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Abstract
In Chen and Liang previous work, a model, together with its well-posedness, was established for credit rating migra-
tions with different upgrade and downgrade thresholds (i.e. a buffer zone, also called dead band in engineering).
When positive dividends are introduced, the model in Chen and Liang (SIAM Financ. Math. 12, 941–966, 2021)
may not be well-posed. Here, in this paper, a new model is proposed to include the realistic nonzero dividend sce-
narios. The key feature of the new model is that partial differential equations in Chen and Liang (SIAM Financ.
Math. 12, 941–966, 2021) are replaced by variational inequalities, thereby creating a new free boundary, besides
the original upgrading and downgrading free boundaries. Well-posedness of the new model, together with a few
financially meaningful properties, is established. In particular, it is shown that when time to debt paying deadline
is long enough, the underlying dividend paying company is always in high grade rating, that is, only when time to
debt paying deadline is within a certain range, there can be seen the phenomenon of credit rating migration.

1. Introduction

Following the ever-increasing development and complexity of the financial market, credit rating migra-
tion risk is playing a more and more important role. The 2008 financial tsunami and 2010 European
debit crisis exemplify the importance of proper credit risk management. It gradually becomes an urgent
task both for industries and academics to measure and manage the risk [5, 6]. In theory, there are two
main mathematical frameworks for this risk: structure model and intensity one. They are different, one
modelled by endogenic causes and the other by exogenous factors.

Structural models involve the reason of the rating objects themselves and usually indicate the rat-
ing migration boundaries; therefore, they have some advantages. The works using this kind of model
for credit rating migration can be found in [4, 7, 10, 12–17] and the reference therein, where a credit
migration boundary is used for both upgrading and downgrading. The stochastic feature of the model
will then create a phenomena of infinite many upgrading and downgrading since any Brownian motion
path oscillates around any level it reached infinitely many times. Thus, a model equipped with a buffer
zone, called dead band or hysteresis, is necessarily needed.

In [3], we establish a model for credit rating migration with different migration upgrading and
downgrading thresholds. In the model, credit rating migrations are assumed to depend on the ratio of
debt and asset value of the underlying company where debt is assumed to be a zero coupon corporate
bond and asset value follows a geometric Brownian motion with volatility depending on credit rating.
There is a buffer zone in credit rating migration, so upgrade and downgrade thresholds are different.
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Mathematically, this model is a system of partial differential equations (PDEs) with two free bound-
aries that correspond to the hitting boundaries in state space to upgrade and downgrade credit rating,
respectively. Under the condition of zero dividend, the existence, uniqueness, regularity and asymptotic
behaviour of the solution and free boundaries are obtained. In addition, some nonzero dividend cases
are discussed on the behaviours of the solution. However, the existence and uniqueness of the solution
in the nonzero dividend case are still open, since the method for the zero dividend case seems to be no
more suitable for the nonzero dividend case. In this paper, we are going to fill this gap.

From the discussion of the asymptotic behaviour of the nonzero dividend case in [3], we see that the
migration free boundaries will go to negative infinite time. This adds an interesting phenomena to the
model. There exist two times, TL and TH with 0 < TH < TL. When time to expiry is larger than TL, the
credit rating is always high. When time to expiry is between TH and TL, the credit rating can change
at most once and it is from low to high. Only when the time is shorter than TH , there are credit rating
changes that go both directions.

However, the method in [3] cannot be directly applied to the nonzero dividend case, as one PDE with
nonzero dividend in the buffer zone is no longer suitable to the maximum principle. That means, the
upgrade/downgrade condition might be violated in the buffer zone. Thus, the old model for nonzero
dividend needs to be modified. To avoid the ratios run out the threshold inside the buffer zone, obstacle
problems are applied to the model instead of pure PDEs.

The paper is organised as follows. In Section 1, a model with nonzero dividend is presented, with
the model in [3] being a special case. In Section 3, a priori properties of the solution of our model are
discussed; in particular, it is shown that, when dividends are positive, two free boundaries go to −∞ in
finite time. In Section 4, some preparations for theoretical proofs are made. In Section 5, we construct
two monotonic sequences of super and subsolutions and prove that both sequences approach the unique
solution of the problem. Since the free boundaries go to −∞, part of the solutions are limited to finite
time to have a financial meaning. Main theorem is stated in Section 6, where uniqueness is also proved.
Section 7 gives final conclusion.

2. Model

A credit rating migration model is established in [3], where only Black–Scholes equations are used.
When underlying asset pays zero dividend, the model was shown to be well-posed. When positive div-
idends are added into the model, only short-time existence can be proved and global solutions do not
exist in certain cases. Hence, the model in [3] needs to be modified. In this paper, we revise the model
by replacing the Black–Scholes equations by variational inequalities. We will show later that the revised
model is well-posed.

2.1. Basic assumptions

We assume that the underlying firm issues a corporate bond, which is a contingent claim of its (observ-
able) asset value and its credit rating. We consider the simple case where only two ratings are used: “H”
and “L”.

Assumption 1 (Firm’s asset under different credit ratings). Let (�, {Ft}t�0, P) be a complete probability
space with filtration. Denoting by St the firm’s asset value in the risk neutral world,1 we assume that {St}
obeys the stochastic differential equation (SDE)

1One may criticise that the real asset value is not observable; here for mathematical simplicity we assume that the credit rating
assign organisation is able enough to learn the real asset value of the underlying company.
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Figure 1. An illustration of the rating migration. Left: starting from a low rating, the rating will upgrade
at τ1, downgrade at τ2, upgrade at τ3 and downgrade at τ4; Right: with the same sample path as the left,
but starting from a high rating, the rating will downgrade at τ0, the rest is the same as the left figure.
Starting from different rating, the bond values are different only up to time τ0. After τ0, initial difference
of company’s rating disappears.

dSt

St

=
{

(r − δH)dt + σ HdWt in the high rating region,

(r − δL)dt + σ LdWt in the low rating region,
(2.1)

where r is the risk free interest rate, and (σ H , σ L) and (δH , δL) are constants that represent volatilities
and dividend rates of the firm under the high and low credit grades, respectively. Also {Wt}t�0 is the
standard Brownian motion, which generates the filtration {Ft}.

In this paper, we assume that

0 < σ H < σ L, 0 � δL � δH . (2.2)

This means that the volatility in the high rating region should be lower than the one in low rating region,
and in high rating, the firm would like to pay more dividend.

When δL = δH = 0, as one can see from our analysis, no variational inequalities are needed, so the
model reduces to the one in [3]. Hence, in this paper, we consider only δL > 0. We will see later that
when δL = 0 and δH > 0 the methods used in [3] still work.

