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SUBMANIFOLDS SATISFYING SOME CURVATURE
CONDITIONS IMPOSED ON THE WEYL TENSOR

CiuaN Ozcir

In this paper we define Weyl semiparallel (C - h = 0) and Weyl 2-semiparallel (C - Vh
= 0) submanifolds. We consider n-dimensional normally flat submanifolds satisfying
these curvature conditions in (n + d)-dimensional Euclidean space E**¢. We also
consider normally flat submanifolds in (n + d)-dimensional Euclidean space En+4
satisfying the condition C - h = LQ(g, ) and C - VA = LQ(g, Vh).

1. INTRODUCTION

Let (M, g) be an n-dimensional submanifold in (n + d)-dimensional Euclidean space
E"*4. Let £ be a local normal section on M. The formulas of Gauss and Weingarten
are given by VxY = VxY + h(X,Y) and 6;(5 = —A¢X + V£ for vector fields
X,Y,Z which are tangent to M. Here V is the Euclidean connection on Erd Y is
the Levi-Civita connection on M, and V< is the normal connection of M in E*t¢,
The second fundamental form h and A are related by (h(X,Y),£) = g(A¢X,Y). For
the second fundamental form h the covariant derivative of h is defined by (Vxh)(Y, Z)
= V% (h(Y, 2)) = h(VxY, Z) — h(Y,VxZ), for any vector fields X,Y, Z tangent to M.
Then VA is a normal bundle valued tensor of type (0,3) and is called the third fundamental
form of M. The equation of Codazzi implies that VA is symmetric hence

(11) (Vxh)(Y; 2) = (Vyh)(X, 2) = (Vzh)(X,Y).

V is called the van der Waerden-Bortolotti connection of M, that is, V is the connection
in TM @& T*M built with V and VL. If VA = 0 then M is said to have parallel
second fundamental form [2]. In the third chapter sometimes we will use (Vxh)(Y, Z)
= (Vh)(X,Y, Z).

Let X A'Y denote the endomorphism defined by

(1.2) (X AY)Z = g(Y,2)X - g(X, 2)Y,
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where g is the metric tensor on M. Then the curvature operator R of M is given by the
equation of Gauss:

d
(1.3) R(X,Y)Z =) (AX AAY)Z,

=1
and the curvature tensor R of M is defined by R(X,Y,Z,W) = g(R(X,Y)Z,W), where
A; = Ag, and {£,&,...,&} is a local orthonormal basis for T*M and X,Y,Z, W are
vector fields tangent to M. The equation of Ricci becomes

(1.4) RY(X,Y,€,m) = 9([Ae ArlX, Y),

for the vector fields £ and 7 normal to M.

A submanifold M is said to have flat normal connection (or trivial normal connec-
tion) if R* = 0. If M has flat normal connection then shortly we call it normally flat.
The relation (1.4) shows that the triviality of the normal connection of M into Euclidean
space E"*? (and more generally for submanifolds in a locally conformally flat space) is
equivalent to the fact that all second fundamental tensors mutually commute and to the
simultaneous diagonasability of all second fundamental tensors ([2]).

The Ricci tensor S, the Ricci operator S and the scalar curvature k of M are defined

by
(1.5) S(X,Y) =Y g(R(er, X)Y, ex),
k=1

S(X,Y) =g¢(8X,Y) and s = tr(S), respectively ([2]).
The Weyl conformal curvature operator C is defined by
1 K
(1.6) C(X,Y)_'R(X,Y)——n—_z(X/\SY+SX/\Y—n—_1X/\Y)

and the Weyl conformal curvature tensor C is defined by C(X,Y, Z, W) = g(C(X,Y)Z,W).
If C=0,n 24, then M is called conformally flat.

For a (0, k)-tensor field T (k > 1) and the metric tensor g on M we can define the
tensor Q(g,T) by

(17) Q(g,T)(Xl,XZ; . ,Xk;X, Y) = —T((X /\Y)Xl, X21- . .,Xk)
—---—T(X],X2,--"(X/\Y)Xk)’

for all X, X2,..., Xk, X,Y € TM (see [6]).

2. WEYL SEMIPARALLEL SUBMANIFOLDS

Let M be an n-dimensional submanifold in (n+d)-dimensional Euclidean space E**.
Denote the curvature tensor of V by R. In [4] and [5], Deprez defined and investigated
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semiparallel surfaces (that is, surfaces satisfying the condition R-h= 0) and semiparallel
hypersurfaces in Euclidean space respectively.

