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Abstract

Hyalomma marginatum is an important tick species which is the main vector of Crimean–
Congo haemorrhagic fever and spotted fever. The species is predominantly distributed in
parts of southern Europe, North Africa and West Asia. However, due to ongoing climate
change and increasing reports of H. marginatum in central and northern Europe, the expan-
sion of this range poses a potential future risk. In this study, an ecological niche modelling
approach to model the current and future climatic suitability of H. marginatum was followed.
Using high-resolution climatic variables from the Chelsa dataset and an updated list of loca-
tions for H. marginatum, ecological niche models were constructed under current environ-
mental conditions using MaxEnt for both current conditions and future projections under
the ssp370 and ssp585 scenarios. Models show that the climatically suitable region for H. mar-
ginatum matches the current distributional area in the Mediterranean basin and West Asia.
When applied to future projections, the models suggest a considerable expansion of H. mar-
ginatum’s range in the north in Europe as a result of rising temperatures. However, a decline
in central Anatolia is also predicted, potentially due to the exacerbation of drought conditions
in that region.

Introduction

Human intervention in ecosystems, including globalization, urbanization, rapid transporta-
tion, land use and climate change, has led to a global increase in the range, distribution
and transmission rate of numerous pathogens and vector organisms that serve as reservoirs
for these pathogens (Kovats et al., 2001; Andersen and Davis, 2017; Carvalho et al., 2017;
Semenza and Suk, 2018; Aguilar-Domínguez et al., 2021; Leder et al., 2021). While the
most severe impacts of climate change are expected to affect ectotherm populations in the tro-
pics, population growth rates of insects and other arthropods are also anticipated to increase in
mid-to-high latitude regions due to the influence of warmer temperatures on growth rates
(Deutsch et al., 2008; Bonebrake and Deutsch, 2012; Rocklöv and Dubrow, 2020). In addition
to the effects of temperature on the biology of disease-transmitting vector organisms, increased
precipitation and extreme precipitation events in some regions may lead to an increase in vec-
tor abundance, whereas longer dry periods might increase tick mortality (Githeko et al., 2000;
Rocklöv and Dubrow, 2020).

Ticks are the vectors of numerous critical pathogens and pose a significant threat to animal
and public health (Jongejan and Uilenberg, 2004). The species Hyalomma marginatum Koch,
1844 presents a substantial health threat as the main vector of Crimean–Congo haemorrhagic
fever (CCHF) and also the vector of babesiosis and Rickettsia in the Mediterranean region,
Africa and Asia (Ergönül, 2006; Vatansever et al., 2007; Gale et al., 2010; Ros-García et al.,
2011; Bonnet et al., 2022; Sultankulova et al., 2022). Effective and sustainable control of
ticks, like many arthropod pests and vectors, can be achieved with a solid understanding of
the species’ biology, ecology and distribution (Bonnet et al., 2022). Knowledge of H. margin-
atum’s current distribution is crucial for projecting areas at risk for CCHF expansion. The
Mediterranean basin holds special importance as the main distributional area and reservoir
for H. marginatum. The Mediterranean is also among the areas projected to be most negatively
affected by climate change (Ulbrich et al., 2006; Bardsley and Edwards-Jones, 2007; Newbold
et al., 2020). Studies have indicated an increase in CCHF transmission in the Mediterranean
basin (Maltezou and Papa, 2010) and a tendency for the northward expansion of CCHF’s
range in this region (Estrada-Peña and Venzal, 2007; Williams et al., 2015; Andersen and
Davis, 2017; Fernández-Ruiz and Estrada-Peña, 2021). Recent reports have shown that the vec-
tor of CCHF, H. marginatum Koch, 1844 might have expanded its geographic range and
shifted northwards into previously unoccupied areas (Vial et al., 2016; Bah et al., 2022).
Furthermore, the expansion of suitable areas has been documented in central Europe and
Balkans in addition to Mediterranean countries (Fernández-Ruiz and Estrada-Peña, 2021).
Recent detections have highlighted that northern latitudes might be becoming more suitable
for H. marginatum activity and survival as a result of climate change; however, most of
these are records of individual tick detections and yet there is not sufficient evidence of estab-
lishment of northern populations (Duscher et al., 2018; Chitimia-Dobler et al., 2019; Grandi
et al., 2020; McGinley et al., 2021).
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Thanks to advances in machine-learning algorithms in ecol-
ogy, such as MaxEnt (Phillips and Schapire, 2004; Elith et al.,
2011; Crisci et al., 2012; Merow et al., 2013) and the advent of
high-resolution climatic datasets such as Chelsa (Karger et al.,
2017) and WorldClim (Fick and Hijmans, 2017), ecological
niche modeling ENM has become a fundamental method for
investigating possible current and future distributions of disease-
transmitting vectors over the past 2 decades (Chalghaf et al., 2018;
Raghavan et al., 2020; Aguilar-Domínguez et al., 2021; Alkishe
et al., 2021; Moo-Llanes et al., 2021). Correlative ecological
niche models primarily rely on combining georeferenced species
records with predictive environmental variables (e.g. climatic,
topographic, soil) to build a coefficient matrix representing the
organism’s multidimensional niche (Warren and Seifert, 2011;
Peterson and Soberón, 2012; Sillero and Barbosa, 2021). ENMs
have been widely used to predict the potential future distributions
of vectors under various global circulation scenarios of climate, in
addition to their current potential niche (Aguilar-Domínguez
et al., 2021; Alkishe and Peterson, 2022; Wu et al., 2022).