Assumption 2 (The corporate bond). The firm issues only one zero coupon bond with face value F.
Denote by �t the discount value of the bond at time t. Then, on the maturity time T , the bond value is
�T = g(ST), where g(S) = S ∧ F. Throughout this paper, we use notation a ∧ b = min{a, b} and a ∨ b =
max{a, b}.
Assumption 3 (The credit rating migration). The bond is regarded as debt, and the maturity time T as
the debt paying back deadline. We assume that this is the only debt that the underlying company owes.
Then the changes of credit ratings are assumed to be determined by the ratio of the debt and asset value.
From this view, we define the process of financial situation by

γt = �t

St

.

Following [3], we assume that when γt ≥ γ H , the company is downgraded; when γt � γ L, the company
is upgraded and when γ L < γt < γ H , the rating will not be changed. See Figure 1 for an illustration.
Here, γ H and γ L are downgrade and upgrade thresholds, respectively, and satisfy

0 < γ L < γ H < 1. (2.3)

This assumption describes that the credit rating migrations have a buffer or grace region, where, as in
[3], downgrade and upgrade boundaries are different.
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2.2. The rating process

We use a stochastic process {Rt}t�T to denote the rating of the underlying company. Assume for simplicity
that there are only two ratings, H and L, where H stands for high rating and L stands for low rating. Thus,
Rt takes only two values, H and L.

We assume that Rt is observable in the sense that there are closed sets �H and �L, such that

(i) If (St, t) ∈ �H , the rating remains at or changes to H;
(ii) If (St, t) ∈ �L, the rating remains at or changes to L;
(iii) If (St, t) /∈ �H ∪ �L, the rating will not change.

It is natural to assume that �H is a graph with a low boundary and �L is a graph with an upper
boundary, i.e.

If (S, t) ∈ �H , then (S + h, t) ∈ �H for every h > 0;

If (S, t) ∈ �L, then (z, t) ∈ �L for every z ∈ (0, S).

That is, there are functions bL and bH defined on (−∞, T] such that

�L = {(S, t)|t � T , S � bH(t)}, �H = {(S, t)|t � T , S � bL(t)}.
This implies that bH is the boundary of high credit rating region

QH = {(S, t) | t � T , S > bH(t)}
and bL is that for low credit rating region

QL = {(S, t) | t � T , S < bL(t)}.
We call the region

B = {(S, t) | t � T , bH(t) < S < bL(t)}
the buffer zone in which no credit rating changes.

The purpose of our paper is to find a model to calculate bH and bL. Based on the assumption, we have

Rt =

⎧⎪⎨
⎪⎩

H if St � bL(t),

L if St � bH(t),

Rt− if bH(t) < St < bL(t).

Then, we have the dynamics of asset value{
dSt = (r − δRt )Stdt + σ Rt StdWt,

(S0, R0−) is given.
(2.4)

2.3. Company debt

Conditioned on St = S and Rt = R, we use �R(S, t) to denote the value of the bond (debt) at time t. Note
that when (S, t) ∈ �H , the rating can only be H; thus, �L(S, t) is undefined. Similarly, when (S, t, ) ∈ �L,
the rating can only be L; thus, �H(S, t) is undefined. For technical convenience, we artificially2 define

�H(S, t) = γ HS if (S, t) ∈ �L,

�L(S, t) = γ LS if (S, t) ∈ �H .

2Defining �H = �L in �H ∪ �L would be another meaningful extension but not convenient for our presentation.
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Suppose that current time is t ∈ (−∞, T). We define the upgrade time τ t
u and downgrade time τ t

d by

τ t
u := inf{τ � t | (Sτ , τ ) ∈ �H} = inf{τ � t | Sτ � bL(τ )};

τ t
d := inf{τ � t | (Sτ , τ ) ∈ �L} = inf{τ � t | Sτ � bH(τ )}.

Here, τ t
u has double meaning: (1) it is the time to change rating from L and H; (2) the rating remains

at H. Similar meaning applies to τ t
d. Note that if (St, t) ∈ �H , then τ t

u = t, and if (St, t) ∈ �L, then τ t
d = t.

See Figure 1.
We assume that �H and �L are defined by, for y > 0 and t � T ,

�H(S, t) = (γ HS) ∧E

[
er(t−T)g(ST)1τ t

d�T + γ Her(t−τ t
d )Sτ t

d
1τ t

d<T

∣∣∣St = S
]
,

�L(S, t) = (γ LS) ∨E

[
er(t−T)g(ST)1τ t

u�T + γ Ler(t−τ t
u)Sτ t

u
1τ t

u<T

∣∣∣St = S
]
.

To explain the meaning, let us consider �L(S, t). Conditioned on St = S and Rt− = L, there are two cases

(i) (S, t) ∈ �H . Then τ t
u = t; hence �L(S, t) = γ LS;

(ii) (S, t) /∈ �H . Then τ t
u > t and Rt = L for τ ∈ [t, τ t

u), so that

dSτ = (r − δL)Sτ dτ + σ LSτ dWτ for τ ∈ [t, τ t
u).

Thus, by a standard theory of stochastic process (e.g. [9]), we can drive that �L is a solution of
the variational inequality:⎧⎪⎨

⎪⎩
F L�L(S, t) = 0 for t < T , S < bL(t),

�L(S, t) = γ LS for t < T , S � bL(t),

�L(S, T) = (γ LS) ∨ g(S) for S > 0,

(2.5)

where

F L�(S, t) = min
{
� − γ LS, −∂�

∂t
− (σ L)2

2
S2 ∂2�

∂S2
− (r − δL)S

∂�

∂S
+ r�

}
.

Similarly, �H is the solution of the variational inequality⎧⎪⎨
⎪⎩

F H�H(S, t) = 0 for t < T , S > bH(t),

�H(S, t) = γ HS for t < T , S � bH(t),

�H(S, T) = (γ HS) ∧ g(S) for S > 0,

(2.6)

where

F H�(S, t) = max
{
� − γ HS, −∂�

∂t
− (σ H)2

2
S2 ∂2�

∂S2
− (r − δH)S

∂�

∂S
+ r�

}
.

2.4. Rating changes

We assume that when the credit rate changes, the bond price does not change. This produces the free
boundary condition ⎧⎨

⎩
�H(bL(t), t) = γ LbL(t) if bL(t) > 0,

�L(bH(t), t) = γ HbH(t) if bH(t) > 0.
(2.7)
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In conclusion, we model the credit rating change by (�H , �L, bH , bL) which is a solution of (2.5),
(2.6), (2.7).