Similar to Deprez’s definition we can give the following:

DEFINITION 2.1. Let M be a normally flat submanifold in an (n + d)-dimensional
Riemannian manifold M. We define

(2.1) (C(X,Y)-R)(U,V) = —h(C(X,Y)U,V) - h(U,C(X,Y)V)

for X,Y,U,V € TM. If for every point p € M and for every vector fields X,Y € TM,
the tensor C(X,Y’) - h = 0 then M is called Weyl-semiparallel.

THEOREM 2.1. (|5]) Let M be a hypersurface in E**!, (n > 4). Then the follow-
ing assertions are equivalent;
(i) C-h =0 (that is; M is Weyl semiparallel),
(i) M is conformally flat.

It is well known that all hypersurfaces are always normally flat. Our problem is the
following:

Is it possible to find the natural generalisation of Theorem 2.1 to all submanifolds
with flat normal connections in (n + d)-dimensional Euclidean space E*+¢?

Firstly we have;

THEOREM 2.2. Let M be an n-dimensional, (n > 4), normally flat submanifold
in (n + d)-dimensional Euclidean space E"t¢. Then locally the following assertions are
equivalent;

(i) C-h =0 (that is; M is Weyl semiparallel),
(ii) M is conformally flat.

PROOF: Assume that M is an n-dimensional, (n > 4), normally flat submanifold in
(n + d)-dimensional Euclidean space E"*4. Let {£,...,&;} be an orthonormal basis of
the normal space TPJ-M at a point p € M. On the other hand, by a result of Cartan, we
know that the flatness of the normal connection of M is equivalent to the simultaneous
diagonazability of all shape operator matrices A, for all & (1 < ¢ £ d) of the normal
space TpJ*M . So we can choose an orthonormal basis {ej,...,e,} of the tangent space
T,M at p € M of eigenvectors of A, such that h(e;,e;) =0 for all ¢ # j.

Using (2.1) we can write

(2.2) (C(ei, €5) - h)(ei, e5) = —h(Clei, €5)€i, €5) — h{ei, Clei, e5)€;5),

fore;,e; € T,M,1<4,5<n.
We denote by Kj; the sectional curvature of a plane II spanned by the vectors e; and
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ej. An easy calculation shows us S{e;,e;) =0 for all ¢ # j and
K
5 (S(e,-,e,-) + S(ej,ej) - n—_i)]ej,
1 K
(2.4) C(e,-, ej)ej = - [—K,'j + m(S(ei,E,') + S(Ej, Cj) — m)]ei,
at p € M. So substituting (2.3) and (2.4) into (2.2) we obtain
(25) (C(e,’, Cj) . h) (6,‘, €j)= [h(e,’, 6,‘)-h(€j, Cj)] [ K,J + (S" + S” m— 1)]
where Si,' = S(e,‘,e,‘) and Sjj = S(ej,ej).
Since M is Weyl semiparallel (C(e;, €;) - h)(ei, e;) = 0, which gives

(2.6) [(es, e:)-hles, e3)] [~ Kes +—— (s.. +8— —==)] =0

at p € M. If h(e;, e;) = h(ej,e;) then M is totally umbilical at p, so by ([3] and[8])
C=0atp If —K;; + (S,-,- + Sj; — (k/(n - 1)))/(n —2) =0 then by (2.3} and (2.4) we
have C(e;, e;)e; = C(ei, e;)e; = 0. Moreover it can be easily seen that R(e;, €;)ex = 0 and
C(ei,e;)ex = 0 for different i, j, k. Therefore the vanishing of C(e;, e;)e; and C(e;, e;)e;
give us C = 0 at p, which proves the theorem.

(2.3) Cles, €;)e; [ Kij+ —

Now we give an extension of Theorem 2.2.

THEOREM 2.3. Let M be an n-dimensional, (n > 4), normally flat submanifold
in (n + d)-dimensional Euclidean space E™*. If the condition C - h = LQ(g, h) holds on
M, where L : M — R is a function, then locally the relation C(e;, e;) = L(e; A e;) holds
on M fore;,e; € T,M.