The main objective of this study was to predict climatically
suitable areas for H. marginatum under both present-day
conditions and future climate scenarios. To achieve this aim,
bioclimatic parameters for present and near-future scenarios
(2011–2040 and 2041–2070) obtained from the Chelsa database
and H. marginatum locations from the literature and previous
field surveys by the authors were used to build ecological niche
models with MaxEnt to show suitable areas for present and future
projections. The findings of this study will help predict potential
new suitable areas in the Mediterranean basin and Europe that
H. marginatum may colonize in the future and enhance surveil-
lance efforts in areas identified as high risk.

Materials and methods

Occurrence records

Local data from Turkey were derived from 2 sources: (1) from
published studies by first author (O. H.) until 2021, which used
both morphological and molecular methods to identify tick sam-
ples (Hekimoglu and Ozer, 2017; Hekimoglu et al., 2021) and add-
itional field collected samples from2018 (n = 13 locations) and2021
(n = 7 locations) which have been identified using 16s rDNA.
Morphological identification was conducted using taxonomic keys
(Apanaskevich and Horak, 2008; Estrada-Peña et al., 2018). Since
H. marginatum populations show morphological variations
(Apanaskevich and Horak, 2008) and Hyalomma species have
been one of the most misidentified taxa using morphological meth-
ods (Estrada-Pena andDeLaFuente, 2016), conducting amolecular
step is extremely important. For this purpose, mitochondrial 16S
rDNA sequences (Mangold et al., 1998) were generated for samples
of localitieswheremolecular datawerenot generatedbefore. In total,
66 geographical points from Turkey were included in the analyses.

To represent the distribution area of the species worldwide, we
included geographic locations of H. marginatum from different
parts of the world from a previous compilation by Estrada-Pena
and De La Fuente (2016), composed of literature reviews between
1970 and 2014. Firstly, the geographic information of H. margina-
tumwasrecordedonaseparatedatasheet.Secondly, these rawrecords
were cleaned and reduced by removing localities, (1) where tick col-
lection had been conducted from birds since finding ticks on birds
does not mean that ticks can establish populations in these areas
(Estrada-Peña et al., 2011; Fernández-Ruiz and Estrada-Peña,
2021); and (2) sampling information from Cyprus was removed as
molecular data do not confirm that H. marginatum exists in
Cyprus (Hekimoglu and Ozer, 2017). After these steps, a total of
565 geographic coordinates were obtained.