Remark 2.1. Define times

TH = 1

δL
ln

1

γ H
, T̂L = 1

δL
ln

1

γ L
, TL = TH + 1

δH
ln

γ H

γ L
. (2.8)

Due to the dividend paying, we shall show that{
bH(t) > 0 for t ∈ (T − TH , T],

bH(t) = 0 for t � T − TH ,{
bL(t) > bH(t) � 0 for t ∈ (T − TL, T],

bL(t) = 0, for t � T − TL.

In particular, if t � T − TL, the company is always in high rating and will remain in the high rating
at least up to time T − TH .

2.5. The free boundary problem

Denote by, for t > 0 and x ∈R,

sH(t) = bH(T − t), vH(x, t) = �H(Fex−rt, T − t)

Fex−rt
,

sL(t) = bL(T − t), vL(x, t) = �L(Fex−rt, T − t)

Fex−rt
.

Note that here t represents the amount of time left from maturity date of the bond. From (2.5)–(2.7), we
then derive the following free boundary problem.

(FBP): Find lower semicontinuous functions sL, sH : [0, ∞) 	→ [−∞, ∞) and continuous functions
vL, vH : R× [0, ∞) 	→ [0, 1] such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{L LvL, vL − γ L} = 0 in QL := {(x, t)|t > 0, x < sL(t)},
max{L HvH , vH − γ H} = 0 in QH := {(x, t)|t > 0, x > sH(t)},
vL = γ L in �H := R× (0, ∞) \ QL,

vH = γ H in �L := R× (0, ∞) \ QH ,

vL(sH(t), t) = γ H if t � 0 and sH(t) > −∞,

vH(sL(t), t) = γ L if t � 0 and sL(t) > −∞,

vL(·, 0) = vL
0(·) on R,

vH(·, 0) = vH
0 (·) on R,

(2.9)

where for l = L, H,

L l = ∂

∂t
−

( (σ l)2

2

∂

∂x
− δl

)( ∂

∂x
+ 1

)
,

σ l, δl and γ l are positive constants satisfying (2.2) and (2.3) and vl
0 is defined as, for x ∈R,

v0(x) = 1 ∧ e−x, vL
0(x) = γ L ∨ v0(x), vH

0 (x) = γ H ∧ v0(x). (2.10)

It is clear that

sH(0) = − ln γ H , sL(0) = − ln γ L. (2.11)
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Figure 2. Sketch of three free boundaries in the scaled variable (x, t): upgrading boundary x = sH(t),
downgrading boundary x = sL(t) and obstacle boundary x = ŝL(t); and three regions: low rating
�L (blue), high rating �H (purple) and buffer zone B = QH ∩ QL (white), where QH = B ∪ �H and
QL = B ∪ �L.

This is a new model and in mathematics, it is a new problem. Thus, first, we need to establish the well-
posed of the problem, then analyse the properties of the solution and finally verify financial implications.

The rest of the paper is to study the free boundary problem (2.9). Thus, in the sequel, t is not the
current time; instead, it is time to maturity. In addition, subscripts denote partial derivatives with respect
to the subscripts.

2.6. Idea of the proof of the existence of (2.9)

The free boundary problem (2.9) contains two unknown functions, vL and vH , and two unknown bound-
aries, sH and sL. The unknown vL can be solved from a standard variational inequality in QL, provided
that we know its boundary sL. Similarly, vH can be solved from a standard variational inequality in QH

(indeed an equation L HvH = 0) if we know its boundary sH . See Figure 2 for an illustration.
In Section 3, we shall establish certain properties of the solution, in particular, the free boundaries.

We shall use a fixed point theorem to show the existence. The properties established in Section 3 will
be used to define function spaces for the mapping.

For the existence, first by assuming that sL = h1 is a given known function in certain function class
we solve the variational inequality

min{L Lu1, u1 − γ L} = 0 in {x < h1(t)}. ©1
Supplied with initial and boundary conditions, this falls into a category of standard free boundary
problems [8]. We shall show in Section 4 that there exists a free boundary ĥ such that

L Lu1 = 0 & u1 > γ L if x < ĥ(t), L Lu1 � 0 & u1 ≡ γ L if ĥ(t) � x � h1(t).

We extend naturally by u1 ≡ γ for x > h(t).
From the solution, we study the level set function h2 defined implicitly by

u1(h2, t) = γ H (i.e. h2(t) = inf{x|u1(x, t) < γ H}). ©2
The map from h1 to u1 and then to h2, together with the function ĥ, is studied in Section 4.

Next, we assume that sH = h2 is a known function. We solve u2 from the variational inequality

max{L Hu2, u2 − γ H} = 0 in {x > h2(t)}. ©3
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Indeed, we can show by a maximum principle that u2 < γ H so that the variational inequality ©3 is
equivalent to the PDE L Hu2 = 0 in {x > h2(t)}.

From u2, we study the level set function h̃1 defined by

u2(h̃1, t) = γ L (i.e. ĥ1(t) = inf{x|u2(x, t) < γ L}). ©4
For the existence, we shall show in Section 5 that map from h1 to h̃1 via

h1
©1−→ u1

©2−→ h2
©3−→ u2

©4−→ h̃1

admits a fixed point. Indeed, we can show by comparison that the iteration of the map provides a
monotonic sequence if we start from h1 ≡ sL(0). The limit of the sequence is the fixed point.

The iteration presented in Section 5.1 uses the map

h2
©3−→ u2

©4−→ h1
©1−→ u1

©2−→ h̃2

starting from h2 ≡ −∞.
One complication of our analysis arises from the phenomenon that sH(t) = −∞ when t � TH and

sL(t) = −∞ when t � TL.

Remark 2.2. We will show that vH < γ H in QH; thus, the variational inequality for vH is indeed the
original Black–Scholes equation L HvH = 0 in QH , the one that is used in the model in [3]. When δL = 0,
one can shown that vL > γ L in QL, thus, again the variational inequality for vL is the equation L LvL = 0,
used in [3]. In conclusion, when δL = 0 ≤ δH , the current model produces a unique solution that is also
the solution of the old model in [3].

For this reason, in the sequel, we assume that 0 < δL � δH .

3. A priori property of the solution

The construction of a solution of (2.9), to be given in the next section, is a little bit awkward, partially
due to the fact that upgrading and downgrading boundaries go to −∞ in finite time. Hence, in this
section, we establish a few properties of the solution, thereby shedding light towards our construction
of the solution.

Thus, suppose we have a solution. We investigate certain properties of the solution. Let TH , T̂L and
TL be defined in (2.8). Note that T̂L � TL because of δL � δH .

Lemma 3.1. Let (vL, vH , sL, sH) be a solution of (2.9). Then vL(·, t) � e−δLt for t ∈ [0, T̂L], vL ≡ γ L on
R× [T̂L, ∞), and sL ≡ −∞ in [T̂L, ∞).