PROOF: Let M be an n-dimensional, (n 2 4), normally flat submanifold in (n + d)-
dimensional Euclidean space E**4. Choose the same bases as in the proof of the previous
theorem, with {£,...,£4} and {ej,...,e,} of the normal space Tle and the tangent
space T, M respectively at a point p € M.

Using (1.7) we have

(2.7) Q(g, k) (e, €5; €5, €;5) = —h((e: A ej)ei, €5) — hes, (e: A €5)e;).
Since e;, e; € T,M are orthonormal vectors, the equation (2.7) can be written as
(2.8) Q(g, h)(ei, ej; ei, e5) = h(ej, e;) — h(ei, €;).

Suppose that the condition C - h = 0 is satisfied on M. Then the condition C - h
= LQ(g,h) is trivially realised at p. Now assume C - h # 0 and the condition C - h
= LQ(g, h) holds at p € M. Then by the use of (2.5) and (2.8)

(2.9) [h(ei, e:) — h(ej, €5)] [L - K + ;%—Z-(S(e;,es) + S(ej, €5) — - i 1)] =0.

Since we suppose C - h # 0 at p, we obtain L-Kj; + (S(e,-, &)+ S(e,-,ej)-n(n-l))/(n -2)
= 0 at p. So, by a similar discussion in the proof of the previous theorem, we obtain the
relation C(e;, e;) = L(e; A e;) holds at p. This completes the proof of the theorem. 0
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3. WEYL 2-SEMIPARALLEL SUBMANIFOLDS

In 1], the authors defined the notion of 2-semiparallel submanifold and they classify
normally flat surfaces in the space form N™(c). In [7], Lumiste investigated non-normally
flat 2-semiparallel surfaces satisfying the condition R-Vh=0.

In the present section our aim is to find the characterisation of normally flat
submanifolds in the Euclidean space E"*¢ satisfying the condition C - VA = 0 and
C-Vh = LQ(g,Vh). Firstly we give the following definition:

DEFINITION 3.1. Let M be an n-dimensional, (n > 4), normally flat submanifold
in an (n + d)-dimensional Riemannian manifold M. We define

(C(X,Y)-VR)(U,V,W) = =(Vh)(C(X,Y)U,V,W) - (VR)(U,C(X,Y)V, W)
(3.1) -(Vh(U,V,C(X,Y)W),

for X,Y,U,V,W € TM. If for all point p € M, the tensor C(X,Y)-Vh = 0 then M is
called Weyl 2-semiparallel.

THEOREM 3.1. Let M be an n-dimensional, (n > 4), normally flat Weyl 2-
semiparallel submanifold in (n + d)-dimensional Euclidean space E"*4. Then locally
either

(i) M has parallel second fundamental form or
(ii) M is conformally flat.

PROOF: Suppose that M is an n-dimensional, (n > 4), normally flat submanifold
in (n+ d)-dimensional Euclidean space E**¢. Choose orthonormal bases {,, ..., £;} and
{e1,...,en} of the normal space TPJ‘M and the tangent space T, M respectively at a point
p € M. So using (1.6), (3.1) and Codazzi equations (1.1} we obtain

(3.2) (Clei, e5) - Vh)(ei, €i,€) = —3A(VR)(ej, €, €5),

-V
Vh) (i, e,€5) = A[=2(Vh)(ej, €, €5) + (
-Vh

(3.3) (Cleire;) - Vh)(ei, e, €:)],
(34) (C(C,, ) )(eiaej:ej) e [ (Vh)(e]’ej’ej) + 2(—V_ )(6,‘, ei)e]')]
and

(35) (C(C,‘, ej) . Vh) (ej, €5, ej) = 3A(Vh)(€,, €j, ej).

for e;,e; € T,M, where A = [—Kij + (Sii + Sj; — k(n—1))/(n - 2)]
By assumption, since M is Weyl 2-semiparallel, from (3.2)-(3.5), we get

(3.6) A(Vh)(ej,ei€) = 0,

A[-2(Vh)(ej, :,€;) + (VR)(es, €5, €5)] = 0,
A[=(Vh)(ej, ej,€;) + 2(Vh) (e, e1,€5)] =0
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and
(39) A(_V—h) (el'a €;, ej) = O:

at p € M. Suppose (Vh)(e;, e;, ej) =0, (Vh)(ej, e, €;) = 0 and A # 0. Using the Codazzi
equations (1.1), we can substitute the last equalities into (3.7) and (3.8) respectively. So
we obtain (Vh)(e;, e;, &;) = (Vh)(ej, ej, e;) = 0 which gives us VA =0 at p.