Environmental variables

For environmental predictors, Chelsa V2.1 dataset was used
(Karger et al., 2017, 2022) which is available at https://chelsa-
climate.org, a relatively new high-resolution (30 arcsec, ∼1 km)
climate dataset that includes additional important microclimatic
variables in addition to the counterparts (Chelsa-Bioclim) of
popular WorldClim bioclim variables (Hijmans et al., 2005;
Fick and Hijmans, 2017). These include variables related to
microclimate, water content of air and humidity which are
important for H. marginatum (Estrada-Peña et al., 2011;
Estrada-Peña, 2023). Furthermore, while the WorldClim dataset
used for current distribution predictions uses extrapolations
made between 1970 and 2000, the Chelsa dataset uses a dataset
created for the period between 1980 and 2010. The additional
important variables (Chelsa-Bioclim+) included near surface rela-
tive humidity (hurs), vapour pressure deficit (vpd), climate mois-
ture index (cmi), growth degree days above 0°C, net primary
productivity (npp) and surface downwelling shortwave radiation
(rsds). Growth season temperature (gst) and growth season pre-
cipitation (gsp) were also included, which are indicative of
H. marginatum, whose activity coincides greatly with the growth
season (Estrada-Peña et al., 2011). Bioclim variables 8, 9, 18 and
19 from the Worldclim dataset (Fick and Hijmans, 2017) are
reported to have significant spatial artefact problems visible as
anomalous discontinuities between neighbouring pixels and
thus it is generally advised to remove them before carrying out
analyses (Escobar et al., 2014; Escobar, 2020; Aguilar-
Domínguez et al., 2021; Alkishe and Peterson, 2022). In this
study, these variables were removed from the Chelsa dataset
since it was observed that the same artefacts are also present in
Chelsa-Bioclim data. All remaining variable rasters were clipped
to the area of interest, which is between latitudes −20° and 60°
and longitudes 20° and 60° WGS84. All geographic computations
were carried out with QGIS (QGIS Geographic Information
System, 2022), GDAL library in Python (Open Source
Geospatial Foundation, 2022) and R version 4.2.2 (R Core
Team, 2022).

Future projections

For future predictions, environmental variables from different
global circulation models (GCM) of ssp370 and ssp585 scenarios
for CMIP6 (Eyring et al., 2016) were used. ‘Shared socioeconomic
pathways’ (SSPs) complement the ‘representative concentration
pathways’ (RCPs) by involving socio-economic factors such as
population growth, urbanization and technological advances,
ssp585 represents the worst-case scenario while ssp370 represents
a middle way between the worst and more optimistic scenarios
(Hausfather, 2020). These bad-to-worst case scenarios were cho-
sen for a more prudent risk prediction as anthropogenic climate
risks are becoming much more difficult to manage and compli-
cated all around the world (Kemp et al., 2022). All of the available
scenarios for Chelsa dataset were included for a better estimation.
These include UKESM1-0-LL (Sellar et al., 2019), MRI-ESM2-0
(Oshima et al., 2020), MPI-ESM1-2 (Mauritsen et al., 2019),
IPSL-CM6-LR (Boucher et al., 2020) and GFDL-ESM4 (Dunne
et al., 2020) for the Chelsa dataset, and also available at https://
chelsa-climate.org.

Ecological niche modelling

Before building the models, occurrence records that fell outside
environmental raster pixels were removed. In order to reduce
spatial autocorrelation, the locations for H. marginatum were
thinned to a 5 km radius using the spThin package for
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R (Aiello-Lammens et al., 2015). The resulting occurrence data
consisted of 470 locations (Fig. 1) which were split into a training
set (70%: n = 335), a preliminary test set (cross-validation set) for
evaluating the candidate models (25%: n = 111) and another
secondary independent test set for evaluation of final models
(5%: n = 24). To simulate the accessible M space (Soberon and
Peterson, 2005; Barve et al., 2011) for H. marginatum, a buffered
minimum convex polygon with a buffer area of 100 km around
the occurrence records was created and environmental variable
rasters representing the M space were clipped to this buffer area
before building models. Thinning and the creation of the buffer
zone were carried out with ellipsenm package for R, available at
https://github.com/marlonecobos/ellipsenm (Cobos et al., 2020).
Three sets were built by setting correlation thresholds between
variables using the vifcor function in the R package usdm
(Naimi, 2017). The vifcor function selects the variables with
lower variance inflation factors (vif) from correlation pairs to
build the sets. The correlation thresholds were 0.9, 0.8 and 0.75,
respectively. For the first model dataset sets 2 and 3 were identical,
so only set 1 and set 2 were used to build the models. For the
Chelsa dataset some of the Bioclim+ variables are not available
for future projections (vpd, hurs, rsds and cmi). Thus, 3 different
sets were built not including these variables to build a separate
second model (model 2) for future projections.