Proof. Set v̄L(x, t) = e−δLt. By comparison, we have

v̄L � vL on R× [0, T̂L].

This implies vL(·, T̂L) ≡ γ L. Consequently, vL ≡ γ L in R× [T̂L, ∞) and sL = −∞ in [T̂L, ∞).

Lemma 3.2. Let (vL, vH , sL, sH) be a solution of (2.9). The upgrading boundary x = sH(t) has the
following properties:

(i) sH ∈ C∞([0, TH)); in particular sH(t) > −∞, for t ∈ [0, TH);

(ii) limt↗TH sH(t) = −∞;

(iii) sH ≡ −∞ in [TH , ∞).

Proof. 1. Let

T∗ = inf{t > 0|sH(t) = −∞}. (3.1)

Since vL(sH(t), t) = γ H if sH(t) > −∞ and by Lemma 3.1, vL(·, t) � e−δLt ∨ γ L, we see that T∗ � TH .
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2. Fix a small ε > 0 and define vε by⎧⎪⎪⎨
⎪⎪⎩

L Hvε = 0 in R× (T∗ − ε, ∞),

vε(x, T∗ − ε) =
{

γ H if x < sH(T∗ − ε),

0 if x � sH(T∗ − ε).

Then vε < γ H in R× (T∗ − ε, ∞). By comparison, vH � vε in R× [T∗ − ε, ∞). This implies

vH(−∞, t) � vε(−∞, t) = γ He−δH (t−(T∗−ε)) > γ L,

when t < T∗ − ε + 1
δH ln γ H

γ L . Thus, sL(t) > −∞ for t ∈
[
0, T∗ − ε + 1

δH ln γ H

γ L

)
. Sending ε → 0, we see

that

sL(t) > −∞ for t ∈
[
0, T∗ + 1

δH
ln

γ H

γ L

)
.

3. Next, by comparing vL( · +ε, ·) and vL(·, ·), we find that

vL(· + ε, ·) � vL(·, ·).
Thus, vL

x (x, t) � 0 for (x, t) ∈R× [0, ∞). In addition, we can show with η = 2δL

(σL)2 and h(t) =
min{sL(τ ) | 0 � τ � t} that e−δLt − eη(x−h(t)+h(0)) � vL(x, t) � e−δLt ∨ γ L. Thus

vL(−∞, t) = e−δLt ∨ γ L for t ∈
[
0, T∗ + 1

δH
ln

γ H

γ L

)
. (3.2)

This implies vL(−∞, t) > γ H when t ∈ [0, min{TH , T∗ + 1
δH ln γ H

γ L }). It then follows that sH(t) > −∞,

when 0 � t < min{TH , T∗ + 1
δH ln γ H

γ L }. Thus, T∗ � min{TH , T∗ + 1
δH ln γ H

γ L }. Hence T∗ = TH and T∗ +
1

δH ln γ H

γ L = TL.

Finally, define ĥ(t) := inf{x|vL(x, t) = γ L} ∀t ∈ [0, ∞). One can show that vL ∈ C∞(Qĥ) and vx < 0 in
Qĥ. Thus, by the implicit function theorem for vL(sH(t), t) = γ H , we derive that sH ∈ C∞([0, TH)) and
limt↗TH sH(t) = −∞.

Lemma 3.3. The downgrading boundary x = sL(t) has the following properties:

sL(t) > −∞ for t ∈ [0, TL); sL ∈ C∞([0, TL));

lim
t↗TL

sL(t) = −∞; sL ≡ −∞ in [TL, ∞).

Proof. Upon knowing that sH ≡ −∞ in [TH , ∞), we have L HvH = 0 in R× [TH , ∞). Hence,
vH(−∞, t) = γ He−δH (t−TH ), for t � TH . Also we can show that vH

x (x, t) < 0, for t � 0, x > sH(t). Hence,
vH(sL(t), t) = γ L is uniquely solvable for t ∈ [0, TL). Thus, the claim of the proposition comes.

Remark 3.1. As shown in Figure 3, when δH > δL, limt↗TL vL(−∞, t) = e−δLTL
> γ L and vL(·, TL) ≡ γ L.

It follows that in the original variable, �L is discontinuous at y = 0 and t = T − TL.

4. Preparation

In this section, we work on the variational inequalities in (2.9) with sH and sL replaced by a known
function h, which admits certain characteristic features collected in the following definition:

XL
T := {h ∈ C∞([0, T)) | h(0) = sL(0), h′ < 0 in (0, T), h(T−) = −∞}, (4.1)

XH
T := {h ∈ C∞([0, T)) | h(0) = sH(0), h′ < 0 in (0, T), h(T−) = −∞}. (4.2)

As we have seen in Section 3, we know that the solution of (2.9) satisfies sL ∈XL
TL and sH ∈XL

TH . Since
the variational inequality for vH is indeed trivially a PDE, we focus on vL. Thus, for a given constant
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Figure 3. Sketch of the rating boundaries and solutions’ asymptotic behaviour.

T > 0 and a given function h ∈XL
T , here in this section, we consider the variational problem (known as

an obstacle problem):⎧⎪⎨
⎪⎩

min{L Lu, u − γ L} = 0 in Qh := {(x, t) | 0 < t < T , x < h(t)},
u(x, 0) = vL

0(x) for x ∈R,

u = γ L on �h := R× (0, ∞) \ Qh.

(4.3)

If h is a constant function, (4.3) is a standard free boundary problem, see, for example [8]. Similar to
the idea of [8], we shall show the following:

Theorem 4.1 (Existence and uniqueness of obstacle problem (4.3)). Given T > 0 and h ∈XL
T , problem

(4.3) admits a unique solution. It satisfies ux � 0 and ut � 0 in Qh and

lim
x→−∞

u(x, t) = e−δLt ∨ γ L ∀t ∈ [0, T). (4.4)

Consequently, we can define

ĥ(t) := inf{x|u(x, t) = γ L} ∀t ∈ [0, ∞), (4.5)

s(t) := inf{x|u(x, t) < γ H} ∀t ∈ [0, ∞). (4.6)

In addition, letting TL and TH be defined in (2.8), we have the following:

1. ĥ is a decreasing function in [0, T);

2. ĥ(t) > −∞ if t ∈ [0, TL ∧ T); ĥ(t) = −∞ and u(·, t) ≡ γ L if t ∈ [TL, T);

3. u ∈ C∞(Qĥ); ux < 0 and ut < 0 in Qĥ;

4. s ∈XH
TH∧T ; s ≡ −∞ in [TH , T).

We call x = ĥ(t) the free boundary of the obstacle problem (4.3).

