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1. The easiest way to construct automorphic functions is by means of the Poincare
series. If G is a Kleinian group with oo an ordinary point of G and if k ^ 4, then

|"* < +oo, (1)

where Vz = (az+b)l(cz+d) and ad—be = 1. The convergence of this series is the crucial
step in showing that the Poincare series converges and is an automorphic form on G. If oo
is a limit point of G, the series in (1) may diverge and one can derive automorphic forms on
G from the Poincar6 series of some conjugate group. These constructions are described in
greater detail in [3, pp. 155-165].

While investigating another problem, the author arrived at the following generalisation
of(l).

THEOREM 1. Let G be any Kleinian group. Ifk^4, then

E ( | a | + |6 | + |c | + |«*|)-*<+oo, (2)
VeG

where Vz = (az+b)l(cz+d) and ad—be = 1.
This result contains (1) and can be used to give a direct construction of automorphic

forms, valid for all Kleinian groups. This is indicated below.
The convergence of the series in (2) may also be of use in another context. First, the

Hausdorff dimension d(L), of the limit set L of G is invariant under conjugation [2, Corollary,
p. 735]. Next, Akaza [1] and the author (in some unpublished work) have results relating
d(L) to

in the case when oo is an ordinary point of G. If oo is a limit point of G, 5(G) loses its
significance and in any event, d(G) is not invariant under conjugation. We can, however,
prove the following result.

THEOREM 2. Let G be any Kleinian group and (using the notation in Theorem 1) define

= inf{f>0: £ ( |a | + |* | + | c | + | d | ) - ' < + o o } .
VEG

If A is any bilinear transformation, then k(AGA~l) = A(G).
It is easy to see that A(G) = S(G) when oo is an ordinary point; thus it may well be that

A(G) rather than <5(G) is the relevant function of G.

2. Proof of Theorem 1. The proof of (1) is simply to note that, if Q is a closed disc
disjoint from the orbit <J(OO) of oo (in general, we denote the orbit of z by G(z)) and if Q lies
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in some fundamental region, then the discs V(Q) (VeG) are disjoint and lie in some bounded
set. Thus

£ area V(Q) < + oo
VeG

and this implies (1). To establish (2) we merely replace the area of V(Q) by the area of the
image of V(Q) under stereographic projection onto the Riemann sphere. Equivalently, we
use the chordal metric with an element of area

dxdy

Thus we have

dxdy
T^< +00.

A change of variable gives

\V'(z)\2dxdy
d+\vz\2)2<+co

which reduces to

dxdy

There exists a constant m such that, if zeQ, then

where

|a| + H + |c| + M (ad-bc = l)
and this together with (3) implies (2).

If oo is an ordinary point of G, there exists a positive constant m such that, for all but a
finite set of V,

|Foo|^m, iF- 'ool^m and iF^Ol^m.

For these V we have

and so with this assumption, (1) and (2) are equivalent.

Proof of Theorem 2. If Ve G and if A is any bilinear transformation, we have

k(A VA-1)^ KX(V) ̂  K2X(A VA~l),

where AT depends only on A (note that V = A~1AVA~1A) and so A(G)=A(AGA~1).
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Before describing the construction of automorphic forms we introduce some notation
and one more result. Let R be any fundamental region of G and let E be any open set meeting
L, the set of limit points of G. Define

V(R)r>E*0

and

< +00}.

THEOREM 3. Let G be any Kleinian group and E any open set meeting L. Then AE = A(G).

Proof. We need only show that A£ is independent of E, for AE = A(G) when E is the
complex plane.

Suppose first that, for some positive / and some z0 in L,

I (AT, 0 = +00 (4)

for every neighbourhood N of z0. Let zx be a limit point and M a neighbourhood of zv.
Then there exists a T in G with T(N) c M for some neighbourhood N of z0 and so

, 0 £ E

= +00,

where K depends only on T. Thus, if one limit point has the property (4), so does every limit
point. As L is compact in the chordal metric, the proof is easily completed.

3. We now sketch the construction of automorphic forms. Let G be any Kleinian group
with w an ordinary point of G (w ^ 00) and let E be any compact set of ordinary points that
does not meet G(w). Then there exists a positive number k (depending only on G, E and w)
such that, for z in E and for all but a finite set of V,

mm{p(V-lco,z), p(V-\z), p(Vz, w)} Zk, (5)

where p is the chordal metric. In the following, we use K to denote a positive quantity
depending only on G, E and w and not necessarily the same at each occurrence. For z in E
and for all but a finite set of V, we have (using (5)),

(6)
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(If c = 0, the argument is not valid but (6) still holds.) A similar inequality holds for | az+b |2.
Thus, for z in E and for all but a finite set of V,

\(az+b)-w(cz+d)\2 = |cz+rf|2| Vz-w\2

(7)

by virtue of (5) and (6). Thus we have proved

LEMMA 1. Let G be any Kleinian group with w ( # oo) an ordinary point of G. If k ^ 4,
the series

£ \(az + b)-w(cz+d)\-k

VeG

converges uniformly on any compact subset of the set of ordinary points that does not meet
G(w).

Finally, we prove

THEOREM 4. Let G be any Kleinian group with an invariant component D of the set of
ordinary points, let k be an even integer satisfying k ^ 4 and let H be any rational function whose
poles are ordinary points. Then

F(z)= V HV(z)[(az + b)-w(cz + d)yk

VeO

is an automorphic form on G of dimension —k.

Proof. An argument similar to that given in [3, pp. 159-161] (but using Lemma 1) shows
that F is meromorphic in D and satisfies the required functional relation there. It remains
to show that F is meromorphic at the parabolic vertices of G lying on the boundary of D, and
to do this we need only make slight modifications to the proof of Theorem 3A of [3, pp. 162-163].
(We use the same notation as in this proof.) If z is in the parabolic sector dXp cut out of C,
then, for all but a finite set of V, (7) holds with K = k\\ + \ w |2), where we have assumed the
sector to be sufficiently small not to meet G(oo), C(0) or G(w). The parabolic sector at p lies
in some disc | z | ^ r. If V is such that | b \ < 2r \ a \ we have

for some constants B and Bu whereas, if | b | ^ 1r \ a \, then

\az+b\ ^\b\-\az\ ^ ( |a| + |6 | ) | z - /> |

if z is sufficiently close to p and within the parabolic sector. Similar inequalities hold for
| cz+d\ and these together with (7) show that

\(az+b)-w(cz+d)\2 £

The proof is easily completed and F is analytic at p .
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Hi be any rational function whose poles are ordinary points and suppose that Ht

le of order k (^ 4) at some ordinary point w (# oo). Then H(z) = //i(z)(z—wf is a
f t i d

Let
has a pol
rational function and so

VeG VeC

is an automorphic form on G. This is known when oo is an ordinary point of G; the above
argument is valid, however, when oo is a limit point of G.
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