ENMs were built with the maximum entropy algorithm
(Phillips and Schapire, 2004) using MaxEnt 3.4.4 (Steven et al.,
2021) implemented in the Kuenm package (Cobos et al., 2019)
for R. Using the Kuenm package, calibration models were built
with all combinations of MaxEnt features L (linear), Q (quad-
ratic), P (product) and H (hinge). All models were repeated
with regularization multiplier parameters 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4 and 5. The performance of all these
models were evaluated primarily with the partial receiver operat-
ing characteristics (pROC) test and an omission threshold rate of
5% (Peterson and Soberón, 2012; Aguilar-Domínguez et al.,
2021), secondary evaluations were done with Akaike information

criterion corrected for small sample size (AICc). The selected
eventual calibration models were statistically significant, that
have omission rates below 5% and with ΔAICc values below 2
(Warren and Seifert, 2011; Nuñez-Penichet et al., 2021).

After model calibrations, final models were created with the
selected parameters in the resulting calibration models using all
the same occurrences of training and testing data with 10 boot-
strap replicates. Then, these final models were additionally evalu-
ated with the independent location data (n = 24) that were not
used for building and selecting these models.

Map binarization was done by using the average logistic thresh-
olds ofmaximum training sensitivity plus specificity of 10 replicates
(Liu et al., 2013). Consensusmaps of the nichemodels for the future
projections were created by taking the average of GCMs. In order to
show the effects ofmodel projections under novel future conditions,
we transferred models with allowed projections in novel climate
conditions (extrapolation with clamping to the GCM scenarios)
(Cobos et al., 2019). To see the places where conditions are more
extreme compared to the calibration area of the models, a
mobility-oriented parity metric (MOP) analysis was carried out
and extrapolation riskof transfer regionswas calculatedwith nearest
10% reference (Owens et al., 2013; Alkishe et al., 2020; Flores-López
et al., 2022). Because of memory limitations, resolution of calibra-
tion area and transfer rasterswere changed from30 s to2.5 min reso-
lution and MOP analysis were carried out with the mop function
included in the kuenm package (Cobos et al., 2019). Again, consen-
sus maps for MOP were created taking the average of all GCMs for
each ssp scenario and 4 MOP maps were created in total.

Results

Model parameters

Environmental parameters selected based on correlation thresh-
olds and vif for variable sets used in model calibrations are
shown in Table 1. In total 420 candidate models were created

Figure 1. All occurrence points of Hyalomma marginatum after cleaning and thinning.
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for the first model (model 1). All of 420 candidate models
were statistically significant (pROC test P < 0.05); however, of
these only 82 fulfilled the omission rate criteria of 5% (omission
rate = 3.6%). Only one of these met the AICc criteria of ⩽2
(ΔAICc = 0.90). This final selected model is a linear quadratic
model with a regularization multiplier parameter of 0.2, which
uses variables included in set 1 with a mean area under the
curve (AUC) ratio of 1.21. The final evaluation with the inde-
pendent test set resulted in an omission rate of 8.3%. Although
this value is larger than the 5% threshold set for evaluations
with the cross-validation sets, the independent test set had a sam-
ple size of n = 24, and 8.3% omission rate means that the final
model classified 22 of 24 test locations correctly which is a pretty
good result for a machine learning algorithm. The percent contri-
bution and permutation importance of 12 predictors are shown in
Table 2. Out of these, the most important parameter was cmi with

a contribution of 33.1%, followed by Bio14 (precipitation amount
of the driest month) with a 24.2% contribution and rsds with an
8.4% contribution. Bio6 (minimum air temperature of the coldest
month) was the fourth most important predictor (7%
contribution).