Proof. Since u ≡ γ L on R× [0, ∞) \ Qh, we need only to solve it in Qh. Using the penalty method
(e.g. [8]), a solution of (4.3) can be obtained by taking the limit, as ε ↘ 0, of the solution of the
approximation problem ⎧⎪⎨

⎪⎩
L Luε = βε(uε) in Qh,

uε(h(t), t) = γ L for t ∈ (0, T),

uε(x, 0) = vε
0(x) for x � h(0),

(4.7)
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where βε(u) = δLγ L(γ L + ε − uε)+/ε, vε
0 = vL

0 + wε 1[0,h(0)] and

wε(x) =

⎧⎪⎨
⎪⎩

x(1 − x/(4ε)) if 0 � x � 2ε,

ε if 2ε � x � h(0) − 2ε,

(h(0) − x)[1 − (h(0) − x)/(4ε)] if h(0) − 2ε � x � h(0).

One can verify that vε
0 ∈ C1((−∞, h(0)]), (vε

0)
′ � 0, vL

0 � vε
0 � vL

0 + ε and(
(σ L)2

2

d

dx
− δL

)(
d

dx
+ 1

)
vε

0 + βε(v
ε

0) � 0 in (−∞, h(0)], (4.8)

when 0 < ε < ε0 with a sufficiently small positive ε0.
By a standard theory for parabolic equations [11], problem (4.7) admits a unique solution. We have

the following observation:

1. u ≡ γ L is a subsolution. Thus, uε ≥ γ L. Consequently 0 �L Luε � δLγ L in Qh.
2. Since uε(h(t), t) = γ L � uε(x, t) for x < h(t), we have uε

x(h(t), t) � 0 for t ∈ [0, T). Also uε
x(x, 0) � 0

for x � h(0). Applying the maximum principle to uε
x , we find that uε

x < 0 in Qh.
3. Note that from (4.8), we have uε

t (x, 0) � 0 for x � h(0). Differentiating uε(h(t), t) = γ L with
respect to t, we find that uε

t (h(t), t) = −h′(t)uε
x(h(t), t) � 0 for t ∈ [0, T). By the maximum

principle, uε
t < 0 in Qh.

4. Set ū(x, t) = max{e−δLt, ε + γ L}. One can verify that ū is a supersolution. Set u(x, t) = e−δLt −
eη(x−h(t)+h(0)), where η = 2δL

(σL)2 . One can verify that u is a subsolution. Thus, for (x, t) ∈ Qh,

e−δLt − eη(x−h(t)+h(0)) � uε(x, t) ≤ max{e−δLt, ε + γ L}.
5. Note that (γ L + ε − u)+/ε = [1 − (u − γ L)/ε]+ is an increasing function of ε, so does vε

0. Thus,
{uε}0<ε<ε0 is a family that is increasing in ε. Sending ε ↘ 0, we obtain a limit u, which is a solution
of (4.3) (c.f. [8]). The solution satisfies the estimate ux � 0, ut � 0 in Qh and

e−δLt − eη(x−h(t)+h(0)) � u(x, t) � e−δLt ∨ γ L ∀(x, t) ∈ Qh. (4.9)

Hence, we can define ĥ and s as in (4.5) and (4.6). Note that (4.4) follows from (4.9). We see from (4.4)
that −∞ < ĥ(t) � h(t) for t ∈ [0, T ∧ TL), and −∞ < s(t) < ĥ(t) for t ∈ [0, T ∧ TH). By strong maximum
principle, we have vt < 0, and vx < 0 in Qĥ. The implicit function theorem shows that s ∈XH

T∧TH . This
establishes the existence of a solution to (4.3) that has the properties stated in the theorem. The following
comparison principle implies the uniqueness of the solution, completing the proof of Theorem 3.1.

Theorem 4.2 (Comparison principle). Let T > 0 and h ∈ C1([0, T)) be given. Assume that u and ū are
bounded and continuous and satisfy⎧⎪⎨

⎪⎩
F Lu �F Lū in Qh,

u(h(t), t) ≤ ū(h(t), t) for t ∈ (0, T),

u(x, 0) � ū(x, 0) for x � h(0).

(4.10)

Then ū � u in Qh.

Proof. We use a contradiction argument. Assume that the assertion is not true. Then there exist
t0 ∈ (0, T) and x0 < h(t) such that ε := u(x0, t0) − ū(x0, t0) > 0. Set

φ(x) = e−x + e
δL

2(σL )2
x
, w(x, t) = u(x, t) − ū(x, t) − ε

2φ(x0)
φ(x).

Note that w(−∞, t) = −∞, w(h(t), t) < 0 for t ∈ (0, t0] and w(x, 0) < 0 for x � h(0). Since w(x0, t0) > 0,
there exist t1 ∈ (0, t0] and x1 < h(t) such that

w(x1, t1) = max
0�t�t0,x�h(t)

w(x, t) > 0.
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Then, wx(x1, t1) = 0, wt(x1, t1) � 0, and wxx(x1, t1) � 0. By noting that L Lφ ≡ 0, we then obtain

δLw(x1, t1) �L Lw = L Lu(x1, t1) − L Lū(x1, t1).

This implies

F Lū(x1, t1) = min{L Lū(x1, t1), ū(x1, t1) − γ L}
� min{L Lu(x1, t1) − δLw(x1, t1), u(x1, t1) − γ L − w(x1, t1)}
< F Lu(x1, t1).

This contradicts the assumption. Thus, we have u � ū in Qh.

Remark 4.1. The proof given above is still in the formal level, since we did not specify the regularity. It
can be made rigorous if viscosity solutions are introduced. Here, we omitted the technicality. For more
details, see, for example, [1, 2].

5. Existence via sub-super solution iterations

Here, we establish the existence of a solution to the free boundary problem (2.9). We use a monotonic
iteration method. More precisely, starting from sH

0 (·) ≡ −∞, we construct successively a sequence of
subsolutions {vH

k , sL
k , vL

k , sH
k+1}∞

k=0 that is increasing in k. A solution is then obtained by sending k → ∞.
We can also start from s̄L

0(·) ≡ sL(0) to construct successively a sequence of supersolutions
{v̄L

k , s̄H
k , v̄H

k , s̄L
k+1}∞

k=0 that is decreasing in k. The limit, as k → ∞, is also a solution.
Upon establishing the uniqueness of solution, we see that the limits obtained from the two mono-

tonic iterations are the same. These sub-supersolutions can be used to estimate the solution and derive
asymptotic behaviours of the solution as t → TH and TL. In the case of zero dividend, the analysis is
presented in [3, 7].

