A new extension of Minkowski's Theorem

P.R. Scott

Let K be a closed convex set in the plane containing no nonzero point of the integral lattice. We show that if the area $A(K)$ of K is equally distributed amongst the four principal quadrants of the plane, then $A(K)<4$.

1.

Let K be a closed, convex set in the euclidean plane which has area $A(K)$. Let Λ be a lattice in the plane with determinant $d(\Lambda)$. A well known theorem of Minkowski asserts that if K is symmetric about the origin 0 , and K contains no non-zero point of Λ, then $A(K)<4 d(\Lambda)$. It is known that Minkowski's Theorem in the plane remains true for a large class of non-symmetric sets (for example, [1]), but the following simple result appears to have been overlooked.

Let u, v be vectors from O which generate the lattice Λ. Then the lines determined by u, v divide the plane into four 'quadrants' Q_{i} ($1 \leq i \leq 4$) . We assume that the quadrants are indexed in an anticlockwise direction, with Q_{1} the positive quadrant $\{x u+y v \mid x \geq 0, y \geq 0\}$.

THEOREM. If K is a closed, convex set in the plane for which $A\left(K \cap Q_{i}\right)=\frac{1}{4} A(K) \quad(1 \leq i \leq 4)$, and K contains no non-zero point of the Lattice Λ, then $A(K)<4 d(\Lambda)$.

Since closure, convexity, and ratios of areas are all left invariant

Received 17 February 1978.
under linear transformation, it is sufficient to prove the theorem when Λ is the integral lattice generated by $u=(1,0), v=(0,1)$; in this case $d(\Lambda)=1$.

If K contains no non-zero point of the integral lattice, then K is bounded by lines through the points $(\pm 1,0),(0, \pm 1)$. We may in fact assume that the line m through $V(0,1)$ has slope less than 1 (else $A\left(K \cap Q_{2}\right) \leq \frac{1}{2}$, and $A(K) \leq 2$), and slope greater than -1 (else $A\left(K \cap Q_{1}\right) \leq \frac{3}{2}$, and $A(K) \leq 2$). Similarly, the line I through $U(1,0)$ has slope less than -1 or greater than 1 .

Let \mathcal{Z} and m meet at the point P_{1}. Since K is closed and contains no non-zero lattice points, $A\left(K \cap Q_{1}\right)<A\left(O U P_{1} V\right)$. If $P_{1}(x, y)$ lies in the portion of Q_{1} satisfying $x+y \leq 2$, then

$$
A\left(O U P_{1} V\right)=A(\triangle O U V)+A\left(\Delta U V P_{1}\right) \leq 1
$$

$A\left(K \cap Q_{1}\right)<1$, and $A(K)<4$.
Suppose then that $P_{1}(x, y)$ satisfies $x+y>2$. Since the circle on $U V$ as diameter touches the line $x+y=2$, we deduce that $\mathscr{U P}_{1} V$ is acute.

Using a similar argument in each quadrant Q_{i} we obtain: either $A(K)<4$, or $\underline{U P}_{i} V$ is acute $(1 \leq i \leq 4)$. Since a quadrilateral $P_{1} P_{2} P_{3} P_{4}$ cannot have four acute angles, we conclude that $A(K)<4$. This completes the proof of the theorem.

There is an obvious generalization to n-dimensional euclidean space, E^{n}. The vectors $u_{1}, u_{2}, \ldots, u_{n}$ generating the lattice Λ will determine $m=2^{n}$ orthants, $O_{1}, O_{2}, \ldots, O_{m}$. Let $V(K)$ denote the n-dimensional volume of K. We can now conjecture:

If K is a closed, convex set in E^{n} for which $V\left(K \cap O_{i}\right)=\frac{1}{2^{n}} V(K)$ $\left(1 \leq i \leq 2^{n}\right)$, and K contains no non-zero point of the lattice Λ, then $v(K)<2^{n} d(\Lambda)$.

However, even for $n=3$ it is not immediately clear how one might establish this result.

Reference

[1] P.R. Scott, "An analogue of Minkowski's theorem in the plane", J. London Math. Soc. (2) 8(1974), 647-651.

Department of Pure Mathematics, University of Adelaide, Adelaide, South Australia.