Now suppose Vh # 0 at p. Therefore from (3.6)-(3.9) we obtain

a=[- Ky+— (S,,+S,,-— )] =o.

By a similar discussion in the proof of Theorem 2.2 we obtain C = 0 at p. Our theorem
is thus proved. 0

Now we give an extension of Theorem 3.1.

THEOREM 3.2. Let M be an n-dimensional, (n > 4), normally flat submanifold in
(n+d)-dimensional Euclidean space E"*¢. If M satisfies the condition C-Vh = LQ(g, Vh),
where L : M — R is a function, then locally the relation C(e;, e;) = L(e; A e;) holds on
M fore;,e; € T,M.

PROOF: Suppose that M is an n-dimensional, (n > 4), normally flat submanifold in
E™+4. Choose orthonormal bases {£;,...,&;} and {ey,...,e,} of the normal space T M
and the tangent space T, M respectively at a point p € M. So using (1.7), (1.2) and the
Codazzi equations (1.1) we obtain

(3.10) Q(9, Vh)(e;, &i, €:; €, €5) = 3(Vh)(e;, €, &),

(311) Q(g,Vh)(e.-, eiaej;eivej) = 2(Vh)(6j,€,',ej) (V )(e.-,ei,e,-)
(3.12) Q(9, Vh)(ei, 5, €5; €:, €5) = (Vh)(ej, €5, €;) — 2(Vh)(ei, €, €;),
and

(3.13) Q(g, VR)(e), €5, €5 €i,65) = =3(Vh)(es, €5, €5),

for e;,e; € T,M. Assume that C - VA = LQ(g,Vh) holds at p € M. So combining
(3.2)-(3.5) and (3.10)-(3.13), we have

(3.14) [A+ L)(Vh)(ej, ei, &) = 0,
(3.15) [A+L][- 2(Vh)(ej, i, €;) + (Vh)(ei, €, &) ] =0,
(3.16) [4 + L) [-(Vh)(ej, €), €;) + 2(Vh)(ei, €5, €5)] =0,
and

(3.17) [A + L)(Vh)(ei, €5, €5) = 0,
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at p € M. If M is Weyl 2-semiparallel then the condition C - VA = LQ(g, Vh) is
trivially realised at p. Now suppose C - Vh # 0 at p. Then from (3.14)-(3.17) we get
A+L=-Kij+1/(n—~2)(Si+Sj; — (k/n—1)) + L = 0 at p. By a similar discussion in
the proof of Theorem 2.2 we obtain C(e;, e;) = L(e; A e;) at p. Hence we get the result

as required. 0

[1]

(2]
(3]

(4]
(5}

(6]
(7]

(8]

REFERENCES
K. Arslan, U. Lumiste, C. Murathan and C. Ozgiir, ‘2-semiparallel surfaces in space forms.
I. Two particular cases’, Proc. Estonian Acad. Sci. Phys. Math. 49 (2000), 139-148.
B.Y. Chen, Geometry of submanifolds (Marcel Dekker, New York, 1973).

B.Y. Chen and K. Yano, ‘Sous-variétés localement conformes a un espace euclidien’, C. R.
Acad. Sci. Paris Ser. A-B 275 (1972), Paris.

J. Deprez, ‘Semi-parallel surfaces in the Euclidean space’, J. Geom. 25 (1985), 192-200.
J. Deprez, ‘Semi-parallel hypersurfaces’, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986),
303-316.

R. Deszcz, ‘On pseudosymmetric spaces’, Bull. Soc. Math. Belg. Ser. A 44 (1992), 1-34.
U. Lumiste, ‘2-semiparallel surfaces in space forms II. The general case’, Proc. Estonian
Acad. Sci. Phys. Math. 49 (2000), 203-214.

L. Verstraclen and G. Zafindrafata, ‘Some comments on conformally flat submanifolds’,
in Geometry and Topology of Submanifolds 3 (World Sci., River Edge, NJ, 1991), pp.
312-314.

Department of Mathematics
Balikesir University

10100, Bahkesir

Turkey

e-mail: cozgur@balikesir.edu.tr

https://doi.org/10.1017/5S0004972700033554 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700033554