5.1. Subsolutions

Set sH
0 (·) ≡ −∞ and T0 = 0. We shall inductively define {vH

k , sL
k , vL

k , sL
k+1}∞

k=0. For this, we make an induc-
tion assumption that there exists Tk � 0 such that sH

k ≡ −∞ in [Tk, ∞) and sH
k ∈XH

Tk
, where XH

T is defined
in (4.2).

Suppose that k � 0 is an integer and sH
k is known, we construct vH

k , sL
k , vL

k , sL
k+1 and Tk+1 as follows.

Step 1. Define vH
k (t) as the solution of the initial boundary value problem⎧⎪⎨

⎪⎩
L HvH

k = 0, for x > sH
k (t) t > 0,

vH
k (x, t) = γ H for x � sH

k (t), t > 0,

vH
k (x, 0) = γ H ∧ e−x for x ∈R, t = 0.

(5.1)

We consider k = 0 and k � 1 separately.
When k = 0, this is a Cauchy problem. There exists a unique solution vH

0 ∈ C∞(R× [0, ∞) \
(sH(0), 0)). Since γ H is a supersolution and e−x is a steady state, γ H ∧ e−x is a supersolution so vH

0 (x, τ ) <

vH
0 (x, 0) for τ > 0 and x ∈R. This implies by comparison that vH

0 (·, t + τ ) < vH
0 (·, t) for all t � 0 and τ > 0.

Thus, vH
0t � 0 in R× (0, ∞). By the strong maximum principle, vH

0t < 0 for t > 0. Similarly, we derive
that with k = 0,

vH
kx(x, t) < 0, vH

kt(x, t) < 0, ∀ t > 0, x > sH
k (t). (5.2)

When k � 1, (5.1) is an initial boundary value problem for a diffusion equation in {(x, t) | t > 0, x >

sH
k (t)} and there exists a C∞ solution in {(x, t)|t > 0, x > sH

k (t)}. The maximum principle shows that
max vH

k = γ H . Hence, by Hopf’s lemma, vH
kx(s

H
k (t)+, t) < 0 for 0 � t < Tk. Also the inductive assumption
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ṡH
k < 0 implies that vH

kt(s
H
k (t)+, t) = −vx(sH

k (t)+, t)ṡH
k (t) < 0 for each t ∈ (0, Tk). The maximum principle

for vH
kx and vH

kt implies that (5.2) holds.
Notice that, since 0 < vH

k < γ H in {(x, t) | t > 0, x > sH
k (t)}, problem (5.1) is equivalent to the obstacle

problem as follows: ⎧⎪⎨
⎪⎩

max{L HvH
k , vH

k − γ H} = 0 for x > sH
k (t), t > 0,

vH
k (x, 0) = min{γ H , e−x} for x ∈R, t = 0,

vH
k (x, t) = γ H for x � sH

k (t), t > 0.

(5.3)

Step 2. Define sL
k (t) by

sL
k (t) := inf{x | vH

k (x, t) < γ L} ∈ [−∞, ∞), ∀t � 0. (5.4)

For constant A > 1, ±Ae−x is a super/subsolution. It follows that vH
k (∞, t) = 0. Similarly, we can show

that

lim
x→−∞

v̄H
k (x, t) =

{
γ H if t ∈ [0, Tk),

γ HeδH (t−Tk) if t � Tk.

In view of (5.2), we see that sL
k is well-defined. In addition, by the implicit function theorem, we

derive that s̄L
k ∈XL

TL
k

and sL
k ≡ −∞ in [TL

k , ∞), where XL
T is defined in (4.1) and

TL
k := Tk + 1

δH
ln

γ L

γ H
.

Using (sH
k )′ < 0 in (0, Tk) one can check that γ He−x+sH

k (t) is a subsolution so vH
k (x, t) > γ He−x+sH

k (t) for
x > sH

k (t) and t ∈ [0, Tk). Thus,

sL
k (t) − sH

k (t) > ln
γ H

γ L
∀ t ∈ [0, Tk). (5.5)

Step 3. Next we define vL
k as the solution of the following obstacle solution:⎧⎪⎨

⎪⎩
min{L LvL

k , vL
k − γ L} = 0 for x < sL

k (t), t ∈ (0, TL
k ),

vL
k (x, 0) = max{γ L, v0(x)} for x ∈R, t = 0,

vL
k (x, t) = γ L for x � sL

k (t), t > 0.

(5.6)

This is an obstacle problem with a lateral boundary x = sL
k (t). By Theorem 4.1, with T = TL

k , there exists
a unique solution.

Step 4. Finally, we define

ŝL
k (t) = inf{x | vL

k (x, t) = γ L} ∀t > 0, (5.7)

sH
k+1(t) = inf{x | vL

k (x, t) < γ H} ∀t > 0, (5.8)

Tk+1 = min{TH , TL
k } = min

{
TH , Tk + 1

δH
ln

γ H

γ L

}
. (5.9)

By Theorem 4.1, we know that

v̄L
k (−∞, t) = e−δLt for t ∈ [0, TL

k ), sH
k+1 ∈XH

Tk+1
.

This completes the construction of the sequence {vH
k , sL

k , vL
k , ŝL

k , sH
k+1, Tk+1}∞

k=0.
Note that, from (5.9), there exists an integer n such that Tk = TH and TL

k = TL for every k � n.
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5.2. Convergence of the subsolution sequence

Now we show that {vH
k , sL

k , vL
k , ŝL

k , sH
k }∞

k=1 is increasing in k and the limit as k → ∞ is a solution of (2.9).

Lemma 5.1. Starting from sH
0 (·) ≡ −∞ and T0 = 0, let {vH

k , sL
k , vL

k , ŝL
k , sH

k+1, Tk+1}∞
k=0 be the sequence

defined successively by (5.1), (5.4), (5.6), (5.7), (5.8) and (5.9). Then the sequence is increasing in k
in the sense that for each integer k ≥ 1,

sH
k−1(t) � sH

k (t) � sL
k (t) � sL

k+1(t) < sL(0) ∀ t > 0,

0 < vH
k � vH

k+1 � γ H , γ L � vL
k � vL

k+1 < 1 in R× [0, ∞),

sH
k (t) � ŝL

k (t) � ŝL
k+1(t) � sL

k+1(t) ∀t > 0.

Consequently, for each t � 0 and x ∈R, the limit[
sH(t), sL(t), vH(x, t), ŝL(t), vL(x, t)

]
= lim

k→∞

[
sH

k (t), sL
k (t), vH

k (x, t), ŝL
k (t), vL

k (x, t)
]

(5.10)

exists and forms a solution of the free boundary problem (2.9). In addition sH ∈XH
TH , sL ∈XL

TL and

sL(t) � sH(t) + ln
γ H

γ L
∀t ∈ [0, TH).