Out of 630 candidate models for the second Chelsa model
(model 2) built for future projection, 625 were statistically signifi-
cant (pROC test P < 0.05). Out of these, 201 met the 5% omission
rate criteria (≈ 4.5%), and only 2 of them met the AICc criteria: a
PH (product hinge) model with a regularization multiplier of 2
(ΔAICc ≈ 0), and a QPH (quadratic product hinge) model with
a regularization multiplier of 2 (ΔAICc≈ 1.27). Both of these
final calibration models used the set 1 variables created for the
second model. Mean AUC values were 1.23 and 1.20 for the prod-
uct hinge and quadratic product hinge models, respectively. The
final evaluation with the independent test set showed omission
rates 8.3% and 12.5% for the PH and QPH models, respectively,
indicating that the PH model is better for predictions. For the
second model, there were 11 predictors. The biggest contributors
were Bio13 (precipitation amount of wettest month) with 31.3%
followed by Bio14 (19.4% contribution) and Gdd0 (growth degree
days above 0 °C) with a 13% contribution. Like model 1, Bio6 was
the fourth important predictor for model 2 with 8.2% contribu-
tion. Threshold values for creating binary maps were 0.409 and
0.483, respectively.

Current and future predictions

Suitable areas for present conditions are shown in Fig. 2.
According to the first model, the current climatically suitable
region for H. marginatum stretches out from Iberian Peninsula
to Anatolia and the Caspian Sea. This region includes most of
the Mediterranean basin. This pattern mostly coincides with the
reported locations of H. marginatum. The predictions of 2 models
are mostly compatible with each other. Compared to the first
model, the prediction of the second model for the current distri-
bution shows a wider suitable area in some regions, especially in
North Africa and near Hungary. Also, the first model shows wider
suitable regions in Trans-Caucasus and Spain compared to the
second model. This might be due to the fact that the second
model does not include parameters like cmi and rsds which are

Table 1. Environmental predictors used for different sets in model 1 and model 2 with explanation of the predictors in the first column

Model 1 Model 2

Set 1 Set 2 Set 1 Set 2 Set 3

Bio3 (isothermality) √ √ √ √ x

Bio4 (temperature seasonality) √ x √ x x

Bio6 (min. air temp. of the coldest month) √ x √ x x

Bio7 (annual range of air temperature) √ √ √ √ √

Bio13 (precipitation amount of the wettest month) √ √ √ √ √

Bio14 (precipitation amount of the driest month) √ √ √ √ x

Bio15 (precipitation seasonality) √ √ √ √ √

Gdd0 (growing degree days heat sum above 0°C) x x √ x x

Gst (mean temperature of the growing season) √ √ √ √ √

Gsp (precipitation amount of the growing season) √ x √ x x

Net primary productivity (npp) √ x √ x x

Surface downwelling shortwave radiation (rsds) √ x x x x

Climate moisture index (cmi) √ x x x x

Table 2. Percent contribution of environmental predictors to model 1 and
model 2

Model 1 Model 2

Predictor
Percent

contribution Predictor
Percent

contribution

Cmi 33.1 Bio13 31.3

Bio14 24.2 Bio14 19.4

Rsds 8.4 Gdd0 13

Bio6 7 Bio6 8.2

Bio15 6 Npp 8

Bio13 5.7 Bio15 7.5

Gst 4.2 Bio4 4.9

Npp 4.1 Bio3 4.5

Bio3 2.1 Gst 2.2

Bio7 1.8 Bio7 1.1

Bio4 1.8 Gsp ≈ 0

Gsp 1.5
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present in the first model. On the contrary, the second model
includes another important parameter, gdd0, which was elimi-
nated from the first model in the correlation and vif selection
procedure.

