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Introduction: Throughout this paper we assume that all rings contain

an identity. We say that R is a semi-primary ring if its (Jacobson) radical

N is nilpotent, and R/N is an Artinian ring. We say that R admits a splitting,

and we write R=A+B it A is a. subring of R, if B is a two-sided ideal in R,

and if Af)B=0 .

It has been shown in [1] that for a semi-primary ring R l^gl. dim R

= r gl. dimi?=l + /. proj. dim N. This common value is denoted by gl dim R.

It has been shown in [2] that if R is a semi-primary hereditary ring, and I is

a two-sided ideal in R, then gl dim i?//< oo .

We prove that if R is a semi-primary ring and gl dim R/N2< oo , then R is

a residue ring of a semi-primary hereditary ring. This is a generalization of a

similar result in [3]. The crucial step is a splitting theorem that we prove for

a semi-primary ring R, for which eNe = 0 for any primitive idempotent e^R.

This splitting theorem seems also useful in studying certain types of semi-

primary subrings of a simple ring.

The author wishes to thank Professors M. Auslander, E.E. Lazerson, and M.I.

Rosen for their helpful remarks and suggestions in the preparation of this

paper.

§1. A Splitting Theorem.
t

For the rest of this section, let R=ΣlReu be a complete decomposition for

the semi-primary ring R, i.e. ex et are primitive orthogonal idempotents

(e.g. [4, pp 53-57]). Furthermore, assume evNev = 0 for v=l, , t. When

writing ei9 e5 we always assume 1 ̂  i, j , ^ t, unless otherwise stated.

Since for any ei9 eiNeL is the radical of βiRe^ and βiRβijeiNβi is a division

ring, we have:
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LEMMA 1: βiRβi is a division ring for ι = l, , t. Every element

induces a homomorphism (by right multiplication) of Ret into Rejy and vice versa. In

particular, if Rβi is isomorphic to Rej9 then ekNei ψ 0 iff ekNej¥=0 for any k,l^L

Thus:

LEMMA 2: Let Rβi be isomorphic to Rejy then

One easily verifies that this is equivalent to:

LEMMA 2* : Every non-zero homomorphism between isomorphic components is an

isomorphism.

Let Γo be Σ etRej where (t, j) ranges over all pairs such that Ret and Rej are

isomorphic to ReiQ for some fixed i0. Let R0 = HomR(Σ\ i ? ^ , Σ Rek), where k
k k

ranges over all indices such that Rek is isomorphic to Reio. Let Rt =
s s

HomR(J^Bi, ΣIBi), where Bi = Reio for i = l> , s, and 5 is the number of

components in the complete decomposition for R which are isomorphic to ReίQ.

Finally, let Γ1 = {eioReiQ)s-the sxs matrix algebra over the division ring eioReio.

With these notations we have:

LEMMA 3: The subring Γo of R is a simple ring.

Proof: It is clear that Rx and Ro are isomorphic. It is also clear that ΓΌ(A)

is anti-isomorphic to i?0(^i) Thus Γo and Γλ are isomorphic.

Let Γ be 2 βiRej> where (/, j) ranges over all pairs such that Ret is isomor-

phic to Rβj. Since on Γ we have a natural splitting, into subsums taken over

any fixed isomorphism class of components, it follows from Lemma 3 that:

PROPOSITION 1: The subring Γ of R is a semi-simple ring.

The underlying additive group of R admits a decomposition Z?= Σ eiRβj

Let i?i= Σ3 βiRβj where (i, j) ranges over all pairs such that Ret is not isomor-

phic to Rβj. We have R==Γ+Rl9 and it is clear that R^N. Our next step

is to show that R1=N. We will be done once we show that R1 is a two-sided
t

ideal in R. Since r— Σ e^ej for any re/?, and since Rx is closed under addi-

tion, it suffices to show that ^re^ei?!, implies e^jse^R! and βiveire^Ri for all

1 ^ ί, i, k,l^t and r, s, υ&R. But eire^se^Ri only if Rβi is isomorphic to Rek,

whence by Lemma 2* this element induces an isomorphism of Ret onto Rek,

and this is impossible since eiVβj^RiCiN. A similar argument shows that
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This proves:

THEOREM 1. THE SPLITTING THEOREM: Let R be a semi-primary
t

ring, and let i ? = Σ Reu be a complete decomposition for R. If βtNe^O for i = 1,...

..., t, then R admits a splitting R=Γ+N. Γ = Σ βiRβj where (i, j) ranges over all pairs

such that Rβi is isomorphic to Re,. N=J]eiRej where (i,j) ranges over all pairs such

that Ret is not isomorphic to Rβj.

With the assumptions and notations of Theorem 1, using Lemma 1 one

can easily prove that the center of R is a direct product of fields. The

center of R is a field only if 0 and 1 are the unique central idempotents in R.