Proof. First, we show that the sequence is monotonic in k. We claim that sH
k (t) � sH

k+1(t) for all integer
k � 0. Since sH

0 (t) ≡ −∞, the claim holds when k = 0. Now let n � 0 be an integer and suppose that
sH

n (t) � sH
n+1(t), for all t > 0.

Comparing vH
n and vH

n+1 we find that

vH
n (x, t) ≤ vH

n+1(x, t) for t � 0, x ∈R.

Then by the definition of sL
k we derive that

sL
n(t) ≤ sL

n+1(t) ∀ t � 0.

Then comparing vL
n and vL

n+1, we find that

vL
n(x, t) ≤ vL

n+1(x, t) for t � 0, x ∈R.

As vL
kx � 0, it follows that

ŝL
n(t) ≤ ŝL

n+1(t) and sH
n (t) ≤ sH

n+1(t) ∀t � 0.

This completes the induction argument for the monotonicity of the sequence.
Recall (5.5),

sH
k (t) + ln

γ H

γ L
� sL

k (t) � ln
1

γ L
∀ t � 0.

Also, 0 � vH
k � γ H and γ L � vL

k � 1. Thus, for each t � 0 and x ∈R, the limit in (5.10) exists. We now
show that the limit is a solution of (2.9).

One can see that vL
t = 1

2
(σ L)2(vL

xx + vL
x ) − δL(vL

x + vL) in the set Q̂L := {(x, t) | t > 0, x < ŝL(t)}. In
addition, from the strong maximum principle, vL

t < 0 and vL
x < 0 in Q̂L.

Similarly, we can show that vH
t = 1

2
(σ H)2(vH

xx + vH
x ) − δH(vL

x + vL) in QH := {(x, t) | t > 0, x > sH(t)},
and vH

t < 0 and vH
x < 0 in QH .

Finally, for free boundary conditions, we have the following:

(1) vH
k (sH

k (t), t) = γ H for t ∈ [0, Tk) ⇒ vH(sH(t), t) = γ H for t ∈ [0, TH);
(2) vH

k (sL
k (t), t) = γ L for t ∈ [0, Tk, + 1

γ H ln γ H

γ L ) ⇒ vH(sL(t), t) = γ L for t ∈ [0, TL) and sL ∈XL
TL ;
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(3) vL
k (sL

k (t), t) = γ L for t ∈ [0, Tk + 1
γ H ln γ H

γ L ) ⇒ vL(sL(t), t) = γ L for t ∈ [0, TL);
(4) vL

k (sH
k+1(t), t) = γ H for t ∈ [0, Tk+1) ⇒ vL(sH(t), t) = γ H for t ∈ [0, TH) and sH ∈XH

TH .

In conclusion, (sH , sL, vH , vL) is a classical solution of (2.9). This completes the proof of
Lemma 5.1.

5.3. Supersolutions

For completion, here we construct a supersolution sequence. Starting from s̄L
0(·) ≡ sL(0), we construct

inductively {v̄L
k , s̄H

k , v̄H
k , s̄L

k+1}∞
k=0 as follows.

Let k � 0 be an integer and assume that s̄L
k is known.

Step 1. We define v̄L
k as the unique solution of⎧⎪⎨

⎪⎩
v̄L

k = γ L for t > 0, x � s̄L
k (t),

min{L Lv̄L
k , v̄L

k − γ L} = 0 for t > 0, x < s̄L
k (t),

v̄L
k (·, 0) = vL

0(·) on R.

(5.11)

From the solution, we define

s̄H
k (t) = inf{x|v̄L

k (x, t) < γ H}, ∀ t � 0. (5.12)

We consider two cases (1) k = 1 (2) k = 0.
(1) Suppose k � 1. We make an induction assumption that when k � 1, sL

k ∈XL
TL where XL

T is defined
in (4.1).

By Theorem 4.1, there exists a unique solution v̄L
k to (5.11). In addition s̄H

k ∈XH
TH , where XH

T is defined
in (4.2).

(2) Suppose k = 0. One can check that vL
k (−∞, t) = e−δLt > γ H for t ∈ [0, TH). Still s̄H

0 is well defined
and s̄H

0 ∈XH
TH .

We remark that s̄H
k (·) ≡ −∞ in [TH , ∞).

Step 2. Define v̄H
k as the solution of⎧⎪⎨

⎪⎩
L Hv̄H

k = 0 for x > s̄H
k (t), t > 0,

v̄H
k (x, 0) = γ H ∧ e−x for x ∈R, t = 0,

v̄H
k (x, t) = γ H for x � s̄H

k (t), t > 0.

(5.13)

Using maximum principle, we find that 0 < v̄H
k � γ H . Thus, it is also the solution of the variational

inequality

max{L Hv̄H
k , v̄H

k − γ H} = 0 for t > 0, x > s̄H
k (t).

That v̄H
k � γ H implies that ∂

∂x
v̄H

k (s̄H
k (t), t) � 0 for t ∈ [0, TH). Thus, by the maximum principle

(v̄H
k )x < 0 in Q̄H

k = {(x, t) | t > 0, x > s̄H
k (t)}.

Now differentiating v̄H
k (s̄H

k (t), t) = 0 and using (s̄H
k )′(t) � 0 for t ∈ [0, TH), we find that

(v̄H
k )t < 0 in Q̄H

k .

Finally, by construction sub-supersolutions (c.f. the proof of Theorem 4.1), we can show that

lim
x→−∞

v̄H
k (x, t) =

{γ H if t ∈ [0, TH),

γ HeδH (t−TH ) if t > TH .

Now define

s̄L
k+1(t) := inf{x|v̄H

k (x, t) � γ L} ∀t � 0. (5.14)

One can verify that s̄L
k+1 ∈XL

TL . This completes the inductive construction of {v̄L
k , s̄H

k , v̄H
k , s̄L

k+1}.
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5.4. The limit of the supersolution sequence

Furthermore, we can show the following, whose proof is omitted.

Lemma 5.2. Start from s̄L
0(·) ≡ sL(0). Define successively a sequence {v̄L

k , s̄H
k , v̄H

k , s̄L
k+1}∞

k=0 by (5.11),
(5.12), (5.13), (5.14). Then, the sequence is decreasing in k in the sense that for each integer
k ≥ 0,

sH
k (t) � s̄H

k+1(t) ≤ s̄H
k (t) ≤ s̄L

k+1(t) ≤ s̄L
k (t) � sL(0) ∀ t > 0,

vH
k � v̄H

k+1 � v̄H
k � γ H , vL

k � v̄L
k+1 � v̄L

k � 1 in R× [0, ∞).