The predicted changes in suitable areas under GCM scenarios
compared to present conditions are also shown in Fig. 3. Future
projections under ssp370 scenarios for 2011–2040 show a signifi-
cant widening of the climatically suitable area. The direction of
the expansion is northwards in Europe, westwards in Anatolia
and southwards in North African regions. Interestingly, the pro-
jections for the 2041–2070 period do not show such widening
compared to the 2011–2040 period in eastern Europe and
Anatolia; for example, the patches of new barely suitable regions
in Baltic regions and Russia are lost in the 2041–2070 scenarios.
In addition to that, there are significant declines in some regions
in both ssp370 and ssp585 scenarios; these areas of suitability
decline are especially distinct in central Anatolia and some
areas in Balkans and central Europe. While both ssp370 and
ssp585 show similar patterns in new areas for the 2041–2070 per-
iod, ssp585 scenarios present a wider new region of low suitability
in France and eastern Germany. The results of MOP analysis
done for between calibration area and future projections are
shown in Fig. 4. High extrapolation risk areas are located relatively
far from the current distribution and projected shifting areas of H.
marginatum and the regions with high or strict extrapolation start
from the north and east of Caspian Sea, Middle East (Arabian
Peninsula, Israel and Egypt) and Africa (excluding northwest
Africa).

Discussion

The outputs from the first model show that the main climatic lim-
iting factors for H. marginatum are cmi and precipitation, fol-
lowed by surface radiation and minimum temperatures. Relative
humidity or moisture is crucial for ticks, as they are highly suscep-
tible to cuticular water loss in their off-host state (Knülle and
Rudolph, 1982; Benoit and Denlinger, 2010; Estrada-Peña et al.,
2012; Requena-García et al., 2017; Leal et al., 2020). The import-
ance of water content of air for H. marginatum has also been
demonstrated in previous habitat suitability models
(Estrada-Peña et al., 2011; Fernández-Ruiz and Estrada-Peña,
2021). Another important parameter is incoming surface radi-
ation, which is a relatively neglected parameter in ENMs for
ticks despite the fact that it is a critical parameter for small arthro-
pods (Davis et al., 2005; Battisti et al., 2013; Barrett and
O’Donnell, 2023). Solar radiation might affect many different
parameters related to ticks. Firstly, it is the main driver of micro-
climate temperature, and higher levels of solar radiation might
increase tick abundance and questing activity (Kiewra et al.,
2014; Del Fabbro et al., 2015). However, due to ultraviolet-B
(UVB) radiation, very high levels of solar radiation might also
have deleterious effects on small ectotherms like acari (Sakai
et al., 2012; Sudo and Osakabe, 2015).

The predicted area for the current conditions in model 1 is
mostly compatible with previous habitat suitability models created
for H. marginatum (Williams et al., 2015; Fernández-Ruiz and
Estrada-Peña, 2021). Additionally, the model output shows

Figure 2. Maps of predicted suitable areas from the ENM results. (A) Red areas show the suitable regions under current conditions according to model 1. (B) Green
areas show the suitable regions under current conditions for model 2.
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Figure 3. Maps of predicted suitable areas for future average of 5 GCM scenarios with differing degrees of loss and gain compared to current conditions for model
2. (A) For ssp370 in the 2011–2040 period. (B) For ssp370 in the 2041–2070 period (C) for ssp585 in the 2011–2040 period (D) for ssp585 in the 2041–2070 period.

Figure 4. Extrapolation risk in 4 GCM projections of H. marginatum with MOP10%. Green to black scale shows increasing risk extrapolation where black areas are
regions with strict extrapolation. (A) For ssp370 in the 2011–2040. (B) For ssp370 in the 2041–2070 period. (C) For ssp585 in the 2011–2040 period. (D) For ssp585 in
the 2041–2070 period.
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potential suitable areas in Trans-Caucasus and Iran, especially in
northern Iran near the coast of the Caspian Sea, despite that the
dataset of locations used for the models did not include any loca-
tions from this region. Although no exact coordinates are pre-
sented in the literature, CCHF cases and also H. marginatum
ticks carrying the virus have been reported from this area
(Shemshad et al., 2012; Sofizadeh et al., 2014; Telmadarraiy
et al., 2015; Sedaghat et al., 2017).

