{j}, e_{j}\right)-2(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{j}\right) \tag{3.12}
\end{align*}
$$

and

$$
\begin{equation*}
Q(g, \bar{\nabla} h)\left(e_{j}, e_{j}, e_{j} ; e_{i}, e_{j}\right)=-3(\bar{\nabla} h)\left(e_{i}, e_{j}, e_{j}\right) \tag{3.13}
\end{equation*}
$$

for $e_{i}, e_{j} \in T_{p} M$. Assume that $\mathcal{C} \cdot \bar{\nabla} h=L Q(g, \bar{\nabla} h)$ holds at $p \in M$. So combining (3.2)-(3.5) and (3.10)-(3.13), we have

$$
\begin{array}{r}
{[A+L](\bar{\nabla} h)\left(e_{j}, e_{i}, e_{i}\right)=0} \\
{[A+L]\left[-2(\bar{\nabla} h)\left(e_{j}, e_{i}, e_{j}\right)+(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{i}\right)\right]=0} \\
{[A+L]\left[-(\bar{\nabla} h)\left(e_{j}, e_{j}, e_{j}\right)+2(\bar{\nabla} h)\left(e_{i}, e_{i}, e_{j}\right)\right]=0} \tag{3.16}
\end{array}
$$

and

$$
\begin{equation*}
[A+L](\bar{\nabla} h)\left(e_{i}, e_{j}, e_{j}\right)=0 \tag{3.17}
\end{equation*}
$$

at $p \in M$. If M is Weyl 2-semiparallel then the condition $\mathcal{C} \cdot \bar{\nabla} h=L Q(g, \bar{\nabla} h)$ is trivially realised at p. Now suppose $\mathcal{C} \cdot \bar{\nabla} h \neq 0$ at p. Then from (3.14)-(3.17) we get $A+L=-K_{i j}+1 /(n-2)\left(S_{i i}+S_{j j}-(\kappa / n-1)\right)+L=0$ at p. By a similar discussion in the proof of Theorem 2.2 we obtain $\mathcal{C}\left(e_{i}, e_{j}\right)=L\left(e_{i} \wedge e_{j}\right)$ at p. Hence we get the result as required.

References

[1] K. Arslan, Ü. Lumiste, C. Murathan and C. Özgür, '2-semiparallel surfaces in space forms. I. Two particular cases', Proc. Estonian Acad. Sci. Phys. Math. 49 (2000), 139-148.
[2] B.Y. Chen, Geometry of submanifolds (Marcel Dekker, New York, 1973).
[3] B.Y. Chen and K. Yano, 'Sous-variétés localement conformes à un espace euclidien', C. R. Acad. Sci. Paris Ser. A-B 275 (1972), Paris.
[4] J. Deprez, 'Semi-parallel surfaces in the Euclidean space', J. Geom. 25 (1985), 192-200.
[5] J. Deprez, 'Semi-parallel hypersurfaces', Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 303-316.
[6] R. Deszcz, 'On pseudosymmetric spaces', Bull. Soc. Math. Belg. Ser. A 44 (1992), 1-34.
[7] U. Lumiste, '2-semiparallel surfaces in space forms II. The general case', Proc. Estonian Acad. Sci. Phys. Math. 49 (2000), 203-214.
[8] L. Verstraelen and G. Zafindrafata, 'Some comments on conformally flat submanifolds', in Geometry and Topology of Submanifolds 3 (World Sci., River Edge, NJ, 1991), pp. 312-314.

Department of Mathematics

Balıkesir University
10100, Balıkesir
Turkey
e-mail: cozgur@balikesir.edu.tr

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