Consequently, for each t � 0 and x ∈R, the limit[
sH(t), sL(t), vH(x, t), vL(x, t)

] = lim
k→∞

[
s̄H

k (t), s̄L
k (t), v̄H

k (x, t), v̄L
k (x, t)

]
exists and forms a solution of the free boundary problem (2.9) .

6. Main theorem and uniqueness

Now we present our main mathematical result of our paper.

Theorem 6.1 (Main theorem). The free boundary problem (2.9) admits a unique solution
(sH , sL, ŝL, vH , vL). The solution satisfies

sL ∈XL
TL , sH ∈XH

TH ,

vL ∈ C1
(
QL \ (0, 0)

) ∪ C∞(
Q̂L ∪ ((−∞, 0) ∩ (0, sL(0)) × {0})),

vH ∈ C∞(
QH \ (sH(0), 0)

)
,

where QH := {(x, t) | t > 0, x > sH(t)}, QL := {(x, t) | t > 0, x < sL(t)} and Q̂L := {(x, t) | t > 0, x <

ŝL(t)}. In addition,

vH
x < 0, vH

t < 0 in QH; vL
x < 0, vL

t < 0 in Q̂L;

sH ≡ −∞ in [TH , ∞); sL ≡ −∞ in [TL, ∞);

dŝL

dt
� 0 in (0, TL);

dsH

dt
< 0 in (0, TH);

dsL

dt
< 0 in (0, TL);

sL(t) − sH(t) > ln
γ H

γ L
, sH(t) < ŝL(t) � sL(t), for t ∈ [0, TH).

Proof. The existence comes from the limit of the sequence and lemmas in Section 5.
For the uniqueness, let (vH

i , vL
i , sH

i , sL
i ), i = 1, 2, be two solutions of (2.9). Fix an arbitrary positive ε.

Define vl
ε
(x, t) = vl

2(x + ε, t) and sl
ε
(t) = sl

2(t) − ε for l = H, L. Define

Tε = sup{t ∈ [0, TH] | sH
1 (τ ) > sH

2 (τ ) − ε ∀τ ∈ [0, t)}.
Clearly, from sH

1 (0) = sH
2 (0), we have Tε > 0. By strong comparison,

vH
1 (x, t) > vH

ε
(x, t) ∀t ∈ [0, Tε], x > sH

ε
:= sH

2 (t) − ε.

This implies sL
1(t) > sL

ε
(t) ∀t ∈ [0, Tε]. Now we claim that Tε = TH . In fact, supposed not, then

sH
1 (Tε) = sH

2 (Tε) − ε = sH
ε

(Tε).
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By comparison, vL
1 � vL

ε
in R× [0, Tε]. It follows from strong comparison that vL

1 > vL
ε

in {(x, t) | x <

ŝL(t), 0 < t � Tε}. But this implies

γ H = vL
1(sH

1 (Tε), Tε) > vL
ε
(sH

ε
(Tε), Tε) = vL

2(sH
2 (Tε), Tε)) = γ H ,

a contradiction. Thus, Tε = TH . It follows that

vL
1(x, t) > vL

2(x + ε, t), sL
1(t) > sL

2(t) − ε ∀t ∈ [0, TH), x > sH
1 (t),

vH
1 (x, t) > vH

2 (x + ε, t), sH
1 (t) > sH

2 (t) − ε ∀t ∈ [0, TH), x < sL
1(t).

Sending ε → 0, we have, for l = H, L,

vl
1(x, t) � vl

2(x, t), sl
1(t) � sl

2(t) ∀t ∈ [0, TH], x ∈R.

Reversing the roles of the two solutions, we see that vH
1 = vH

2 and vL
1 = vL

2 in R× [0, TH]. Since
L HvH

i = 0 in R× [TH , ∞), we have vH
1 = vH

2 in R× [TH , ∞), which implies sL
1 ≡ sL

2 on [TH , TL), and
vL

1 ≡ vL
2 on R× [TH , ∞). We then have proved the uniqueness.

Remark 6.1. Note that e−x is a steady state. This implies that ∂k

∂tk
vH(x, 0) = 0 when x ∈ (sH(0), ∞) for

any integer k � 1. This further implies that dk

dtk
sL(0) = 0 for any k � 1. Similarly, we have dk

dtk
sH(0) = 0 for

any k � 1.

Remark 6.2. Note that if ŝL(t) < sL(t), then vL
x (ŝL(t), t) = 0. Since vL

x (ŝL(0)−, 0) < 0, we see that there
exist T > 0 such that ŝL(t) = sL(t) for t ∈ [0, T].

Remark 6.3. In the case δL > δH , we can see clear the need of the variational inequality. First of all, we
have

vH(−∞, t) =
{γ H if 0 � t < TH ,

γ He−δH (t−TH ) if t � TH .

This implies, using the notation (2.8), that sL ∈ C∞([0, TL)). However, we know that vL < e−δLt for t ∈
[0, T̂L). Thus, we have vL(·, t) ≡ γ L, ŝL(t) = −∞ < sL(t) for t ∈ [T̂L, TL). Therefore, we must replace the
PDEs in [3] by variational inequalities.

7. Summary

Mathematical analyses of credit rating migration using structure frameworks start from [14], where the
migration boundary is assumed to be known. The work is extended in [10, 12] by assuming that the
migration boundary is a free boundary determined by the equation R = γ , where R is the ratio of debt
and asset value and γ is a threshold. Since a Brownian motion Wt − Wt0 can change sign infinite many
time in [t0, t0 + ε) for any ε > 0, the free boundary models in [10, 12] may result in the change of credit
rating infinite many times in short time. Thus, for realistic application, an introduction of a buffer zone
(dead band in engineering) is necessary. In our previous paper [3], a credit rating migration model with
a buffer zone is introduced. However, we discover that the model works only for the case of nondividend.
In this paper, we revise the credit rating migration model in [3], so that it covers the non-zero dividend
case. It is not a trivial extension as the PDE problem will bring up the possibility of the solution violates
the rating migration condition inside of the region; i.e. if we only use PDE, then the solution L LvL = 0 in
{(x, t)|t ∈ [0, TL), x < sL(t)} may not satisfy the fundamental requirement that vL � γ L, see Remark 6.3.
For this reason, we modify the model by replacing the parabolic equation by a variational inequality. This
renders to a new free boundary problem where the PDE free boundary problem in [3] is a special case
of the new model. By constructing two monotone sequences, existence, uniqueness and some properties
are obtained.
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The model established in this paper can be extended without essential difficulties to the cases of
multiple ratings. It can be expected to be used by credit rating companies, bond issuing agencies and
corresponding financial institutions.
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