Model 2 output shows a larger climatically suitable area com-
pared to the more restrictive predictions of model 1. Important
parameters like moisture index (cmi) and surface radiation
(rsds) were left out for this model, as they are not available for
future scenarios. Moisture index is replaced by precipitation of the
wettest period (Bio13) as the most important parameter in model 2,
whichwas in sixth place in the previousmodel. Although net precipi-
tation amount is not as strong as water deficit or moisture index as a
predictor, this shows the importance of the water balance for climatic
suitability. In addition, surface radiation is replaced by gdd0 (growth
degree days above 0 °C), which was eliminated from model 1 due to
correlation threshold with other parameters. Fulfilling the required
degree days is an important necessity forH.marginatum populations
to establish in a new region (Estrada-Peña, 2023). It has been reported
that a yearly accumulated temperature of 3000–4000 °C is necessary
for this species (Estrada-Peña et al., 2011); a northern limit roughly
coincides with 47°N.

With the increased temperature in recent decades, new reports
of H. marginatum have also been increasing in Europe (Hornok
and Horváth, 2012; Duscher et al., 2018; Bah et al., 2022;
Lesiczka et al., 2022). Gillingham et al. (2023), who modelled
the probability of survival and establishment of H. marginatum
populations depending on cumulative degree days for the
United Kingdom, forecasted increased risk in southern UK in
the future. Also, the prediction maps for the climatically suitable
area for ssp370 and ssp585 scenarios point to a northward expan-
sion in Europe in the future. Depending on the models trained
with trends in climate and tick records between 1970 and 2018,
Fernández-Ruiz and Estrada-Peña (2021), assumed that the suit-
able climatic area in Europe would expand while maintaining the
original Mediterranean distribution. Additionally, Williams et al.
(2015) also predicted a northward expansion under AR5 climate
scenarios in the future. Another parameter that should be consid-
ered is minimum temperatures, which occupied fourth place in
both models 1 and 2. In addition to the above-mentioned effect
of temperature (degree days) on development time, overwintering
survival is another important factor for H. marginatum, as most
adults overwinter in the field (Valcárcel et al., 2020). An increase
in the minimum temperatures in the field might increase winter
survival and contribute to the ongoing and possible future expan-
sion in the northern limits of H. marginatum populations
(Estrada-Peña et al., 2012). Projections for future distributions
are compatible with these predictions, showing a very similar pat-
tern of new suitable regions in North Spain, France, the Balkans
and western Anatolia. The projections for 2041–2070 point to a
continuation of this expansion; however, the projection also
points to significant declines in some regions, mostly in central
Anatolia and the Balkans. This is most probably due to the
decrease in precipitation, as climatic simulations predict that the
impact of decreased precipitation will be much higher in the east-
ern Mediterranean, especially in Turkey (Hoerling et al., 2012;
Turkes et al., 2020). It was previously suggested that the northern
limit for H. marginatum is thought to be mainly determined by
temperature, while the southern limit is determined by precipita-
tion and humidity (Gray et al., 2009), and expansion in the north
and contraction in the south is an expected outcome in the future.

It also has to be considered that in some regions, the change
in suitability might be more complex than this pattern. With

projected ongoing climate change, an interchange of climatically
suitable and unsuitable areas can be seen in models
(Gillingham et al., 2023). A previous model using RCP8.5 scen-
arios carried out locally for Romania depicted an increase in suit-
able areas until 2050, followed by a decreasing suitability until
2070 (Domşa et al., 2016), which was also detected by future pre-
dictions in the current study (Fig. 3). This rather complex pattern
in suitability might be due to the 2 main factors (temperature and
precipitation) determining suitability. For instance, present-day
models show a highly suitable region for H. marginatum in the
central and central-north parts of Turkey. Contrasting with the
relatively more northward expansion in Europe, future projections
indicate that after 2040, this suitable area might shift towards
coastal areas where required precipitation would be available
compared to the now more arid continental regions.