One can also show that if R=Γλ+N is another splitting for R, then there exists

an invertible element 5 in R such that the automorphism r -> srs'1 takes Γ onto

The splitting theorem enables us to view N as a Γ—Γ bimodule. Define

Ω(Γ,N)=J]Nω, where Nω=Γ and N(ι)==N^-^(g)N. Letting nx (x) (g) n&n1

(x) ®wi=w1(8) (x^ iφn 1 ® (S)nj and extending (x) distributively, Ω(Γ,N)

becomes a ring (identifying N(i)(g)Γ, Γ(xW(ί) and Nω for i ^ 0 ) . Letting /(n x

® (x) nk) = n1 nky and extending / linearly, / is a ring epimorphism from

Ω{Γ, N) onto R. If for some m, N(m) = 0 then M= Σ N(ί) is a nilpotent two-sided

ideal and ί2(Γ, N)/M is semi-simple. Thus i2(Γ, N) is a semi-primary ring with

radical M. Furthermore, M= Ω(Γ, N)®N, and since N is Γ-projective5 M is

i2(r,A^)-projective. By [1], this implies that Ω(Γ,N) is an hereditary ring.

If Eo, ,Ek are primitive idempotents in R, then {Eo, ,Ek) is an R-

connected sequence of length k if EiNEi+1 ψ 0 for z=0, , fc— 1. It is obvious

that JV(m) = O if there are no /^-connected sequences of length m.

2. Applications. We first deal with the case gLdimR/N2< 00. Thus let

R be a semi-primary ring and gl-dim RjN2< 00 . Let R=R/N\ N=NlN2.

With the notations of section 1 we have that R= Σ ^ « is a complete decom-

position for R, where e€ is the canonical image of d in R for / = 1, , / . By a

result in [3] concerning semi-primary rings for which the square of the radical

is zero, we conclude that ^-connected sequences are bounded in length. This

implies:

L E M M A 4 : R-connected sequences are bounded in length.

Proof: We show that if βiNβj ψ 0 then there exists an J?-connected sequence
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of the form (ei9 , eά). If (ei9 ij) is ^-connected we are done. Otherwise,

βiNβj^N2 and there readily follows the existence of a primitive idempotent ek

such that βiNejcNej ψ 0 . If {ei9 ek, e3) is ^-connected we are done. Otherwise,

either eιNek^N2 or ekNeό^N2. Let e^Ne^N2, then we can find a primitive

idempotent et such that 0 ψ ^iV^iV^iV^eTV3. Since N is nilpotent, this proce-

dure must end and the result follows.

In particular, we must have ĴV 4̂ = O for i = l, , t, thus by Theorem 1,

R=Γ+N. The ring Ω{Γ,N) as constructed at the end of § 1 is a semi-primary

hereditary ring in this case. Combining this with the result in [2] concerning

residue rings of semi-primary hereditary rings we have:

THEOREM 2. Let R be a semi-primary ring, then the following are equivalent:

(a) R is a residue ring of a semi-primary hereditary ring.

(b) All residue rings of R have finite global dimension.

(c) glulim R/N2 < oo .

Remark that under each of these equivalent conditions eNe=0 for any primitive

idempotent e^R .

In particular, if R is a semi-primary hereditary ring, its center is a direct

product of fields. The center of R is a field only if 0 and 1 are the unique

central idempotents in R.

For the rest, let D be a division ring and let Dn denote the nxn matrix
n

algebra over D. Let R be a semi-primary subring of Dn, such that R= 2 Ret

is a complete decomposition for R. Without loss of generality we may assume

that βi is the matrix whose (a, β)th component is (^)^ = ̂ Λ|3 fc>r all /, a, β= 1,...

..., n. We can (naturally) identify ej^^i with D, and βiRβi with a subring of

D, for / = 1, ,n. In particular ^7V^ = 0 for z = l, , n, and by Theorem 1

R=Γ + N. We want to show now that Ω{Γ,N) is a semi-primary

hereditary ring. This follows from the fact that any element e^ej^R induces

an isomorphism from Dnei onto Dnej. Thus in particular e^βj ψ 0 and eksβi ψ 0

imply ekseiYe5 ψ 0, or dNej ψ 0 and ejNek ψ 0 imply eιNejNek ψ 0 . Since N is

nilpotent this implies that i^-connected sequences are bounded in length.

Thus we proved:

THEOREM 3. Let R be a semi-primary subring of Dw containing n orthogonal

idempotents, then gl dirn R/I<. oo for any two-sided ideal I in R.

Let R be a semi-primary subring of Dn. Let C{R) be the subset of Dn
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consisting of elements V^Dn for which Vr—rV for all r^R. Set C(Dn) to be the

center of Dn. One can show that C{R) = C{Dn) implies that (a) 0 and 1 are the

unique central idempotents in R and (b) R contains n orthogonal idempotents.

If D is aϋeld one easily verifies that (a) and (b) imply C{R) = C{Dn) .
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