Assessing the potential distribution range of ticks is important
to predict the risk of emergence and re-emergence of tick-borne
diseases (Estrada-Peña, 2008; Zhao et al., 2021). In this sense,
the interaction between ticks and climate is extremely important,
as the survival and biological functions of ticks depend strongly
on the external micro-abiotic environment (Gray et al., 2009).
It should also be kept in mind that finding a suitable host is
one of the most important drivers, which affects the distribution
of tick species in an area. On the contrary, H. marginatum is a
2-host species and uses a wide range of vertebrates at different
stages of its life cycle; this complex behaviour of this species is
another reason for the difficulties in predicting the future distri-
butions of these vectors (Apanaskevich and Horak, 2008;
Valcárcel et al., 2020; Bonnet et al., 2022). For instance, an area
might be classified as suitable for a species by an ENM in future,
but the absence or scarce distribution of suitable hosts would pre-
vent the establishment of populations in the area. Conversely,
unexpected novel hosts in new environments would provide the
necessary link for dispersal in new environments (Bakkes et al.,
2021). Additionally, landscape cover, configuration and habitat
fragmentation are other potential factors on the distribution of
ticks and transmission of tick-borne diseases (Suzán et al.,
2012; Perez et al., 2016). A previous study showed that in
Turkey, the number of CCHF cases was associated with high land-
scape fragmentation and connectivity (Estrada-Pena et al., 2010).
On the contrary, Bah et al. (2022) showed that in southern
France, sclerophyllous vegetated or sparsely vegetated open nat-
ural areas present favourable habitats for H. marginatum rather
than more humid or urbanized areas, a similar pattern is also pre-
sent in Anatolia where the highest distribution is in the central-
north while H. marginatum is significantly absent both in
humid and densely forested Black Sea coast and hot and dry
southern regions. Ecological niche models are generally more
deterministic models that build the representative fundamental
niche using presently available abiotic parameters and locations,
then project this assumed niche space to assumed future abiotic
parameter data calculated by predictive global circulation simula-
tions (Escobar, 2020; Sillero et al., 2021). Thus, these projections
are for predicting the climatically suitable areas in the predicted
future under assumed scenarios. However, these kinds of models
are among the most useful tools presently available for estimating
the potential risk of vector-borne diseases and deciding the neces-
sary precautions (Medlock and Leach, 2015, Ortega-Guzmán
et al., 2022). MOP analysis is one of the tools to interpret the
potential risk of uncertainty for transfer of models to novel
conditions (Owens et al., 2013; Cobos et al., 2019). MOP analysis
showed that the current and predicted future distribution
areas did not include areas with high risk of extrapolation.
Uncertainty maps for H. marginatum are similar to the Europe
and North Africa projections of a previous uncertainty analysis
of worldwide projections of the distribution of another tick
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species (Rhipicephalus sanguineus) to RCP scenarios done by
Alkishe et al. (2020). The main difference is that the present
MOP results of projections to ssp scenarios show new and
wider areas with high extrapolation in North Africa and Middle
East compared to the previous paper by Alkishe et al. (2020).

With the ongoing human-induced changes in the biotic and
abiotic environment we have been observing a significant increase
in dispersal and abundance of H. marginatum and also an
increase in the transmission of pathogens carried by H. margina-
tum. Future distribution projections indicate a significant increase
in potential risk due to these factors, so it is important to build
both statistical and process-based mechanistic models with new
data. Also publishing coordinates is strongly suggested, as it is
observed that there are many studies which report species pres-
ence without any coordinates that can help future coordination
between researchers and provide more reliable models. As H.
marginatum is the vector of CCHF, change in predicted distribu-
tional range might point out potential new risk areas or widening
of current endemic areas. This study may be helpful to forecast
new risk areas and therefore to expand awareness and to start
well-adapted prevention strategies against CCHF in these areas.
Similarly, our models show that the climatically suitable region
for H. marginatum matches the current distributional area,
which can be interpreted as the need to strengthen and to main-
tain control measures to CCHF in the future.

Data availability. Locations used in this study are available at https://data.
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